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Abstract

The method of MINQUE (Minimum Norm Quadratic Unbiased Estimation),
was originally proposed by [C.R. Rao(1970)] for estimating heteroscedastic co-
variance matrix of a linear model and later generalized in a series of papers [C.R.
Rao (1971, 1972)] for variance and covariance components. In some situations
it may produce negative values for estimating non-negative variance components.
For this reason P.S.R.S. Rao and Chaubey (1978) proposed some modifications,
including MINQE which does not impose the unbiased condition. Chaubey (1980)
showed how the method of MINQUE can be adapted for estimating the distinct
elements of an intra-class covariance matrix. This extension is straight forward
when no a priori guess is incorporated in the estimation process. However, for the
case when a priori guess about distinct elements is used, in general, we may need
to consider a different minimization problem, especially for the covariance com-
ponents model. In this paper we consider the method of MINQE and MINQUE
for estimating distinct elements of a variance covariance matrix in the case of a
variance components model, providing the solution. It is shown that for the par-
ticular case of the intra-class correlation model, the original form for the solution
holds with slight modification.
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1 Introduction

Rao, C.R. (1970) introduced the principle of MINQUE (minimum norm
quadratic unbiased estimation) for estimation of variances in a heterosce-
datic linear model. Subsequently, he extended this method to variance
and covariance components models [Rao, C.R. (1971, 1972)]. This method
may produce negative estimates for non-negative variance components and
hence various alternatives have been suggested in the literature. One al-
ternative which parallels the development of MINQUE was proposed by
Rao, P.S.R.S. and Chaubey (1978). These methods also provide a choice
of incorporating a priori information about the variances and covariances.
Here, we consider estimation of the distinct elements of a covariance matrix
in the context of a covariance components model. We will highlight the
fact that as shown by Rao, P.S.R.S. and Chaubey (1978) these methods
can be easily adapted to this problem for the case of linear model, however,
they require some care while taking into consideration of a priori values.
In what follows we will refer to the methods of MINQUE and MINQE as
weighted-MINQUE and weighted-MINQE.

First we consider the variance components model

Y = Xβ + U1ξ1 + ... + Ukξk, (1)

where Y is an n−vector of observations, X is an (n × q) design matrix
of full column rank, β is q−vector of regression parameters, Ui is a given
(n × ci) matrix and ξi represents a ci−vector representing a hypothetical
random variable, such that

E(ξi) = 0, D(ξi) = σ2
i Ici×ci

, Cov(ξi, ξj) = 0, for i 6= j; i, j = 1, 2, ..., k.

Letting U = (U1|...|Uk) and ξ = (ξ1|...|ξk)′, the model in Eq. (1) can
be compactly written as

Y = Xβ + Uξ. (2)

Note that from Eq. (1) we have

E(Y ) = Xβ D(Y ) = σ2
1V1 + ... + σ2

kVk, (3)

where Vi = UiU
′

i . The parameters σ2
1 , ..., σ

2
k are called the variance compo-

nents.
The principle of MINQUE considers a quadratic form Y ′AY as an

estimator of the linear function

θ =
k∑

i=1

piσ
2
i ,
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where the matrix A is determined by minimizing

tr(AV AV ),

where V = UU ′ =
∑k

i=1 UiU
′

i =
∑k

i=1 Vi subject to the conditions

(i) Invariance : AX = 0

(ii)Unbiasedness : tr(AVi) = pi, i = 1, 2, ..., k.

This principle is motivated by the choice of A such that the difference
ξ′(U ′AU − ∆)ξ is small, where

∆ = Bdiag

(
p1

c1
Ic1 , ...,

pk

ck

Ick

)
,

thereby choosing to minimize the norm ‖U ′AU − ∆‖, where

‖B‖2 = tr(B2).

The solution to this problem is given in the following theorem.
Theorem 1.1 [Rao, C.R. (1972)]Let A be a symmetric matrix and V

be a symmetric and non-singular matrix then min tr(AV AV ) subject to
the conditions (1) and (ii) is attained at

AIU =
k∑

j=1

λjRVjR, (4)

where

R = V −1QV = Q′

V V −1

QV = I − PV ,

PV = X(X ′V −1X)−1X ′V −1

where p = (p1, p2, ..., pk)′ and λ = (λ1, ..., λk)′ is obtained by solving

Sλ = p,

where the (i, j)th element of S is given by Sij = tr(RViRVj).

