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 Abstract 

 

Inliers (instantaneous or early failures) are natural occurrences of a life test, where 

some of the items fail immediately or within a short time of the life test. These failures are 

either due to mechanical failures, accelerated pressures and interventions, or faulty items. The 

inconsistency of such life data is modeled using a nonstandard mixture of distributions; as 

there can be degeneracy in the model with discrete and continuous measures. The model 

discussed here is a nonstandard mixture of Gamma distribution with degeneracy happens at 

two discrete points at zero and one. In this paper, we provide the Uniformly Minimum 

Variance Unbiased (UMVU) estimation of parameters from a Gamma distribution with inliers 

at zero and one.  Along with various other characteristics, the model was numerically 

illustrated on a real life example. 
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___________________________________________________________________________ 

 

1 Introduction 

 

A Non-standard mixture of distribution is a mixture of degenerate (discrete masses at 

some points) and continuous observations measured on a particular life time characteristics. 

Because there are large mass of discrete points and continuous points on a measurable scale, 

they generally contains inliers and outliers. Inliers is an observation (or a group of observations) 

are sufficiently small relative to the rest of the observations, which appears to be inconsistent 

with the remaining dataset, whereas, outliers are large inconsistent observations in relation to 

the remaining observations. Inliers are either the result of the instantaneous failures or the early 

failures or both, experienced in life testing experiments, clinical trials, weather predictions, 

geographic information systems, athlete performance analysis, and many other such 

applications. The test items that fail at time 0 are called the instantaneous failures and the test 

items that fail prematurely are called the early failures. Kale and Muralidharan (2000) was the 

first to introduce the term inliers in connection with the estimation of (𝑝, 𝜃) of early failure 

model with modified failure time distribution (FTD) as an exponential with mean 𝜃. Some of 

the practical contexts, where degeneracy can happen at two discrete points with a mix of 

positive and continuous observations are the following: 

 

1. The size of tumor lesions is of interest to treat Hematologic malignancy patients.  The 

measurement effect is zero who have lesions absent (or due to disappearance of tumor 

during treatment), though who have lesions present at baseline that are evaluable but 

do not meet the definitions of measurable disease may be considered as measurement 
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1, otherwise lesions can be accurately measured as longest diameter to be recorded in 

at least one dimension by chest x-ray, with CT scan or with calipers by clinical exam.  

Similarly, in studies like Bone lesions, leptomeningeal disease, ascites, 

pleural/pericardial effusions, lymphangitis cutis/pulmonitis, inflammatory breast 

disease, and abdominal masses, either the effect is absent or present but not followed 

by CT or MRI, are considered as non-measurable otherwise accurately measurable on 

continuous scale. 

2. In the mass production of technological components of hardware, intended to function 

over a period of time, some components may fail on installation and therefore have 

zero life lengths, some component that does not fail on installation but fails with 

negligible life (may be coded as one for simplicity), and others that will have a life 

length that is a positive random variable whose distribution may take different forms. 

3. In a clinical trial laboratory, a particular drug is designed and given to certain species 

of hens so that the new chicks have weight greater than usual. The possible weight of 

chicks may be modeled as a continuous distribution, with discrete mass at ‘zero’ and 

‘one’ where zero measures those chicks having no gain of weight, where one measures 

those chicks with negligible gain of weight than usual, and a continuous variable having 

target gain in weight. 

4. The rainfall measurement at a place recorded during a season is modeled as a 

continuous distribution, with a discrete mass at ‘zero’ where zero measures those days 

having no rainfall, at ‘one’ where one measures those days with no rain but humid and 

cloudy conditions, and a continuous variable having some positive amount of rain.  

 

Aitchison (1955) was the first to discuss the inference problem of instantaneous failures 

in life testing. The author has provided an efficient estimation of parametric functions under 

various probability models. Some earlier studies on these type of models are done by Kleyle 

and Dahiya (1975), Jayade and Prasad (1990), Vannman (1991, 1995), Kale (1998, 2003), 

Muralidharan (1999) and Shinde and Shanubhougue (2000), Dixit (2003). The inferences on 

inliers was studied in detail by Kale and Muralidharan (2000, 2006), Muralidharan and Kale 

(2002), Muralidharan and Lathika (2004, 2006), Muralidharan (2010), Adlouni et al. (2011), 

Muralidharan and Arti (2008, 2013), Muralidharan and Pratima (2016a,b), Bavagosai and 

Muralidharan (2016) and the references contained therein.   

 

In this paper, we consider distribution function (DF) of the model with inliers at 0 and 1 

as 

 

𝐻(𝑥; 𝑝1, 𝑝2, 𝜏) =

{
 
 

 
 
0,                                                                      𝑥 < 0        
𝑝1,                                                                     0 ≤ 𝑥 < 1
𝑝1 + 𝑝2,                                                            𝑥 = 1        

𝑝1 + 𝑝2 + (1 − 𝑝1−𝑝2)
𝐹(𝑥; 𝜏) − 𝐹(1; 𝜏)

1 − 𝐹(1; 𝜏)
,    𝑥 ≥ 1        

 . (1) 

 

The fact is that the probability measure generated by H(.) is composed of three measures, 

say 𝜇1, 𝜇2 and 𝜇3, where 𝜇3 is absolutely continuous with respect to the Lebesgue measure on 

𝑅 and 𝜇1 and 𝜇2 are singular with respect to the Lebesgue measure on 𝑅. Here 𝑝1 and 𝑝2 is the 

proportion of 0 and 1 observations and 𝐹(𝑥; 𝜏) is the Failure time distribution (FTD) with the 

vector of parameters 𝜏 involved in it. If we consider FTD as Gamma distribution with 

parameters 𝜏 = (𝛼, 𝜃)  having pdf 
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                    𝑓(𝑥; 𝛼, 𝜃) =
𝑥𝛼−1𝑒

−
𝑥
𝜃

𝜃𝛼 Γα
, 𝑥 > 0; 𝛼 > 0, 𝜃 > 0     (2)  

 

Then the density function of the model (1) reduces to   

 

 

           ℎ(𝑥; 𝑝1, 𝑝2, 𝛼, 𝜃) =

{
 
 

 
 
𝑝1,                                                        𝑥 = 0
𝑝2,                                                        𝑥 = 1

(1 − 𝑝1−𝑝2)
𝑥𝛼−1𝑒

−
(𝑥−1)
𝜃

𝜃𝛼 Γα(∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

,      𝑥 > 1
   (3) 

 

This kind of model was first studied by Muralidharan and Bavagosai (2017, 2018) and 

Bavagosai and Muralidharan (2018) with FTD as exponential, Weibull and Pareto. 

