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Abstract
Often, in practice, conditionals are easier to model and interpret while the joint distri-

bution itself is either intractable or not available in a closed form. Conditionally specified
statistical models offer several advantages over joint models. Conditionally specified models
are intuitively appealing and enrich our ability to build interpretable models in practice.
In this paper, we derive the likelihood of a joint distribution obtained from Binomial and
Bivariate Normal conditionals. Properties of maximum likelihood estimates and pseudolike-
lihood estimates are explored using a simulation. A conditionally specified model is obtained
by assuming that closing prices are conditionally normally distributed and that the buy-sell
recommendation by an Analyst follows a logistic regression model given the prices.

Key words: Conditionally specified models; Compatibility; Maximum likelihood; Pseudolike-
lihood; Gibb’s sampling.
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1. Introduction

When solving real-world problems, the main difficulty could be selecting a suitable
model to reflect the reality being observed (Ghosh and Nadarajah, 2017). Especially when
the observed response consists of both continuous and discrete components, it is not very
convenient to directly specify a joint distribution. Often, in practice, conditionals are easier
to model and interpret while the joint distribution itself is either intractable or not available
in a closed form. According to Arnold et al. (1999, 2001), although the joint distribution is
less tractable, availability of easily handled conditionals enables us to consider computation-
ally more efficient estimation methods such as pseudolikelihood. Arnold et al. (1999, 2001)
provide an extensive account of conditionally specified joint distributions. They proved the-
orems describing the conditions for the existence of joint distributions consistent with the
given conditionals and provided general forms of such joint distributions. They also consider
examples of joint distributions determined by discrete-continuous pairs of conditionals. It
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turns out that the joint distributions obtained by following the theoretical developments are
not always tractable. In particular, often the normalizing constant does not lend itself to a
closed form. In this paper, we consider a joint distribution for data consisting of a binary
random variable and bivariate continuous measurements. The model postulates a joint distri-
bution determined by Binomial (in fact by a logistic regression model) and bivariate Normal
conditionals. For this model, we can derive a closed form for the normalizing constant,
however, it turns out that the parameter estimation is numerically intensive. Therefore, we
consider an alternative method using a pseudolikelihood function. The two approaches are
compared in a simulation study.

As an illustrative application, we consider stock price data along with the corresponding
buy-sell recommendation of an analyst. Stock market analysts classify a stock as either
a “buy” or a “sell” based on their own research into the history of the stock as well as
their assessment of other market dynamics which have a bearing on the price of the stock.
Here, the distribution of the stock price on the “buy” days is clearly different from the price
distribution on “sell” days. Thus, our choice of the model parameters would differ if we knew
that the stock has been classified as a buy instead of as a sell. On the other hand, the price
history of the stock will influence the classification (buy or sell) decision of the analyst. Thus,
even though it is cumbersome and inconvenient to think of a joint distribution of the stock
prices (continuous) and the analyst recommendations (binary), it is easier to think of the
conditional distribution of the recommendations given the price history and the conditional
distribution of the stock price given its buy or sell status. Thus, conditionally specified
distribution is a convenient way to model both, expert recommendations and closing prices
simultaneously.

Another motivating example can be found in the area of Gerontology. In health care
studies involving aged subjects, due to progressively deteriorating health conditions over
time, subjects become unable to respond to questions. To avoid the resulting missing data
situation, sometimes the study protocol would allow the investigator to collect a proxy
response from another person who is familiar with the non-responding subject. Thus, for
each subject, we record a pair of responses. One of the variables in the pair is a discrete
random variable (0 or 1 depending upon whether the respondent is either the subject or
the proxy) and the other is a continuous (a composite score from a mental health related
questionnaire) measurement. Note that the ability to respond is usually related to the
overall health condition of the patient. A proxy is needed when a subject is not well enough
to answer the questions of the study. On the other hand, the distributional properties of the
proxy responses and subject responses would be different. Thus, the conditional relationships
between responses and self/proxy indication can be specified using commonly used models
and a single joint distribution can be derived for analyzing both subject data and proxy
data. The reader is referred to Hosseini (2017) for a detailed description of this approach
along with a working code implementing the parameter estimation.

The contents of this paper are organized as follows. In Section 2, we briefly intro-
duce conditionally specified models and present the existing theories of deriving the joint
distribution and some issues like compatibility of conditionals. In Section 3, we consider the
problem of compatibility and present the relevant restrictions on the original problem. In
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Section 4, we propose our new joint distributions. In Section 5, we present an illustrative
example using the stock data. Finally, some concluding remarks are made in Section 6.

All computations are done using the freeware R.

2. Conditionally Specified Distributions in Exponential Family

In a comprehensive review given by Arnold et al.(2001), in Statistical Science, it is
stated that a bivariate density is easy to understand/visualize in the terms of its conditional
densities. In practice, researchers often have better insight into the form of conditional
distributions of experimental variables rather than the joint distribution (See Castillo and
Galambos, 1989). For instance, instead of providing a model for (X, Y ), one can propose
families of conditional distributions of X given values of Y , and of Y given values of X.
Castillo and Galambos (1989) identified the complete class of such bivariate distributions
with given specified conditional distributions. Arnold and Strauss (1988) extended their work
to arbitrary exponential family of conditionals. The key result in this area, which gives the
form of the joint distribution which is consistent with the given specific pair of conditional
distributions is provided in Arnold and Strauss (1988). Below is a brief statement of this
key result, which provides a general form of the joint distribution starting with conditionals
belonging to the exponential family of distributions. We start with the following notations.