Rao, P.S.R.S. and Chaubey (1978) showed that by removing the condi-
tion of unbiasedness, we necessarily obtain non-negative estimators. This
results in minimizing

tr(AV AV ) − 2tr(U ′AU∆) (5)
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whose solution is given by the following theorem.

Theorem 1.2 [Rao, P.S.R.S. and Chaubey (1978)]Let A be a symmet-
ric matrix and V be a symmetric and non-singular matrix then min tr(AV AV )−
2tr(U ′AU∆) subject to the conditions (1) is attained at

AI =
k∑

j=1

pj

cj

RVjR, (6)

where R is as defined before.

Suppose that Λ2
1, ...,Λ

2
k represent a priori weights reflecting the relative

magnitudes of the variance components σ2
1 , ..., σ

2
k, then we can write the

model 2 in terms of transformed hypothetical variables ηi = Λiξi, i = 1, ..., k
as

Y = Xβ + U∗η, (7)

where U∗ = (U∗

1 |...|U
∗

k ), U∗

i = ΛiUi and η = (η1|...|ηk)′. The weighted
MINQUE and MINQE are then obtained by minimization of

tr(Λ
1

2 (U ′AU − ∆)Λ
1

2 )2,

where Λ = diag(Λ2
1Ic1 , ...,ΛV ∗−12

kIck
, subject to conditions (i) and (ii) and

condition (i), respectively. The solutions for A for getting the weighted-
MINQUE is thus provided by

AwIU =
k∑

i=1

λj R∗VjR∗, (8)

where R∗ = QV ∗−1V ∗−1 and λ = (λ1, ...λk)′ is obtained by solving

S∗λ = p,

where p = (p1, p2, ..., pk)′ and the (i, j)th element of S∗ is given by S∗ij =
tr(R∗ViR∗Vj).

And that for the weighted-MINQE is given by

AwI =
k∑

i=1

pjΛ
2
j

cj

R∗Vj∗R∗, (9)

where Vj∗ = Λ2
jVj .
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2 Covariance components model

Rao, C.R. (1971b, 1972) extended the principle of MINQUE to more gen-
eral models involving hypothetical variables with unknown covariances.
He considered the model in Eq. (1), however the hypothetical variables
ξ1, ..., ξk were assumed to have a common covariance matrix, i.e

D(ξi) = Σ, i = 1, 2, ..., k.

In this formulation all the elements of the covariance matrix were assumed
to be unknown. Chaubey (1977) considered a special case of the above
model with k = 1 and showed that the MINQUE and MINQE estimators
can be easily adapted to this case when some elements of the covariance
matrix may be considered equal by decomposing the covariance matrix Σ
as

Σ = α1T1 + ... + αdTd, (10)

where αi, i = 1, 2, ..., d denote the d−distinct elements of Σ. It can be
noted that the matrices Ti, i = 1, 2, ..., d, contain zero’s and one’s as their
elements. Chaubey and Rao, P.S.R.S. (1978) showed that the method
of weighted-MINQUE and weighted-MINQE also parallels along the same
lines for the special case mentioned above. In general, however, this may
not hold.

MINQUE and MINQE

Using the decomposition of the covariance matrix in Eq. (10) we can write
the variance-covariance matrix of ǫ = Uξ as

D(ǫ) =
d∑

j=1

αiT
∗

i , (11)

where

T ∗

i =
d∑

j=1

UjTiU
′

j .

The invariance condition for estimation of θ =
∑

i piαi by a quadratic
form Y ′AY remains the same as before, namely AX = 0, however, the
unbiasedness condition now becomes,

tr(AT ∗

I ) = pi, i = 1, ..., d.

Denoting by si, the number of one’s in Ti, ξ′jTiξj is a natural unbiased
estimator (NUE) of siαi for all j, hence we can write the NUE of θ as
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ξ′Bξ, where

B = Bdiag(
1

k

∑

i

pi

si

Ti, ...,
1

k

∑

i

pi

si

Ti).