  

In Section 2, we propose the unbiased estimation for model parameters along with the 

distributional properties of complete sufficient statistics, in Section 3, UMVUE of various 

parametric functions including pdf and survival function along with the UMVUE of their 

variance studies. As an illustration, we consider the breast cancer tumor size data from cancer 

genomic studies for implementing the proposed model in Section 4 and some conclusions are 

given in Section 5.  

 

2 Unbiased estimation 

 

Define 

 

 𝐼1(𝑥) = {
1,              𝑥 = 0           
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        

 

and     

     

𝐼2(𝑥) = {
1,              𝑥 = 1          
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 .       

 

Then, the model in (3) can be expressed as 

 

ℎ(𝑥; 𝑝1, 𝑝2, 𝛼, 𝜃) = 𝑝1
𝐼1(𝑥𝑖)𝑝2

𝐼2(𝑥𝑖) ((1 − 𝑝1−𝑝2)
𝑥𝑖
(𝛼−1)𝑒

−
(𝑥𝑖−1)

𝜃

𝜃𝛼 Γα(∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

)

1−𝐼1(𝑥𝑖)−𝐼2(𝑥𝑖)

 (4) 

 

here ∈ 𝑇 ⊆ 𝑅,  𝜃 = (𝑝1, 𝑝2, 𝜃) ∈ Ω, and assuming 𝛼 known integer, which can also be written 

as 

 

ℎ(𝑥; 𝜃) = (
𝑥𝛼−1

Γ𝛼
)

(1−𝐼1(𝑥)−𝐼2(𝑥))

(
𝑝1𝜃

𝛼  ∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0  

1 − 𝑝1 − 𝑝2
)

𝐼1(𝑥)

(
 𝑝2 𝜃

𝛼  ∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0

1 − 𝑝1 − 𝑝2
)

𝐼2(𝑥)

(𝑒
−
1
𝜃)

(𝑥−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝜃𝛼  ∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0   

1 − 𝑝1 − 𝑝2
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= (𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
      (5) 

 

where, 𝑎(𝑋) =
𝑋𝛼−1

Γ𝛼
; ℎ1(𝜃) =

𝑝
1
𝜃𝛼  ∑

1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0  

1−𝑝
1
−𝑝

2

; ℎ2(𝜃) = (
 𝑝
2
 𝜃𝛼  ∑

1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1−𝑝
1
−𝑝

2

); ℎ3(𝜃) = 𝑒
−
1

𝜃; 𝑔(𝜃) =

𝜃𝛼  ∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0   

1−𝑝
1
−𝑝

2

; 𝐶1(𝑋) = 𝐼1(𝑋); 𝐶2(𝑋) = 𝐼2(𝑋) and 𝐶3(𝑋) = (𝑋 − 1)(1 − 𝐼1(𝑋) − 𝐼2(𝑋)). Also 

𝑎(𝑋) > 0, 𝐶𝑖(𝑋), 𝑖 = 1, 2 and 3 are nontrivial real-valued statistics, 𝑔(𝜃) and ℎ𝑖(𝜃) are at least 

twice differentiable functions of 𝜃𝑖, 𝑖 = 1, 2 and 3. The 𝑔(𝜃) is such that 

 

  𝑔(𝜃) = ∫ (𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))∏ (ℎ𝑖(𝜃))
𝐶𝑖(𝑥)3

𝑖=1 𝑑𝑥
𝑥>1

.      (6) 

 

The density in (5) so obtained is defined with respect to a measure 𝜇(𝑥) which is the sum 

of Lebesgue measure over (1,∞) a well-known form of a three parameter exponential family 

with natural parameters (𝜂1, 𝜂2, 𝜂3) = (log (
𝑝
1
𝜃𝛼  ∑

1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0  

1−𝑝
1
−𝑝

2

)  , log (
 𝑝
2
 𝜃𝛼  ∑

1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1−𝑝
1
−𝑝

2

)  , log (𝑒−
1

𝜃)) 

generated by underlying indexing parameters 𝜃 = (𝑝1, 𝑝2, 𝜃). Here 𝐶(𝑋) =

(𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) is minimal sufficient for  𝜃 = (𝑝1, 𝑝2, 𝜃) as 𝐶1(𝑋), 𝐶2(𝑋) and 𝐶3(𝑋) do 

not satisfy any linear restriction. The (𝜂1, 𝜂2, 𝜂3) too do not satisfy any linear constraint and 

hence the natural parameter space is a parameter space in 𝐸3 containing a three-dimensional 

rectangle making (5) a full rank family. The statistics 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) =

(𝐼1(𝑋), 𝐼2(𝑋), (𝑋 − 1)(1 − 𝐼1(𝑋) − 𝐼2(𝑋))) is jointly complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃) 

and the distribution of 𝐶(𝑋) is also a three parameter exponential family. 