Notations: Define an l1-parameter family of densities {f1(x; θ) : θ ∈ Θ} with respect to µ1
(frequently, Lebesgue measure or counting measure) on D1, a subset of Euclidean space of
finite dimension, of the form

f1(x; θ) = r1(x)β1(θ)exp
{

l1∑
i=1

θiq1i(x)
}

(1)

where q1i(x)’s (sufficient statistics) are linearly independent, and θ = (θ1, · · · , θl1)T . Sim-
ilarly, we define, an l2-parameter family of densities {f2(x; τ) : τ ∈} with respect to µ2
(frequently, Lebesgue measure or counting measure) on D2, a subset of Euclidean space of
finite dimension, of the form

f2(y; τ) = r2(y)β2(τ)exp
{

l2∑
j=1

τjq2j(y)
}

(2)

where q2j(y)’s (sufficient statistics) are linearly independent , and τ = (τ1, · · · , τl2)T .

Our goal is to identify the class of bivariate densities f(x, y) with respect to µ1 × µ2
on D1 ×D2, whose conditionals belong to the above families of densities respectively. That
is, we want to find a joint distribution f(x, y) such that f(x|y) = f1(x; θ(y)) and f(y|x) =
f2(y; τ(x)). Arnold et al.(1988) show the existence and provide a general form of the joint
distribution. Their result is stated in the theorem below.

Theorem 1: Let f(x, y) be a bivariate density whose conditional densities satisfy f(x|y) =
f1(x; θ(y)) and f(y|x) = f2(y; τ(x)) for some function θ(y) and τ(x) where f1 and f2 are as
defined in (3) and (4). It follows that f(x, y) is of the form

f(x, y) = r1(x)r2(y)exp
{
q(1)(x)TMq(2)(y)

}
(3)
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where,
q(1)(x) = (q10(x), q11(x), q12(x), ..., q1l1(x))T ,

q(2)(y) = (q20(y), q21(y), q22(y), ..., q2l2(y))T

and where, q10(x) = q20(y) = 1 and M is an (l1 +1)×(l2 +1) matrix of parameters, subject to
the requirement that

∫
D1

∫
D2
f(x, y)dµ1(x)dµ2(y) = 1. The family of these joint distributions

is referred to as conditional exponential family (CEF). Note that the elements of M may be
denoted by mij for i = 0, 1, · · · , (l1 + 1) and j = 0, 1, · · · , (l2 + 1).

To illustrate the application of Theorem 1 we present an example where one of the
conditionals is the Poisson distribution and the other is the Gamma distribution.

Example 1: This example was given in Arnold et al.(1999). Suppose we are seeking a
joint distribution of a random vector (X, Y ) such that, X|Y = y ∼ Poi(y) and assume
Y |X = x ∼ Γ(x + α, λ + 1). Since both conditionals belong to the exponential family of
distributions, we can put them in the notations of Theorem 1 as follows: l1=1 and l2=2.
The M matrix is 2× 3. Further, r1(x) = 1

x! and r2(y) = 1
y
. Similarly, the sufficient statistics

q1i(x)’s and q2j(y)’s can be identified as q(1)(x) = (1, x)T and q(2)(y) = (1,−y, ln(y))T .
Therefore, joint density belongs to CEF and its general form is given by,

f(x, y) = 1
x!yexp

[1 x
]
M

 1
−y
ln(y)


 x = 0, 1, ...; y > 0

where,
m01 > 0,m02 > 0,m11 ≥ 0,m12 ≥ 0.

Note that, when m11 = m12 = 0, X and Y are independent. And when m11 = 0 and m12 = 1,
it can be shown that the marginal of X is given by

f(x) = Γ(x+ α)
Γ(α)x!

(
λ

λ+ 1

)α( 1
λ+ 1

)x
x = 0, 1, 2, ....

Thus, we obtain the familiar compound Poisson distribution.

An interesting point to be noted here is that, for m11 > 0 the joint distribution does
not yield the compound Poisson distribution as the marginal of X. This indicates that, even
though we started with the Poisson and Gamma conditionals, the resulting CEF is a much
larger class than that obtained by combining X|Y = y ∼ Poi(y) and Y ∼ Γ(α, λ+ 1).

It turns out that the candidate functions for the conditional distributions will have
to satisfy certain conditions for the existence of a corresponding proper joint distribution.
This issue is also referred to as the problem of compatibility of conditionals. According to
Chen (2010), the incompatibility of the conditionally specified models may lead to serious
consequences on the statistical inference and interpretation in the data analysis and on the
convergence of the Gibbs sampling. Thus, the compatibility issue is a widely researched
area and there are several computational/theoretical approaches in literature to identify the
possible compatibility of given families of conditional distributions. Besag (1974), Arnold and
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Press (1989), Hobert and Casella (1998), Arnold, Castillo and Serabia (2002) and recently
Ghosh and Nadarajah (2017) studied compatibility extensively. We refer the reader to
theorems introduced by Arnold and Press (1989) which are used in checking the compatibility
of the conditionals in this paper.