Following the motivation from Rao, C.R. (1970,1971a), we are thus led to
minimize the Euclidean norm ‖U ′AU −B‖. It can be shown as in Chaubey
(1977) that tr(U ′AUB) = tr(B2) and hence for obtaining the MINQUE of
θ we are led to minimize tr(AV AV ) subject to

(i) Invariance : AX = 0 (12)

(ii) Unbiasedness : tr(AT ∗

i ) = pi, i = 1, 2, ..., d. (13)

The solution for A is thus obtained from Theorem 1.1 by substituting T ∗

i

for Vi, i.e.

A
(d)
IU =

k∑

j=1

λjRT ∗

j R, (14)

where λ = (λ1, ..., λk)′ is obtained by solving

Wλ = p,

where the (i, j)th element of W is given by Wij = tr(RT ∗

i RT ∗

j ) and p =
(p1, p2, ..., pk)′.

Without the unbiased condition, the above motivation leads us to min-
imize

tr(AV AV ) − 2tr(U ′AUB)

subject to the condition AX = 0. The solution is therefore given by Theo-
rem 1.2 as

A
(d)
I =

1

k

d∑

i=1

pi

si

RT ∗

i R. (15)

Weighted MINQUE and MINQE

Given a priori estimates of αi as δi, or otherwise, let Λ0 denote an a

priori estimate of Σ. This matrix may be used to transform the variable ξ

into η = Λ
−

1

2

∗ ξ, where Λ∗ is a block-diagonal matrix of k blocks given by

Λ∗ = Bdiag((Λ0, ...,Λ0) (16)
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into the model
Y = Xβ + U∗η,

where U∗ = UΛ
1

2

∗ .
The matrix A must now be determined by minimizing

tr(U ′

∗
AU∗ − Λ

1

2

∗ BΛ
1

2

∗ )2 = tr(AV ∗ AV ∗) + tr(BΛ∗)
2 − 2tr(BΛ∗U

′AUΛ∗)

subject to the invariance and unbiasedness conditions. The problem would
be simplified as in the case of estimation of variance components or in the
case of estimation of distinct elements for the special case, k = 1, U1 = I,
if tr(BΛ∗)

2 = tr(BΛ∗U
′AUΛ∗). However, in general this may not hold and

we therefore have to solve the general problem of minimizing

tr(AV∗AV∗) − 2tr(AD),

where D = UΛ∗BΛ∗U
′ subject to the unbiasedness and invariance condi-

tions. The solution to this general problem is provided in the following
theorem.

Theorem 2.1 Let A be a symmetric matrix and V∗ be a symmetric
and non-singular matrix then min tr(AV∗AV∗) − 2tr(AD) subject to the
conditions (12) and (13) is attained at

A
(d)
wIU =

k∑

j=1

λjRT ∗

j R + RDR, (17)

where λ = (λ1, ..., λk)′ is obtained by solving

W∗λ = p − q,

where the (i, j)th element of W∗ is given by W∗ij = tr(RT ∗

i RT ∗

j ) and
qi = tr(RDRT ∗

i ).

Using the standard Lagrangian multiplier method we can show that
the solution must satisfy

V∗AV∗ = D +
d∑

j=1

λjT
∗

j + (1/2)(XM + M ′X ′),

where (λ1, ..., λd) are constants representing Lagrangian multipliers for the
unbiasedness constraints and M is a matrix representing those for the in-
variance constratint. Since AX = 0 is implies A = Q′

V∗

AQV∗
, we get

A = Q′

V∗

V −1
∗

DV −1
∗

QV∗
+

∑

j

λjQ
′

V∗

V −1
∗

T ∗

j V −1
∗

QV∗
.
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We now use the unbiasedness conditions in Eq. (13) that gives the following
condition,

W∗λ = p − q,

which completes the proof.
The weighted MINQE is obtained from Theorem 1.2 and we have the

corresponding matrix of the quadratic form as given by

A
(d)
wI = RDR =

1

k

d∑

i=1

pi

si

RT 0
i R, (18)

where

T 0
i =

k∑

j=1

UjΛ0TiΛ0U
′

j.

In the unweighted case Λ0 = I, then

tr(BΛ∗)
2 = tr(BΛ∗U

′AUΛ∗).

This was shown to hold in the special case of k = 1, U1 = I, in Rao,

P.S.R.S and Chaubey (1978) for the unweighted case. Chaubey (1977)

provided the details for estimating the elements of a intraclass covariance

matrix in general linear model. In the next section we show that this

condition also holds for the weighted case, which simplifies computations.