 

2.1 Distributional properties of 𝑪(𝑿) = (𝑪𝟏(𝒙), 𝑪𝟐(𝒙), 𝑪𝟑(𝒙)) 
 

Referring Jani and Singh (1996), differentiating 𝑔(𝜃) in (6) with respect to 𝑝1, 𝑝2, and 

𝜃, and since the range 𝑇 is independent of 𝜃 under the condition of interchangeability of 

differentiation and integration, we get  

 

 𝐺 = 𝐴 𝜇 , |𝐴| ≠ 0         (7) 

where 
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𝐺 =

[
 
 
 
 
 
 
𝜕 log 𝑔(𝜃)

𝜕𝑝1
𝜕 log 𝑔(𝜃)

𝜕𝑝2
𝜕 log 𝑔(𝜃)

𝜕𝜃 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1

1 − 𝑝1 − 𝑝2
1

1 − 𝑝1 − 𝑝2

𝛼

𝜃
+

∑
1

Γ(𝑖 − 1)𝜃𝑖+1
𝛼−1
𝑖=0

∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0 ]

 
 
 
 
 
 
 
 

 

 

  𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] =

[
 
 
 

𝐸(𝐼1(𝑥))

𝐸(𝐼2(𝑥))

𝐸 ((𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥)))]
 
 
 
 

and  

 𝐴 =

[
 
 
 
 
 
𝜕 log  ℎ1(𝜃)

𝜕𝑝1

𝜕 logℎ2(𝜃)

𝜕𝑝1

𝜕 logℎ3(𝜃)

𝜕𝑝1

𝜕 log  ℎ1(𝜃)

𝜕𝑝2

𝜕 logℎ2(𝜃)

𝜕𝑝2

𝜕 logℎ3(𝜃)

𝜕𝑝2

𝜕 log  ℎ1(𝜃)

𝜕𝜃

𝜕 logℎ2(𝜃)

𝜕𝜃

𝜕 logℎ3(𝜃)

𝜕𝜃 ]
 
 
 
 
 

=

[
 
 
 
 
 

1

𝑝1
+

1

1−𝑝1−𝑝2

1

1−𝑝1−𝑝2
0

1

1−𝑝1−𝑝2

1

𝑝2
+

1

1−𝑝1−𝑝2
0

𝛼

𝜃
+
∑

1

Γ(𝑖−1)𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

𝛼

𝜃
+
∑

1

Γ(𝑖−1)𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1

𝜃2]
 
 
 
 
 

 

 

Equation (7) gives 

 

 𝐸(𝐶𝑖(𝑥)) =
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3  

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺.  Hence, 

 

                𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] =

[
 
 
 
 

𝑝1
𝑝2

(1 − 𝑝1 − 𝑝2)𝜃
2 (

𝛼

𝜃
−
∑

1

Γ(𝑖−1)𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

)
]
 
 
 
 

    (8) 

 

Now joint moments of  𝐶1
𝑘1(𝒙),  𝐶2

𝑘2(𝑥)  and  𝐶3
𝑘3(𝑥) are given as 

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙)) = ∫𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙) 𝑎(𝑥)
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
𝑑𝑥

𝑥

 

which on differentiating with respect to  𝑝1,  𝑝2 and 𝜃 and using (7), gives a system of three 

non-homogeneous equations 

 

𝐺1 = 𝐴 𝑉 , |𝐴| ≠ 0    (9) 
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where 

𝐺1 =

[
 
 
 
 
 
 
𝜕 log𝐸(𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝜕𝑝1

𝜕 log𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝑝2

𝜕 log𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝜃 ]
 
 
 
 
 
 

  

 

𝑉 =

[
 
 
 
 𝐸 (𝐶1

𝑘1+1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙)) − 𝐸(𝐶1(𝑥))𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2+1(𝒙) 𝐶3
𝑘3(𝒙)) − 𝐸(𝐶2(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3+1(𝒙)) − 𝐸(𝐶3(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))]
 
 
 
 

= [

𝜎1(1,2,3)
𝜎2(1,2,3)
𝜎3(1,2,3)

], (say). 

 

Using Cramer’s rule for the solution of a system of linear equations (9) gives 

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3   

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺1.  For 𝑘𝑖 = 1 and 𝑘𝑗 =

0 ∀ 𝑖 ≠ 𝑗 = 1,2 𝑎𝑛𝑑 3,  we get covariance between 𝐶𝑖(𝑥) and  𝐶𝑗(𝑥) as 

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

|𝐴|
.  

 

Thus, we have the variance-covariance matrix Σ as 

 

Σ = [𝜎𝑖𝑗]3×3 =
(|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗)

|𝐴|
 

 

If 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗 of A, then  

 

 |𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗=1,2,3 = 𝐴1𝑖
𝜕

𝜕𝑝1
𝐸(𝐶𝑖(𝑥)) + 𝐴2𝑖

𝜕

𝜕𝑝2
𝐸(𝐶𝑖(𝑥)) + 𝐴3𝑖

𝜕

𝜕𝜃
𝐸(𝐶𝑖(𝑥))  

 

and hence 

  

Σ = [

𝑝1(1 − 𝑝1) −𝑝1𝑝2 −𝜃2 𝑝1(1 − 𝑝1 − 𝑝2)𝜔

−𝑝1𝑝2 𝑝2(1 − 𝑝2) −𝜃2 𝑝2(1 − 𝑝1 − 𝑝2)𝜔

−𝜃2 𝑝1(1 − 𝑝1 − 𝑝2)𝜔 −𝜃2 𝑝2(1 − 𝑝1 − 𝑝2)𝜔 𝜃2(1 − 𝑝1 − 𝑝2)𝜔1

]

                     (10) 

 

where 𝜔 = (
𝛼

𝜃
−
∑

1

Γ(𝑖−1)𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

) and 𝜔1 = (𝛼 +
∑

1

Γ(𝑖−1)𝜃𝑖
𝛼−1
𝑖=2

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

+ (
∑

1

Γi 𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

)

2

).   
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2.2 Uniformly Minimum Variance Unbiased Estimation of parameters 

          Suppose 𝑛 items placed on life test, where 𝑟1 items have life zero whereas 𝑟2 items have 

life 1 and remaining 𝑛 − 𝑟1 − 𝑟2 items have life greater than 1 is denoted by 𝑋1, 𝑋2, … , 𝑋𝑛−𝑟1−𝑟2  

with pdf ℎ ∈ ℋ as given in (3), the joint density function is  

  