Example 2: (Logistic Regression) Suppose X takes values in the set {x1, x2, ..., xk}, and is
real valued. For each x we have Y |X = x ∼ N(θx, σ2

x).

And for each y we have,

P (X = x|Y = y) = exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]
.

We apply Theorem 4.1 in the Arnold and Press (1989) paper as follows. The Theorem is
stated in the Appendix (A.2).

Proof of Compatibility: Let,

a(x, y) = f(Y |X = x) ∼ N(θx, σ2
x)

b(x, y) = f(X|Y = y) ∼ exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]

In order to show compatibility, we need to prove that the ratio of a(x, y)/b(x, y) factors into
a product such as U(x)× V (y). Consider,

a(x, y)
b(x, y) =

1√
2πσx

exp

{
− (y−θx)2

2σ2
x

}
k∑
x=1

exp[−(ax + bxy)]

exp[−(ax + bxy)]

= 1√
2πσx

exp

{
ax −

θ2
x

2σ2
x

}
exp

{
− 1

2σ2
x

[
y2 − 2(θx + σ2

xbx)y
]}

k∑
x=1

exp[−(ax + bxy)]

If bx = − θx
σ2
x

and σ2
x = σ2 where ax’s are unconstrained,

a(x, y)
b(x, y) = 1√

2πσ
exp

{
ax + θxbx

2

}
exp

{
− y2

2σ2

}
k∑
x=1

exp[−(ax + bxy)]

= exp

{
ax + θxbx

2

}
︸ ︷︷ ︸

U(x)

1√
2πσ

exp

{
− y2

2σ2

}
k∑
x=1

exp[−(ax + bxy)]︸ ︷︷ ︸
V(y)

= U(x)V (y)

where,
∫
y∈R V (y)dy <∞ and

k∑
x=1

U(x) <∞.
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Therefore, according to Arnold and Press (1989) the two distributions are compatible pro-
vided bx = − θx

σ2
x

and σ2
x = σ2 where ax’s are unconstrained.

3. Logistic and Bivariate Conditionals

In this section, we present the derivation of a conditionally specified model starting
with Logistic distribution and Bivariate Normal distribution as conditionals. We consider
the stock price data as the motivating example. We propose a logistic regression model for
the conditional distribution of the binary valued analyst recommendation given the stock
prices from the first and last day of the trading week and the conditional distribution of
the stock prices given the analyst recommendation as a Bivariate Normal. We first set up
the problem in the notations of Theorem 1 and then obtain the form of the joint. It turns
out that the normalizing constant can be obtained in a closed form using some results on
multivariate normal integrals. We discuss some properties of the resulting joint distribution.
We have created a shiny application (an interactive tool in the freeware R) which can be
used to explore the structure of the joint distribution for various parameter values.

3.1. Setting up the problem

Suppose we have the distribution of observed beginning and end price vector (2×1) of a
single trading week (say y) given the analyst recommendation (say r), fY |R(y|R = r) and the
distribution of analyst recommendation given observed data vector of a week, fR|Y (R|Y =
y) ∼ Ber[π(y, α)], where, π(y, α) is a function of y parameterized by α. We assume a logistic
link:

logit[π(y, α)] = log

 π(y, α)
1− π(y, α)

 = α0 + α1y1 + α2y2

Further, R is a binary variable and Y is a continuous variable such that fY |R(y|R = r) ∼
N2(µ(r),Σ(r)). where,

µ(r) =
(
µ

(r)
1

µ
(r)
2

)
and Σ(r) =

(
σ

(r)
1

2 ρσ
(r)
1 σ

(r)
2

ρσ
(r)
1 σ

(r)
2 σ

(r)
2

2

)

Under this model, the conditional distributions of the stock price given its buy/sell
status is assumed to be normal, with different set of parameter values depending upon the
classification. As we shall see in the next section, we will need to assume that the variance-
covariance matrices of the two conditionals must be the same (that is, Σ(0) = Σ(1)) in order
to ensure compatibility.

3.2. Deriving conditionally specified model

Confirming the existence of the joint model given the two conditionals is essential. In
other words, the two conditionals should be compatible. Therefore, for this problem, we will
start by checking whether fR|Y (R|Y = y) and fY |R(y|R = r) are compatible. We will use
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the Arnold and Press (1989) Theorem given in the Appendix (A.2). Assume,

a(r, y) = (2π)−1|Σ(r)|−1/2exp[−1
2(y − µ(r))TΣ(r)−1(y − µ(r))]

and
b(r, y) = π(y)r[1− π(y)].(1−r)

Let us form the ratio,

a(r, y)
b(r, y) =

(2π)−1|Σ(r)|−1/2exp[−1
2(y − µ(r))TΣ(r)−1(y − µ(r))]

π(y)r[1− π(y)](1−r)

Let Σ(r) = Σ, be the common variance-covariance matrix. As in Example 2, letting −Σ−1µ(1)

= (α1, α2)T , and leaving α0 unconstrained we can rewrite the above ratio as follows:

a(r, y)
b(r, y) =

(2π)−1|Σ|−1/2exp[−1
2(yTΣ−1y − 2yTΣ−1µ(r) + µ(r)TΣ−1µ(r)]

exp(rα0).exp(α0 + α1y1 + α2y2)−1

=
(2π)−1|Σ|−1/2exp[−1

2(yTΣ−1y)
exp[α0 + α1y1 + α2y2]−1︸ ︷︷ ︸

U(y)

·
exp[−1

2(µ(r)TΣ−1µ(r))]
exp(rα0)︸ ︷︷ ︸

V(r)

Since ∑1
r=0 V (r) < ∞, compatibility of the given family of conditional densities is as-

sured provided the integrability restriction is also satisfied. That is, the two conditionals
are compatible under common variance-covariance matrix Σ and under the condition that
exp[yTΣ−1y − α1y1 − α2y2] integrates to 1.