3 Intraclass covariance regression model

The regression model with intraclass covariance matrix is given by

Y = Xβ + ǫ,

where the covariance matrix of ǫ has all diagonal elements= α1 and
off-diagonal elements= α2. That is the covariance matrix is given by

D(ǫ) = α1T1 + α2T2,

where T1 = In×n, T2 = Jn×n − I, where J is a matrix of all one’s. This
is a special case of (10), where we note that T ∗

i = Ti, i = 1, 2, hence

V∗ = Λ0 = Λ∗

= (δ1 − δ2)I + δ2J (19)

and
D = V∗BV∗, (20)
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where δ1 and δ2 are known values such that V∗ is non-singular. We
can show that in this case

tr(BΛ∗)
2 = tr(AΛ∗BΛ∗).

By direct calculations, we have

BΛ∗ = a1I + a2J, (21)

where

a1 = (δ1 − δ2)
(

p1

s1
−

p2

s2

)
(22)

a2 = (δ1 − δ2)
p2

s2
δ2

(
p1

s1
+ (n − 1)

p2

s2

)
(23)

Thus, we have

(BΛ∗)
2 = a1I + (na2

2 + 2a1a2)J (24)

and therefore after some lengthy calculations we get,

tr(BΛ∗)
2 = b1δ

2
1 + b2δ

2
2 + b12δ1δ2, (25)

where,

b1 =
p2

1

n
+

p2
2

n2 − n
(26)

b2 =
p2

1(n − 1)

n
+

2p1p2

n
(n − 2) +

p2
2

n(n − 1)
(n2 − 3n + 3) (27)

b12 = 2

[
p2

2(n − 2)

n(n − 1)
+

2p1p2

n

]
(28)

Now towards computing tr(AΛ∗BΛ∗) we find that

Λ∗BΛ∗ = f1I + f2J, (29)

where

f1 = a1(δ1 − δ2) (30)

f2 = a2(δ1 − δ2) + a1δ2 + na2δ2. (31)
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Noting that for unbiasedness to hold, we have

tr(AT1) = tr(A) = p1

tr(AJ) = tr(AT2 + A) = p1 + p2

and direct calculation yields

tr(AV∗BV∗) = d1δ
2
1 + d2δ

2
2 + d12δ1δ2, (32)

where

d1 =
p2

1

n
+

p2
2

n(n − 1)
= a1 (33)

d2 =
p2

1

n
(n − 1) +

2p1p2

n
(n − 2) +

p − 22

n(n − 1)
(n2 − 3n + 3) = a2(34)

d12 =
2p2

2

n(n − 1)
(n − 2) +

4p1p2

n
= a12 (35)

This shows that

tr(BΛ∗)
2 = tr(AΛ∗BΛ∗),

and therefore the weighted MINQUE is obtained using Theorem 1.1,
replacing Vi by Ti and V by V∗ instead of using Theorem 2.1. However,
the weighted-MINQE of αi is simply given by (using equation (18))

α̂
(d)
i(wI) =

Y ′R′TiRY

si

,

where, s1 = n, s2 = n(n − 1).

4 A numerical example

The following data are used to illustrate the above method for es-
timating the parameters of a linear model with intraclass covariance
matrix. These data are taken from Wiorkowski (1975) about studying
the biological activity of adenosine triphosphate (ATP) in red blood
cells, measured in the parents and male progeny of 14 randomly se-
lected families. The objective of this study was to find if the ATP
levels in children conformed to a simple genetic model which would
be equivalent to the observed trial being controlled by a large number
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of statistically independent loci, each making a small additive contri-
bution to the final observed level of ATP. The model used is given
by

yij = β0 + β1xi1 + β2xi2 + ǫij ,

for j = 1, ..., ni, i = 1, 2, ..., k, where yij denotes the ATP level for
the j−th progeny in the i−th family, xi1 denotes the ATP level of the
father in the i−th family and xi2 denotes that for the mother. The
observations in a family are supposed to have a covariance structure
of intraclass type, i.e.

Σ = σ2[(1 − ρ)I + ρJ ],

where ρ denotes the intra-class correlation. It is of interest to find if
ρ = 0 and β1 = β2 = 0.5. The data is provided in Table 1 below.