ℎ(𝑥; 𝜃) = (
𝑥𝛼−1

Γ𝛼
)
𝑛−𝑟1−𝑟2

𝑝1
𝑟1𝑝2

𝑟2  (1 − 𝑝1 − 𝑝2)
(𝑛−𝑟1−𝑟2)

 𝑒
− 
∑ (𝑥𝑖−1)
𝑛−𝑟1−𝑟2
𝑖=1

𝜃

𝜃𝛼(𝑛−𝑟1−𝑟2) (∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

𝑛−𝑟1−𝑟2
              (11) 

 

= (
𝑥𝛼−1

Γ𝛼
)

𝑛−𝑟1−𝑟2

(
𝑝
1
𝜃𝛼  ∑

1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0  

1 − 𝑝
1
− 𝑝

2

)

𝑧1

(
 𝑝
2
 𝜃𝛼  ∑

1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0

1 − 𝑝
1
− 𝑝

2

)

𝑧2

(𝑒−
1
𝜃)

𝑧3

(
𝜃𝛼  ∑

1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0   

1 − 𝑝
1
− 𝑝

2

)

𝑛  

 
where  𝑍1 = ∑ 𝐶1(𝑋𝑖) = ∑ 𝐼1(𝑋𝑖) = 𝑟1

𝑛
𝑖=1

𝑛
𝑖=1  ; 𝑍2 = ∑ 𝐶2(𝑋𝑖) = ∑ 𝐼2(𝑋𝑖) = 𝑟2

𝑛
𝑖=1

𝑛
𝑖=1  ; and 

𝑍3 = ∑ 𝐶3(𝑋𝑖) =
𝑛
𝑖=1 ∑ (𝑋𝑖 − 1)

𝑛−𝑟1−𝑟2
𝑖=1   

 

Hence by Neyman Factorization theorem  𝑍 = (𝑍1, 𝑍2, 𝑍3) is jointly sufficient for  𝜃 =
(𝑝1, 𝑝2, 𝜃).  Also, 

 

ℎ(𝑥; 𝜃) =
𝑛!

𝑟1!  𝑟2! (𝑛 − 𝑟1 − 𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2) 

 

𝑟1!  𝑟2! (𝑛 − 𝑟1 − 𝑟2)! 1

𝑛!
(
𝑥𝛼−1

Γ𝛼
)

𝑛−𝑟1−𝑟2  𝑒− 
∑ (𝑋𝑖−1)
𝑛−𝑟1−𝑟2
𝑖=1

𝜃

𝜃𝛼(𝑛−𝑟1−𝑟2)  (∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0 )

𝑛−𝑟1−𝑟2
 

 

  =  P(𝑍1 = 𝑟1, 𝑍2 = 𝑟2)  ℎ(𝑥; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2)  
    

Here distribution of (𝑍1, 𝑍2) is trinomial and is a complete family of distribution and 

 

ℎ(𝑥; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2) = (
𝑥𝛼−1

Γ𝛼
)
𝑛−𝑟1−𝑟2 𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 

𝑛!

 𝑒
− 
∑ (𝑋𝑖−1)
𝑛−𝑟1−𝑟2
𝑖=1

𝜃

𝜃(𝑛−𝑟1−𝑟2)𝛼 (∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

𝑛−𝑟1−𝑟2  

 

which belongs to one-parameter exponential family.  Hence (𝑍3|𝑍1, 𝑍2) is complete sufficient 

for 𝜃 and also a member of exponential family.  The distribution of (𝑍3|𝑍1, 𝑍2) is Gamma with 

parameter (𝑛 − 𝑟1 − 𝑟2, 𝜃) with pdf  

   

ℎ(𝑧3; 𝜃|𝑛 − 𝑟1 − 𝑟2) =
𝑧3
(𝑛−𝑟1−𝑟2)𝛼−1

Γ(𝑛−𝑟1−𝑟2)𝛼

𝑒
−
 𝑧3
𝜃

𝜃(𝑛−𝑟1−𝑟2)𝛼 (∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

𝑛−𝑟1−𝑟2 , 𝑧3 > 0;  𝜃 > 0 
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which depends only on 𝜃 and is also a complete family of distribution.  Therefore, using result 

of Jayade (1993) 𝑍 = (𝑍1, 𝑍2, 𝑍3) is complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃).  The Joint 

distribution of 𝑍 = (𝑍1, 𝑍2, 𝑍3) is 

 

 
ℎ𝑍(𝑧; 𝜃) =  

𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2)

𝑧3
(𝑛−𝑟1−𝑟2)𝛼−1

Γ(𝑛−𝑟1−𝑟2)𝛼

𝑒
−
 𝑧3
𝜃

𝜃(𝑛−𝑟1−𝑟2)𝛼 (∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

𝑛−𝑟1−𝑟2 ,

                                                 0 ≤ 𝑟1, 𝑟2 ≤ 𝑛;  𝑧3 > 0;  0 ≤ 𝑝1, 𝑝2 ≤ 1;  𝜃 > 0

 

 

= 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑛) 
∏ (ℎ𝑖(𝜃))

𝑧𝑖3
𝑖=1

𝑔(𝜃)
𝑛         

where 

 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑛) = {

𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 

𝑧3
(𝑛−𝑟1−𝑟2)𝛼−1

Γ(𝑛−𝑟1−𝑟2)𝛼
 ,  𝑧3 > 0; 𝑟1 + 𝑟2 − 1 < 𝑛

1,                                                  𝑧3 = 0;  𝑟1 = 0  𝑜𝑟 𝑟2 = 0

               (12) 

 

𝑧𝑖 ∈ 𝑇(𝑛) ⊆ 𝑅, 𝜃 ∈ Ω.  Here  𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑛)  and 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑛) are such that 

 