Now that the compatibility condition is satisfied, we can apply Theorem 1 to obtain
the form of the joint distribution. Theorem 1 was used to obtain the joint distribution of
f(y, r). Recall that,

ln(f(y, r)) = (1, r)
[
m00 m01 m02 m03 m04 m05
m10 m11 m12 m13 m14 m15

]


1
y1
y2
y2

1
y1y2
y2

2


For simplicity we write,

f(y, r) = exp(m00 + rm10).exp(Q(y, r)); r = 0, 1 and y ∈ R

where, Q(y, r) = (m01 + rm11)y1 + (m02 + rm12)y2 + (m03 + rm13)y2
1 + (m04 + rm14)y1y2 +

(m05 + rm15)y2
2

Obviously, the tiresome part of this derivation is finding the m values. We will now
start by finding the solutions for all the mij values except for m00 which is the normalizing
constant. We will present a solution for m00 at the end of this section. The usual way to
find m values (except m00) is comparing f(Y |R = r) and f(R|Y = y) derived from the joint
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distribution with the original f(Y |R = r) and f(R|Y = y). Thus, by comparing we obtain

f(R = r|Y = y) = exp(r[m10 +m11y1 +m12y2 +m13y
2
1 +m14y1y2 +m15y

2
2])

1 + exp(m10 +m11y1 +m12y2 +m13y2
1 +m14y1y2 +m15y2

2) ; r = 0, 1

By comparing the true density and the density of the desired logistic regression model, we
have that

π(y, α) = exp(m10 +m11y1 +m12y2 +m13y
2
1 +m14y1y2 +m15y

2
2)

1 + exp(m10 +m11y1 +m12y2 +m13y2
1 +m14y1y2 +m15y2

2)

Desired π(y, α) can be obtained by setting the quadratic terms into zero. However, having
quadratic terms in the general setting reveals that the derived joint density represents a
larger class of joint densities. The particular problem that we are interested in is a special
case where the logit link is constructed with a linear function only. Thus, by comparing we
get

m10 = α0 (4)
m11 = α1 (5)
m12 = α2 (6)

m13 = m14 = m15 = 0 (7)
Similarly, to obtain f(Y |R = r), we first derive f(R = r) using f(Y = y,R = r).

f(R = r)

=
∫ ∞
y2=−∞

∫ ∞
y1=−∞

f(y, r)dy1dy2

=
∫ ∞
y2=−∞

∫ ∞
y1=−∞

f(y, r)
f(y|r) × f(y|r)dy1dy2

= exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞
y1,y2=−∞

exp

{
1
2(y − µ(r))TΣ−1(y − µ(r)) +Q(y, r)

}
f(y|r)dy

In order to obtain a closed form expression for the normalizing constant, we will need to
finish the integration. It turns out that an old result involving multivariate normal density
function can be used to accomplish this. The complete result is given in the Appendix (A.1)
for the reader’s convenience. Once the joint distribution becomes available, the marginals
of Y and R can be obtained from the joint distribution. Thus, f(R = r) can be written as
follows:

(R = r)

= exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞
y1,y2=−∞

exp

{
2by + yTAy

}
f(y|r)dy

= exp(m00 + rm10)(2π)|Σ|1/2

|I − 2AΣ|1/2 exp

{
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

}



2020] CONDITIONALLY SPECIFIED DISTRIBUTION TO MODEL DATA 195

where,

b=
(

2ρσ1σ2µ
(r)
2 −2σ2

2µ
(r)
1

4(1−ρ2) + m01+rm11
2 ,

2ρσ1σ2µ
(r)
1 −2µ(r)

2 σ2
1

4(1−ρ2)σ2
1σ

2
2

+ m02+rm12
2

)
T

and A=
 1

2(1−ρ2)σ2
1

+m03 + rm13 m04 + rm14
−ρ

(1−ρ2)σ1σ2
1

2(1−ρ2)σ2
2

+m05 + rm15



Let us now obtain the conditional distribution f(Y |R = r).
f(Y |R = r)

= f(Y = y,R = r)
f(R = r)

= |I − 2AΣr|1/2

(2π)|Σr|1/2 exp

{
Q(y, r)− 2bTΣr(I − 2AΣr)−1b− µTr (I − 2AΣr)−1(2b+ Aµr)

}

We compare the conditional distribution f(Y |R = r) expressed in terms of the mij values
to the originally specified form of the same distribution (Y |R = r) expressed in terms of the
parameters

∼
µ(r)’s and Σ’s etc. to obtain the relationships between the two sets of parameters.