Table 1: ATP Levels for 14 Families

Family Father Mother Male Progeny
1 3.72 4.43 4.16 4.81
2 4.54 3.79 4.72
3 5.05 4.66 4.98 5.03 5.16
4 4.10 5.42 5.30 4.48 4.85
5 4.26 4.39 4.87 3.99 4.19 4.28 5.15
6 4.09 5.29 4.74 4.10
7 4.83 4.99 4.53 4.77 4.77
8 4.24 4.38 3.72 4.12
9 5.43 4.73 4.65 4.62
10 5.23 5.34 5.83 6.03
11 4.56 5.29 4.86 5.58 5.99
12 5.16 4.71 5.44 4.34 5.43
13 3.77 5.13 4.70 5.00 4.63
14 4.15 4.18 4.82 4.14

We used SAS-IML procedures for matrix computations. The esti-
mators of regression parameters are those as obtained from estimated
weighted least squares method. The formulae for covariances are ob-
tained from Chaubey (1980b). The estimates of parameters using the
unweighted MINQUE and MINQE are given in Tables 2 and 3. The
unweighted estimates of variance and covariance is used in computing
weighted MINQUE and MINQE which are summarized in Tables 4
and 5.
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Table 2. Unweighted MINQUE and Estimated Variance
Covariance Matrix of Estimators




α̂1

α̂2

β̂0

β̂1

β̂2




=




0.2174170
0.0292862
0.3929127
0.4084862
0.5343059




Ĉov




α̂1

α̂2

β̂0

β̂1

β̂2




=




1.3861233 −0.115021 −0.179056 0 0
−0.115021 0.0272305 −0.001588 0 0
−0.179056 −0.001588 0.0387455 0 0

0 0 0 0.0031423 0.0012038
0 0 0 0.0012038 0.0024708




Table 3. Unweighted MINQE and Estimated Variance
Covariance Matrix of Estimates




α̂1

α̂2

β̂0

β̂1

β̂2




=




0.1951973
0.0000387
0.347224
0.4061869
0.5460642




Ĉov




α̂1

α̂2

β̂0

β̂1

β̂2




=




1.0471448 −0.08654 −0.135713 0 0
−0.08654 0.0203289 −0.001025 0 0
−0.135713 −0.001025 0.0291933 0 0

0 0 0 0.0023442 0.0002286
0 0 0 0.0002286 0.0014362




Table 4. Weighted MINQUE and Estimated Variance
Covariance Matrix of Estimates




α̂1

α̂2

β̂0

β̂1

β̂2




=




0.2171987
0.0278557
0.3905864
0.4083858
0.5348881



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Ĉov




α̂1

α̂2

β̂0

β̂1

β̂2




=




1.3747989 −0.114033 −0.177639 0 0
−0.114033 0.0269847 −0.001562 0 0
−0.177639 −0.001562 0.0384249 0 0

0 0 0 0.0031094 0.0011334
0 0 0 0.0011334 0.0024038




Table 5. Weighted MINQE and Estimated Variance
Covariance Matrix of Estimates




α̂1

α̂2

β̂0

β̂1

β̂2




=




0.1951973
0.0003872
0.3477227
0.4061869
0.5460941




Ĉov




α̂1

α̂2

β̂0

β̂1

β̂2




=




1.0471463 −0.08654 −0.35713 0 0
−0.08654 0.20329 −0.001025 0 0
−0.35713 −0.001025 0.0291933 0 0

0 0 0 0.0023441 0.0002283
0 0 0 0.0002283 0.0014355




It is seen that a priori weights do not affect MINQE as much as
they affect MINQUE. This may not be true in general, however in
the case of intraclass covariance model, we can write the weighted
MINQE of αi as

α̂
(d)
i(wI) =

e′V −1
∗

T 0
i V −1

∗
e

si

,

where e = QV
−1

∗

Y are the weighted least square residuals. In the
present case T 0

i = Λ0Tiλ0 and Λ0 = V∗ we have

α̂
(d)
i(wI) =

e′Tie

si

,

which may not be very sensitive to the choice of weights, if the
weighted least squared residuals are not very different from the or-
dinary least squared residuals, which is true for the present data.
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