𝑔(𝜃)
𝑛
= ∫ ∫ ∫ 𝐵(𝑧1, 𝑧2, 𝑧3, , 𝑛)𝑧3∈𝑇(𝑛)𝑧2∈𝑇(𝑛)𝑧1∈𝑇(𝑛)

∏ (ℎ𝑖( 𝜃 ))
𝑧𝑖3

𝑖=1 𝑑𝑧1 𝑑𝑧2 𝑑𝑧3  

 

Since  𝐸(𝐶1(𝑥)) = 𝑝1 ,  𝐸(𝐶2(𝑥)) = 𝑝2  and 

𝐸(𝐶3(𝑥)) = (1 − 𝑝1 − 𝑝2)𝜃
2 (

𝛼

𝜃
−
∑

1

Γ(𝑖−1)𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

), then 

 

𝐸(𝑍1) = 𝐸(∑ 𝐶1(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼1(𝑥𝑗))

𝑛
𝑗=1 = 𝑛 𝑝1, 

 

𝐸(𝑍2) = 𝐸(∑ 𝐶2(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼2(𝑥𝑗))

𝑛
𝑗=1 = 𝑛 𝑝2, 

  and 

     𝐸(𝑍3) = 𝐸(∑ 𝐶3(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 ((𝑥𝑖 − 1) (1 − 𝐼1(𝑥𝑗) − 𝐼2(𝑥𝑗)))

𝑛−𝑟1−𝑟2
𝑖=1  

= (𝑛 − 𝑟1 − 𝑟2)(1 − 𝑝1 − 𝑝2)𝜃
2 (

𝛼

𝜃
−

∑
1

Γi 𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

), 

 

which in turn give UMVUE’s of  𝑝1, 𝑝2 and 𝜃 as 

  

𝑝̂1 =
𝑍1

𝑛
= 

𝑟1

𝑛
                    (13) 

 

𝑝̂2 =
𝑍2

𝑛
= 

𝑟2

𝑛
                     (14) 

 

and 𝜃 is obtained by solving the non-linear equation  

  

𝑍3

(𝑛−𝑟1−𝑟2)(1−𝑝1−𝑝2)
− 𝜃2 (

𝛼

𝜃
−

∑
1

Γi 𝜃𝑖+1
𝛼−1
𝑖=1

∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

) = 0               (15) 
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3 UMVU Estimation of parametric functions 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (6), then following Jani and Singh (1995) 

there exists UMVUE of Φ( 𝜃 ) if and only if  Φ( 𝜃 )[𝑔(𝜃)]
𝑛
  can be expressed in the form 

 

Φ( 𝜃 )[𝑔(𝜃)]
𝑛
=

∫ ∫ ∫ 𝛼(𝑧1, 𝑧2, 𝑧3, 𝑛)𝑧3∈𝑇(𝑛)𝑧2∈𝑇(𝑛)𝑧1∈𝑇(𝑛)
∏ (ℎ𝑖( 𝜃 ))

𝑧𝑖3
𝑖=1 𝑑𝑧1 𝑑𝑧2 𝑑𝑧3  

 

Thus, the UMVUE of a function  Φ( 𝜃 ) of  𝜃 in  ℎ(𝑥; 𝜃)  is given by 

 

 𝜓(𝑍1, 𝑍2, 𝑍3, 𝑛) =
𝛼(𝑍1,𝑍2,𝑍3,𝑛)

𝐵(𝑍1,𝑍2,𝑍3,𝑛)
, 𝐵(𝑍1, 𝑍2, 𝑍3, 𝑛) ≠ 0 

 

Then the following result are obvious. 

Result 1 The UMVUE of ∏ (ℎ𝑖(𝜃))
𝑘𝑖
= (

𝜃𝛼 ∑
1

𝛤(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1−𝑝1−𝑝2
)

𝑘1+𝑘2

𝑝1
𝑘1  𝑝2

𝑘2𝑒−
𝑘3
𝜃3

𝑖=1   is given by 

 

 𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛) =
𝐵(𝑧1−𝑘1, 𝑧2−𝑘2, 𝑧3−𝑘3,𝑛)

𝐵(𝑧1,𝑧2,𝑧3𝑛)
 

 

 =
(𝑟1)𝑘1  (𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2)𝛼−1

  (𝑧3−𝑘3)
𝛼(𝑘1+𝑘2)

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[(𝑛−𝑟1−𝑟2)𝛼](𝑘1+𝑘2)𝛼
, 

where 𝑘1 ≤ 𝑟1;  𝑘2 ≤ 𝑟2;  𝑘3 ≤ 𝑧3;  𝑘1 + 𝑘2 ≤ 𝑛 −  𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛,  (𝑟)𝑘 =
𝑟!

(𝑟−𝑘)!
 

and [𝑟]𝑘 =
𝛤𝑟+𝑘

𝛤𝑟
.  

Corollary 1 If  𝑘1 ≠ 0,  𝑘2 = 0 and  𝑘3 = 0, then UMVUE of  (ℎ1(𝜃))
𝑘1
=

(
 𝑝1𝜃

𝛼∑
1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1−𝑝1−𝑝2
)

𝑘1

 is given by 

 

𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑛) =
𝐵(𝑧1−𝑘1,𝑧2,𝑧3,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑛)
   

 

=
(𝑟1)𝑘1   𝑧3

𝛼𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[(𝑛−𝑟1−𝑟2)𝛼]𝛼𝑘1
, 

𝑘1 ≤ 𝑟1;  𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2;   𝑟1 + 𝑟2 − 1 < 𝑛  

 

Corollary 2 If  𝑘1 = 0, 𝑘2 ≠ 0 and 𝑘3 = 0, then UMVUE of  (ℎ2(𝜃))
𝑘2
= (

 𝑝2 𝜃
𝛼∑

1

Γ(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0

1−𝑝1−𝑝2
)

𝑘2

is 

given by 

 

𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑛) =
𝐵(𝑧1,𝑧2−𝑘2,𝑧3,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑛)
  

 