These relationships are captured in the following equations.

m01 + rm11 = µ
(r)
1 − ρr(σ11/σ22)µ(r)

2
(1− ρ2)σ2

11

m02 + rm12 = µ
(r)
2 (σ11/σ22)2 − ρ(σ11/σ22)µ(r)

1
(1− ρ2)σ2

11

m03 + rm13 = −1
2(1− ρ2)σ2

11

m04 + rm14 = ρ

(1− ρ2)σ11σ22

m05 + rm15 = −1
2(1− ρ2)σ2

22
(8)

The above equations can be solved for mij values in terms of the µ(r)
1 and µ

(r)
2 values etc.
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Expressions for m01,m02,m03,m04 and m05 are as follows:

m01 = µ
(r)
1 − ρ(σ11/σ22)µ(r)

2
(1− ρ2)σ2

11
− rα1

m02 = µ
(r)
2 (σ11/σ22)2 − ρ(σ11/σ22)µ(r)

1
(1− ρ2)σ2

11
− rα2

m03 = −1
2(1− ρ2)σ2

11

m04 = ρ

(1− ρ2)σ11σ22

m05 = −1
2(1− ρ2)σ2

22

(9)

From (9), one can also obtain the original parameters µ(r)
1 , µ

(r)
2 , ρr, σ

2
11 and σ2

22 in terms of
mij’s. Thus, we have,

ρ = m04
2√m03.m05

, σ2
22 = 2m03

m2
04−4m03.m05

and σ2
11 = 2m05

m2
04−4m03.m05

. (10)

According to (10) it is clear that ρ,σ2
11 and σ2

22 do not depend on the value of R. This implies
a common variance-covariance matrix for the conditional distributions f(Y = y|R = 0) and
f(Y = y|R = 1). Further, µ(r)

1 and µ
(r)
2 as follows.

µ
(r)
2 =

ρ

{
m01+rα1
m03

}
+
{
m02+rα2
m05

}
ρ2

√{
m05
m03

}
−
{
m05
m03

} and µ
(r)
1 = ρ

√
m05
m03
× µ(r)

2 − m01+rα1
m03 (11)

The above solutions are verified using simulation studies.

3.3. Deriving normalizing constant (m00)

In general, obtaining closed form solution to m00 is known to be difficult and sometimes
such a closed form may not even exist. For our problem however, we were able to derive a
closed form expression for m00. Since m00 should be such that

∫∞
y=−∞ f(y, r) = 1, it follows

that
m00 = −ln

[ 1∑
r=0

exp(rm10)
∫ ∞
y1=−∞

∫ ∞
y2=−∞

exp(Q(y, r))dy2dy1

]

As shown in the Appendix A.1, the double integral above is given by,∫ ∞
y1=−∞

∫ ∞
y2=−∞

exp(Q(y, r)) = 2πσ11σ22
√

1− ρ2

exp(C(r)) |I − 2AΣ|−1/2

exp

[
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

]
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where,

C(r) = −(σ2
22µ

(r)
1

2 − 2ρσ11σ22µ
(r)
1 µ

(r)
2 + σ2

11µ
(r)
2

2)
2(1− ρ2)σ2

11σ
2
22

b=
(

2ρσ11σ22µ
(r)
2 −2σ2

22µ
(r)
1

4(1−ρ2) + m01+rm11
2 ,

2ρσ11σ22µ
(r)
1 −2µ(r)

2 σ2
11

4(1−ρ2)σ2
11σ

2
22

+ m02+rm12
2

)
T

and A=
 1

2(1−ρ2)σ2
11

+m03 + rm13 m04 + rm14
−ρ

(1−ρ2)σ11σ22
1

2(1−ρ2)σ2
22

+m05 + rm15


.

Therefore, m00 is given by,

m00 = −ln
[
2πσ11σ22

√
1− ρ2

1∑
r=0
|I − 2AΣ|−1/2.

exp

(
rm10 − C(r) + 2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

)]

4. Data Generation and Estimation

In this section, we discuss how to generate data from the new conditionally specified
joint distribution. We also discuss estimation of the parameters of the joint distribution
using the maximum likelihood estimation (MLE) method and pseudolikelihood estimation
(PLE) method. We will also provide some numerical results to investigate the computational
effort involved in computing MLEs and PLEs.

4.1. Data generation from the model

Although the proposed joint model has a closed form expression, it is very complex
and has a messy normalizing constant. Therefore, generating data directly from the joint
model is immensely difficult and may even not be feasible. However, since the model is
conditionally specified we can apply other numerical algorithms such as Gibb’s Sampling.