  =
(𝑟2)𝑘2   𝑧3

𝛼𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2[(𝑛−𝑟1−𝑟2)𝛼]𝛼𝑘2
, 𝑘2 ≤ 𝑟2;  𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛 
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Corollary 3 If  𝑘1 = 0, 𝑘2 = 0 and 𝑘3 ≠ 0, then UMVUE of  (ℎ3(𝜃))
𝑘3
= 𝑒−

𝑘3
𝜃  is given by 

 

𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛) =
𝐵(𝑧1,𝑧2,𝑧3−𝑘3,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑛)
  

 

= (1 −
𝑘3

 𝑧3
)
(𝑛− 𝑟1− 𝑟2)𝛼−1

, 𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛   

 

Result 2 The UMVUE of the variance of  𝐻𝑘1,𝑘2,𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑛), is given by  

 

𝑣𝑎𝑟̂[𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐻𝑘1,𝑘2,𝑘3
2 (𝑧1, 𝑧2, 𝑧3, 𝑛) − 𝐻2𝑘1,2𝑘2,2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛)  

  

= [
(𝑟1)𝑘1(𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
((𝑛−𝑟1−𝑟2)𝛼−1)

(𝑧3−𝑘3)
𝛼(𝑘1+𝑘2)

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[(𝑛−𝑟1−𝑟2)𝛼]𝛼(𝑘1+𝑘2)
]

2

                   

      −
(𝑟1)2𝑘1(𝑟2)2𝑘2   (1−

2𝑘3
𝑧3
)
((𝑛−𝑟1−𝑟2)𝛼−1)

(𝑧3−2𝑘3)
2𝛼(𝑘1+𝑘2) 

[𝑛−𝑟1−𝑟2+1]2(𝑘1+𝑘2)[(𝑛−𝑟1−𝑟2)𝛼]2𝛼(𝑘1+𝑘2)
,

   

2𝑘1 ≤ 𝑟1;  2𝑘2 ≤ 𝑟2;  2𝑘3 ≤ 𝑧3;  2(𝑘1 + 𝑘2) ≤ 𝑛 − 𝑟1 − 𝑟2;   𝑟1 + 𝑟2 − 1 < 𝑛  
  

Corollary 4 The UMVUE of the variance of 𝐻𝑘1(𝑍1, 𝑍2, 𝑍3, 𝑛), is given by 

 

𝑣𝑎𝑟̂[𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐻𝑘1
2 (𝑧1, 𝑧2, 𝑧3, 𝑛) − 𝐻2𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑛)  

 

= [
(𝑟1)𝑘1   𝑧3

𝛼𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[(𝑛−𝑟1−𝑟2)𝛼]𝛼𝑘1
]
2

−
(𝑟1)2𝑘1     𝑧3

2𝛼𝑘1

[𝑛−𝑟1−𝑟2+1]2𝑘1[(𝑛−𝑟1−𝑟2)𝛼]2𝛼𝑘1
’ 

2𝑘1 ≤ 𝑟1;  2𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛   
 

Corollary 5 The UMVUE of the variance of 𝐻𝑘2(𝑍1, 𝑍2, 𝑍3, 𝑛), is given by  

  

𝑣𝑎𝑟̂[𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐻𝑘2
2 (𝑧1, 𝑧2, 𝑧3, 𝑛) − 𝐻2𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑛)  

 

= [
(𝑟2)𝑘2   𝑧3

𝛼𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2  [(𝑛−𝑟1−𝑟2)𝛼]𝛼𝑘2
]
2

−
(𝑟2)2𝑘2     𝑧3

2𝛼𝑘2

[𝑛−𝑟1−𝑟2+1]2𝑘2    [(𝑛−𝑟1−𝑟2)𝛼]2𝛼𝑘2
,  

2𝑘2 ≤ 𝑟2;  2𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛  

 

Corollary 6 The UMVUE of the variance of 𝐻𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑛), is given by  

 

𝑣𝑎𝑟̂[𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐻𝑘3
2 (𝑧1, 𝑧2, 𝑧3, 𝑛) − 𝐻2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑛)  

 

= (1 −
𝑘3

 𝑧3
)
2(𝑛− 𝑟1− 𝑟2−1)𝛼

− (1 −
2𝑘3

 𝑧3
)
(𝑛− 𝑟1− 𝑟2)𝛼−1

,  

2𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛   
  

Result 3 The UMVUE of  [𝑔(𝜃)]
𝑘
= (

𝜃𝛼 (∑
1

𝛤(𝑖+1)𝜃𝑖
𝛼−1
𝑖=0 )

1−𝑝1−𝑝2
)

𝑘

, 𝑘 ≠ 0 as given in the mode (6) is 
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 𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑛) =
𝐵(𝑧1,𝑧2,𝑧3,𝑛+𝑘)

𝐵(𝑧1,𝑧2,𝑧3,𝑛)
 

 

=
[𝑛+1]𝑘     𝑧3

𝛼𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [(𝑛−𝑟1−𝑟2)𝛼]𝛼𝑘
 , 𝑘 ≤ 𝑛−𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛  

 

Result 4 The UMVUE of the variance of  𝐺𝑘(𝑍1, 𝑍2, 𝑍3, 𝑛) is given by 

  

𝑣𝑎𝑟̂[𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐺𝑘
2(𝑧1, 𝑧2, 𝑧3, 𝑛) − 𝐺2𝑘(𝑧1, 𝑧2, 𝑧3, 𝑛)  

 

=[
[𝑛+1]𝑘       𝑧3

𝛼𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [(𝑛−𝑟1−𝑟2)𝛼]𝑘
]
2

−
[𝑛+1]2𝑘       𝑧3

2𝛼𝑘

[𝑛−𝑟1−𝑟2+1]2𝑘    [(𝑛−𝑟1−𝑟2)𝛼]2𝛼𝑘
 , 

 2𝑘 ≤ 𝑛−𝑟1 − 𝑟2;  𝑟1 + 𝑟2 − 1 < 𝑛   

 