Gibbs sampling algorithm, named by Geman and Geman (1984), is a special case of
Metropolis-Hastings algorithm. It is a way to generate data from multivariate distributions
when the univariate conditional densities are fully specified. For more details the reader is
referred to Rizzo(2008). For instance, let us assume that we want to generate data from a
bivariate density fX,Y (x, y) and the conditional distributions of the model are fully specified.
Let fX|Y (x/y) and fY |X(y/x) be conditional densities of x given y and y given x respec-
tively. Suppose simulating data from the bivariate density is complicated, Gibbs sampling
algorithm is an effective method to generate data from the conditional densities despite hav-
ing information about the marginal distributions fX(x) and fY (y). Presented below is the
algorithm which can be used to generate data from the proposed density.
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Gibb’s Sampling Algorithm

1. Initial value : Set R(0) = 1. So, Y (0) ∼ f1(y).

2. Set µ(0),µ(1),Σ and the vector α.

3. Suppose we generated (Y (0), R(0)), (Y (1), R(1)), ..., (Y (t), R(t)).

(a) if R(t) = 0 Generate Y (t+1) ∼ f(y/R = 0) and R(t+1) ∼ f(r/Y = y(t+1))
(b) if R(t) = 1 Generate Y (t+1) ∼ f(y/R = 1) and R(t+1) ∼ f(r/Y = y(t+1))

Contour plots and Surface plots (Figure 1) for f(Y,R = 0) and f(Y,R = 1) suggest that
the joint model is not a unimodal distribution. We have built an interactive tool for explor-
ing the shape of the joint distribution in Shiny. The reader may download this tool from
https://github.com/nadeesriw/ShinyApp.git.

Figure 1: Contour plots and Surface plots of the joint distribution. Top and bottom
left: f(Y,R = 0) and top and bottom right: f(Y,R = 1).

4.2. Estimating parameters

As stated in Arnold et al. (1991, 2001) papers, standard estimation methods are often
difficult to implement when dealing with conditionally specified models. This is mainly
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because of the awkward normalizing constant m00 which is often intractable. And, if an
explicit expression is available for m00, it is usually complicated, as is the case here. Thus,
differentiating the likelihood and deriving the maximum likelihood equations is challenging.
Although in practice MLE is the preferred estimation method for parametric models, in our
case it comes with a heavy computational burden. Therefore, it behooves upon us to explore
other methods such as pseudolikelihood estimation (PLE). In this section, we will compare
MLE and PLE in terms of relative efficiency and computational cost.

The likelihood function of the proposed joint distribution is given by,

L(f(Yi, Ri; ∼̂M)) =
n∏
i=1

exp(rm10 +Q(
∼
y, r))∑1

r=0 exp(rm10)
∫∞
y1=−∞

∫∞
y2=−∞ exp(Q(

∼
y, r))dy2dy1

(12)

where,

Q(
∼
y, r) = (m01 + rm11)y1 + (m02 + rm12)y2 + (m03 + rm13)y2

1 + (m04 + rm14)y1y2 + (m05 + rm15)y2
2

Deriving the score function and obtaining closed form expressions for estimates is not feasible
due to the complexity of the model. Therefore, numerical methods were considered to obtain
the estimates of parameters.

Arnold and Strauss (1991) proposed PLE as an alternative method to maximum likeli-
hood estimation. Further, they proposed the product of the two conditional distributions as
a possible pseudolikelihood function. The advantages of this method are that the function is
far more tractable compared to the original likelihood and the awkward normalizing constant
m00 is absent. The proposed pseudolikelihood function can be written as follows:

PL(µ(0), µ(1),Σ, α0, α1, α2) =
n∏
i=1

f(yi|Ri = ri)f(Ri = ri|yi)

PL(µ(r),Σ, α0, α1, α2)

=
n∏
i=1

1
2π|Σ|1/2×

exp

− 1
2(

∼
yi − µ(1)ri − µ(0)(1− ri))T [Σ]−1(

∼
yi − µ(1)ri − µ(0)(1− ri))

×
[exp{∼α

Ty∗i }]ri
1

1 + exp{∼α
Ty∗i }

where, α = (α0, α1, α2)T and
∼
y∗i = (1,

∼
yi)T . While the computation of PLE is also only

feasible numerically, the computations involved are significantly less complex than the com-
putation of the original likelihood.

We carried out a simulation study for different sample sizes varying from 100 to 1000.
Estimates of the model parameters were obtained using both MLE and PLE methods. Data
were generated using the Gibb’s algorithms. 100 such data sets were used for the study.
Apart from the estimates, we also calculated the variance, bias and time. The entire analysis
was performed using the R 3.5.1 software. The R package called Rsolnp, which performs
constrained optimization, was used to obtain estimates. Results are shown in Table 1 and
Table 2.
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Table 1: Wall times of simulation study with respect to sample size and method used:
TOL 10−3 and 100 data sets

Wall time (in hours)Sample Size
(n) Maximum Likelihood Estimates Pseudolikelihood Estimates

100 0.24876 0.03046
200 0.48388 0.05411
500 1.01297 0.12695
1000 18.74536 13.94225
10000 29.14374 15.74069

In Table 1, the first column shows the wall times for different sample sizes n, when the
maximum likelihood method was used. The second column of Table 1 presents the wall
times for pseudolikelihood method. According to results, we can see that pseudolikelihood
method is superior to maximum likelihood method in terms of computation efficiency. For
n=100, wall time of pseudolikelihood estimation for 100 iterations is 0.0304 hours (1.83 mins)
while the wall time of maximum likelihood estimation for 100 iterations is 0.2488 hours (∼ 15
mins). It is apparent that for small sample sizes such as n = 100, 200 there is no significant
computational cost difference between the two methods. However, for a larger sample size,
the computational advantage of PLE surpasses that of MLE quickly. Further, we note that
even the PLE method shows large wall times when n increases. In that case, paralleling the
code would be more effective. We are planning to explore this in the future.

In Table 2, we present the estimates, the bias and the variances for different sample
sizes. By looking at the bias values it is clear that the MLE method has less bias (and nearly
zero in some cases) than the PLE method. In both methods, the variances of the estimates
decrease as the sample size increases. The MLE of the α vector has less bias compared to
the PLE. Overall, it is evident that the MLE outperforms the PLE in terms of accuracy (less
bias) and efficiency (lower variance). Therefore, we can conclude that choosing PLE over
MLE is a trade off between efficiency and computational cost.

5. Illustrative Example

In this section we provide an illustrative example. We apply the derived joint distri-
bution to a data set with stock prices and a weekly buy/sell recommendation for stocks.
All the data has been downloaded from www.Barchart.com. The dataset consists of closing
prices and recommendations from Monday to Friday for 40 weeks. As the starting step,
we only considered the two closing prices from Monday and Friday of each week and the
recommendation from Monday of the following week. The data structure is given in Table
3.
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Table 2: Maximum likelihood estimates and pseudolikelihood estimates for different
sample sizes (n): TOL 10−3

Maximum Likelihood Pseudolikelihood
Parameters True Values Estimate (std) Bias Estimate (std) Bias

n = 100
σ2

0 1.2000 1.1986(0.0100) -0.0014 1.1836(0.0213) -0.0164
σ01 0.6481 0.6455(0.0100) -0.0026 0.6510(0.0135) 0.0029
σ2

1 1.4000 1.3981(0.0100) -0.0018 1.4273(0.0213) 0.0273
µ

(1)
1 2.0000 2.1828(0.0173) 0.1828 1.9879(0.0176) -0.0120
µ

(1)
2 3.0000 3.2157(0.0141) 0.2157 3.0179(0.0253) 0.0179
µ

(0)
1 0.0000 -0.0104(0.0223) -0.0104 0.0053(0.0182) 0.0053
µ

(0)
2 0.0000 -0.0213(0.0173) -0.0213 -0.0008(0.0218) -0.0008
α0 0.0010 0.0756(0.0012) 0.0746 -2.3291(0.2972) -2.3301
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5229(0.1117) 0.5219
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.2877(0.1710) 1.2867

n = 200
σ2

0 1.2000 1.1993(0.0001) -0.0007 1.2119(0.0085) 0.0119
σ01 0.6481 0.6458(0.0007) -0.0023 0.6498(0.0053) 0.0017
σ2

1 1.4000 1.3990(0.0017) -0.0009 1.4205(0.0073) 0.0205
µ

(1)
1 2.0000 2.1824(0.0001) 0.1824 1.9785(0.0076) -0.0215
µ

(1)
2 3.0000 3.2145(0.0001) 0.2145 2.9683(0.0115) -0.0317
µ

(0)
1 0.0000 -0.0124(0.0002) -0.0124 -0.0049(0.0073) -0.0049
µ

(0)
2 0.0000 -0.0219(0.0001) -0.0219 0.0013(0.0130) 0.0013
α0 0.0010 0.0736(0.0000)∗ 0.0726 -2.2607(0.1565) -2.2617
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5220(0.0565) 0.5210
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1872(0.0994) 1.1862

n = 500
σ2

0 1.2000 1.1996(0.0000)∗ -0.0003 1.2116(0.0009) 0.0116
σ01 0.6481 0.6458(0.0008) -0.0023 0.6434(0.0014) -0.0046
σ2

1 1.4000 1.3995(0.0000)∗ -0.0005 1.4109(0.0010) 0.0109
µ

(1)
1 2.0000 2.1842(0.0078) 0.1842 1.9995(0.0036) -0.0005
µ

(1)
2 3.0000 3.2158(0.0080) 0.2158 3.0081(0.0056) 0.0081
µ

(0)
1 0.0000 -0.0107(0.0112) -0.0107 0.0035(0.0045) 0.0035
µ

(0)
2 0.0000 -0.0210(0.0069) -0.0210 0.0069(0.0047) 0.0069
α0 0.0010 0.0755(0.0037) 0.0745 -2.3054(0.0940) -2.3064
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4747(0.0171) 0.4737
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1533(0.0153) 1.1523

n = 1000
σ2

0 1.2000 1.1998(0.0000)∗ -0.0002 1.2039(0.0002) 0.0039
σ01 0.6481 0.6457(0.0009) -0.0024 0.6434(0.0009) -0.0046
σ2

1 1.4000 1.3997(0.0000)∗ -0.0003 1.4085(0.0003) 0.0085
µ

(1)
1 2.0000 2.1814(0.0088) 0.1814 1.9947(0.0019) -0.0053
µ

(1)
2 3.0000 3.2237(0.0107) 0.2237 2.9945(0.0032) -0.0055
µ

(0)
1 0.0000 -0.0250(0.0096) -0.0250 -0.0042(0.0021) -0.0042
µ

(0)
2 0.0000 -0.0241(0.0064) -0.0241 0.0009(0.0019) 0.0009
α0 0.0010 0.0702(0.0035) 0.0692 -2.3886(0.0976) -2.3896
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4790(0.0096) 0.4780
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1613(0.0094) 1.1603