Result 5 For fixed x, the UMVUE of the density is given by  

 

𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑛) = 𝑎(𝑥)
𝐵(𝑧1−𝐶1(𝑥), 𝑧2−𝐶2(𝑥), 𝑧3−𝐶3(𝑥),𝑛−1)

𝐵(𝑧1,𝑧2,𝑧3,𝑛)
  

 

= (
𝑥𝛼−1

𝛤𝛼
)
(𝑟1)𝐼1(𝑥) (𝑟2)𝐼2(𝑥) (𝑛−𝑟1−𝑟2−1)(1−𝐼1(𝑥)−𝐼2(𝑥)) 

((𝑛−𝑟1−𝑟2)𝛼)
(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛 [ 𝑧3−(𝑥−1)(1−𝐼1(𝑥)−𝐼2(𝑥))]
(1−𝐼1(𝑥)−𝐼2(𝑥))𝛼

  

(1 −
(𝑥−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)
((𝑛−𝑟1−𝑟2)𝛼−1)

, 𝑧3 > (𝑥 − 1);  𝑟1 + 𝑟2 − 1 < 𝑛  

 

Result 6 The UMVUE of the variance of  𝜙𝑥(𝑍1, 𝑍2, 𝑍3, 𝑛) is given by 

 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝜙𝑥
2(𝑧1, 𝑧2, 𝑧3, 𝑛)  

−𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑛) 𝜙𝑥(𝑧1 − 𝐶1(𝑥),  𝑧2 − 𝐶2(𝑥),  𝑧3 − 𝐶3(𝑥), 𝑛 − 1) 
 

 = 𝜙𝑥
2(𝑧1, 𝑧2, 𝑧3, 𝑛) − (

𝑥𝛼−1

𝛤𝛼
)
2

 
(𝑟1)2𝐼1(𝑥) (𝑟2)2𝐼2(𝑥) (𝑛−𝑟1−𝑟2)2(1−𝐼1(𝑥)−𝐼2(𝑥))

 ((𝑛−𝑟1−𝑟2)𝛼−1)
2(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛(𝑛−1)[ 𝑧3−2(𝑥−1)(1−𝐼1(𝑥)−𝐼2(𝑥)]
2𝛼(1−𝐼1(𝑥)−𝐼2(𝑥))

  

(1 −
2(𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥))

𝑧3
)

((𝑛−𝑟1−𝑟2)𝛼−1)

, 𝑧3 > 2(𝑥 − 1);  𝑟1 + 𝑟2 − 1 < 𝑛 

   

Result 7 For fixed 𝑧, the UMVUE of the survival function 𝑆(𝑡) =  𝑃(𝑋 > 𝑡), 𝑡 ≥ 0 is given by  

𝑆̂(𝑡) = ∫ 𝜙𝑥(𝑧1, 𝑧2, … , 𝑧𝑟 , 𝑛)
𝑥>𝑡

𝑑𝑥 

 

 = (
(𝑟1)𝐼1(𝑡)(𝑟2)𝐼2(𝑡)(𝑛−𝑟1−𝑟2)(1−𝐼1(𝑡)−𝐼2(𝑡))

(𝛼(𝑛−𝑟1−𝑟2−1))
𝛼(1−𝐼1(𝑡)−𝐼2(𝑡))

𝑛 𝛤𝛼  
) 

∫ 𝑥(𝛼−1)
∞

𝑡

(1 −
(𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥))

𝑍3
)

𝛼(𝑛−𝑟1−𝑟2)−1

(𝑍3 − (𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥)))
𝛼(𝐼1(𝑥)+𝐼2(𝑥))

𝑑𝑥 

 

𝑍3 > (𝑡 − 1);  𝑟1 + 𝑟2 − 1 < 𝑛      
        

Result 8 For the fixed 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑛), the UMVUE of the   𝑣𝑎𝑟(𝑆̂(𝑡)), is obtained as 
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𝑣𝑎𝑟̂(𝑆̂(𝑡)) = 𝑆̂2(𝑡) − 2∬ 𝑎(𝑥)𝑎(𝑦)
𝐵(𝑧1 − 𝐶1(𝑥) − 𝐶1(𝑦), … , 𝑧𝑟 − 𝐶𝑟(𝑥) − 𝐶𝑟(𝑦) 𝑛 − 2)

𝐵(𝑧1, … , 𝑧𝑟 , 𝑛)
𝑑𝑥 𝑑𝑦

∞

𝑥>𝑦>𝑡

 

 

= 𝑆̂2(𝑡) − 2(

(𝑟1)2𝐼1(𝑡)(𝑟2)2𝐼2(𝑡)(𝑛 − 𝑟1 − 𝑟2)2(1−𝐼1(𝑡)−𝐼2(𝑡)) (𝛼(𝑛 − 𝑟1 − 𝑟2 − 1))2𝛼(1−𝐼1(𝑡)−𝐼2(𝑡))

𝑛(𝑛 − 1)(𝛤𝛼)2
) 

∬ 𝑥(𝛼−1)𝑦(𝛼−1)
(1 −

(𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥)) + (𝑦 − 1)(1 − 𝐼1(𝑦) − 𝐼2(𝑦))
𝑍3

)

𝛼(𝑛−𝑟1−𝑟2)−1

(𝑍3 − (𝑥 − 1)(1 − 𝐼1(𝑥) − 𝐼2(𝑥)) + (𝑦 − 1)(1 − 𝐼1(𝑦) − 𝐼2(𝑦)))
𝛼((1−𝐼1(𝑥)+𝐼2(𝑥))+(1−𝐼1(𝑦)+𝐼2(𝑦)))

𝑑𝑥𝑑𝑦

∞

𝑥>𝑦>𝑡

 

 

 𝑍3 > 2(𝑡 − 1);  𝑟1 + 𝑟2 − 1 < 𝑛  

 

Remark: For 𝛼=1, the above results reduce to the case of exponential distribution (see 

Muralidharan and Pratima, 2017). 

 

4 Illustrative Example 

The example is based on tumor size as one of the most important factors in making a 

clinical and pathological assessment of breast cancer accessed through the cBioPortal software 

for cancer genomics and was originally developed at Memorial Sloan Kettering Cancer Center 

(MSK). The cBioPortal software is now available under an open source license via GifHub.  

We use this portal for breast tumor size data from cancer genomics studies.  For comprehensive 

data, one may visit http://www.cbioportal.org/study?id=brca_metabric#clinical. We followed 

up the tumor size of 509 samples from 509 female breast cancer patients with histologically 

confirmed invasive ductal breast carcinoma (IDC) of cohort 1.  The largest tumor diameter was 

chosen as the sizing reference in each case.  In the data set, lesions are absent for six patients, 

whereas for 22 patients lesions present but non-measurable by CT scan or MRI and remaining 

481 samples tumor size in mm with corresponding frequency in brackets are: 11(9), 12(12), 

13(11), 14(15), 15(11), 16(20), 17(18), 19(17), 20(33), 21(24), 22(21), 23(17), 25(28), 26(18), 

27(11), 28(15), 29(13), 30(25), 31(7), 32(6), 33(6), 34(5), 35(11), 36(3), 37(3), 38(4),  39(5), 

40(12), 42(3), 43, 44(2), 45(6), 46(2), 47(5), 48, 50(13), 52(2), 53(2), 55(4), 57, 60(6), 62, 

65(4), 67, 70(3), 80(2), 84, 90, 100(3), 150,160, and 180. 

 
Figure 1. Histogram and theoretical densities 

  

http://www.cbioportal.org/study?id=brca_metabric#clinical
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We fitted the number of distributions to the breast tumor size data by using various 

information criteria.  Table 1 shows the fitted values and estimates.  The superscripts that 

indicate the rank obtained by the distribution according to the selection criteria (the smaller 

the better). The first competing model includes Gamma distribution across the criteria’s.  The 

histogram of the data and plots of the fitted densities are displayed in Figure 1.  These plots 

indicate that Gamma distribution provides a good fit to data.  

 

The summary of the UMVU estimates of parameters with their standard error (shown in 

bracket) along with 95 % confidence interval is given in Table 2 whereas the summary of 

UMVU estimates of various parametric functions is given in Table 3 for breast tumor size data. 
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Table 1. Parameter estimates and goodness-of-fit criteria for distributions fitted to the 

breast tumor size data 

Distribution MLE (SE) AIC BIC K-S CVM AD 

Exponential 𝜃̂=0.0349 (0.0016) 4191.40305 4195.57905 0.32365 13.92635 70.75634 

Gamma 
𝛼̂=4.3043 (0.2674) 

𝜃̂=0.1503 (0.0099) 
3815.49701 3823.84901 0.13011 1.69841 9.52931 

Normal 
𝜇̂=28.6424 (0.8076) 

𝜃̂=17.7565 (0.5725) 
4136.45504 4144.80704 0.20134 5.61404 Inf6 

Pareto 𝜃̂=0.3052 (0.0139) 5257.61406 5261.79006 0.53166 36.32716 16852365 

Rayleigh 𝜃̂=23.8300 (0.5433) 3953.52703 3957.70302 0.18463 4.09133 21.82973 

Weibull 
𝛼̂=1.7859 (0.0524) 

𝜃̂=32.4110 (0.8802) 
3939.09802 3947.45003 0.15032 3.38702 20.69912 

 

Table 2. Summary of UMVU estimates of parameters of breast tumor size data 

𝛼 = 2 UMVUE (SE) 95%  CI 

𝑝̂1 0.011788 (0.004784) (0.002412, 0.021164) 

𝑝̂2 0.043222 (0.009014) (0.025556, 0.060888) 

𝜃̂ 15.094700 (0.902663) (13.325510, 16.863890) 

 

Table 3. Summary of estimates of parametric functions of breast tumor size data 

parametric function UMVUE 
SE of  

UMVUE 

ℎ1(𝜃) ℎ2(𝜃)ℎ3(𝜃) = (
𝜃𝛼 ∑

1
Γ(𝑖 + 1)𝜃𝑖

𝛼−1
𝑖=0

1 − 𝑝1 − 𝑝2
)

𝑘1+𝑘2

𝑝1
𝑘1  𝑝2

𝑘2𝑒−
𝑘3
𝜃 ,  

 

𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1 

17.705940 8.472283 

ℎ1(𝜃) = (
 𝑝1𝜃

𝛼 ∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0

1 − 𝑝1 − 𝑝2
)

𝑘1

, 𝑘1 = 1, 𝑘2 = 0, 𝑘3 = 0 2.287341 0.951184 

ℎ2(𝜃) = (
 𝑝2𝜃

𝛼 ∑
1

Γ(𝑖 + 1)𝜃𝑖
𝛼−1
𝑖=0

1 − 𝑝1 − 𝑝2
)

𝑘2

, 𝑘1 = 0, 𝑘2 = 1, 𝑘3 = 0 
8.387144 

 

1.924007 

 

ℎ3(𝜃) = 𝑒
−
1
𝜃 , 𝑘1 = 0, 𝑘2 = 0, 𝑘3 = 1 0.930270 0.002169 

𝑔(𝜃) = (
𝜃𝛼  (∑

1
Γ(𝑖 + 1)𝜃𝑖

𝛼−1
𝑖=0 )

1 − 𝑝1 − 𝑝2
)

𝑘

, 𝑘 = 1 201.50210 13.13920 

UMVUE of density function at x=20,                                                         

                                                   x=40  

                                                   x=60        

0.025097 

0.011820 

0.004167 

0.000571 

0.000337 

0.000309 

UMVUE of survival function at time x=20, 

                                                            x=40, 

                                                            x=60 

0.579584 

0.217181 

0.069952 

0.008231 

0.008346 

0.009012 

 

 