∗ : very small non zero values
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Figure 2: Closing prices, recommendations

Table 3: Data structure

Closing Prices
(Mon.price, Fri.price) Recommendation

Stock 1 Week 1 (y(1)
11 , y

(2)
11 ) Buy

Week 2 (y(1)
12 , y

(2)
12 ) Buy

... ... ...
Week 40 (y(1)

1,32, y
(2)
1,40) Sell

Stock 2 Week 1 (y(1)
21 , y

(2)
21 ) Buy

Week 2 (y(1)
22 , y

(2)
22 ) Sell

... ... ...
Week 40 (y(1)

2,32, y
(2)
2,40) Sell

Stocki weekj (y(1)
ij , y

(2)
ij ) rij

Conditional distributions of closing prices of Monday and Friday of each week given the end of
the week recommendation, is assumed to follow a bivariate normal distribution and the end of
the week recommendation given the closing prices of Monday and Friday is assumed to follow
a standard logistic regression model. The normality assumption is crucial. In this example,
we choose stocks where closing prices follow bivariate normal distribution. However, most
of the closing prices of stock data do not follow a bivariate normal distribution and hence
one might need to transform the data using methods such as Box-Cox transformation. The
pseudolikelihood and the maximum likelihood methods are used to estimate the parameters.
Results are given in Table 4. Note that the means, variances and correlation estimates

Table 4: Maximum likelihood and pseudolikelihood estimates for stock price data

Stock Method µ(0) µ(1) σ2
1 σ2

2 ρσ1σ2 α0 α1 α2

CORE Pseudolikelihood (28.80,28.50) (29.14,28.59) 19.92 18.29 18.47 -0.36 0.20 -0.19
Maximum Likelihood (28.80,28.51) (29.14,28.60) 19.55 17.96 18.12 -0.54 0.40 -0.39

UNIT Pseudolikelihood (7.51,7.33) (7.70,7.76) 1.73 1.62 1.54 -2.37 -0.807 1.02
Maximum Likelihood ( 7.51,7.33) (7.70,7.76) 1.72 1.62 1.54 -4.01 -1.64 2.08

obtained by the two methods are very close to each other. However, the estimates of the
parameters of the logistic regression model are not so close. The other important point to
note is that the α2 parameter seems to be significantly different from zero. This implies that
the product of the Monday and Friday prices is significant in the logistic regression model.
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6. Remarks

A researcher can get better insight into the data using conditional specification of
experimental variables rather than a joint distribution. Using conditional specification makes
the visualization easier. Furthermore, it makes it easier to use Gibbs sampling for data
generation. We derived Joint distribution starting from Y |R = r bivariate normal and
R|Y = y logistic regression.

In practice, the maximum likelihood method is a preferred estimation method for
parametric models. However, if the likelihood function is complicated or contains an awk-
ward normalizing constant, the implementation becomes difficult. Among other methods,
pseudolikelihood estimation is intuitively appealing and computationally less burdensome.
According to the simulation study, choosing the pseudolikelihood method over the maximum
likelihood method is a trade off between the efficiency and accuracy of estimates and the
computational cost.
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APPENDIX

1. Moment Generating Function Theorem

This theorem can be used to derive the moment generating function of a linear or a quadratic
form in a normal random vector x or, more generally, of a second degree polynomial in x.

Theorem A.1: Let x ∼ Nn(µ,Σ) and take qi = 2bix + xTAx where bi is an n × 1 non
random vector and Ai is an n× n non random symmetric matrix (i=1,2,...,k). Take Γ to be
any r× n matrix such that Σ = ΓTΓ, where r = rankΣ. The joint m.g.f. of q1, ..., qk is given
by,

mq1,...,qk(t1, ..., tk) = |I − 2
k∑
i=1

tiΓAiΓT |−1/2.exp

{
2
[

k∑
i=1

ti(bi + Aiµ)
]T

ΓT
[
I − 2

k∑
i=1

tiΓAiΓT
]−1

Γ
[

k∑
i=1

ti(bi + Aiµ)
]

+ µT
k∑
i=1

ti(2bi + Aiµ)
}

= |I − 2
k∑
i=1

tiΓAiΓT |−1/2.exp

{
2
[

k∑
i=1

tibi

]T
Σ
[
I − 2

k∑
i=1

tiAiΣ
]−1[ k∑

i=1
tibi

]

+ µT [I − 2
k∑
i=1

tiAiΣ
]−1 k∑

i=1
ti(2bi + Aiµ)

}

where (|ti| < hi; i = 1, ..., k). for sufficiently small positive constants h1, ..., hk.

2. Compatibility Theorem: Arnold and Press (1989)

we have,
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a(x, y) = fX|Y (x|y), x ∈ S(X), y ∈ S(Y ),

b(x, y) = fY |X(y|x), x ∈ S(X), y ∈ S(Y ),

and let, NA = (x, y) : a(x, y) > 0 and NB = (x, y) : b(x, y) > 0

Theorem A.2: A joint density f(x, y), with a(x, y) and b(x, y) as its conditional densities,
will exist if and only if,

1. NA=NB=N

2. ∃ functions u and v such that ∀ x,y,∈ N

a(x, y)/b(x, y) = u(x)v(y)

where ∫
S(X)

u(x)dµ1(x) <∞


