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Abstract 
 

RNA viral genomes have very high mutations rates. As infection spreads in the host 
populations, different viral lineages emerge acquiring independent mutations that can lead to 
varied infection and death rates in different parts of the world. By application of Random Forest 
classification and feature selection methods, we developed an analysis pipeline for 
identification of geographic specific mutations and classification of different viral lineages, 
focusing on the missense-variants that alter the function of the encoded proteins. We applied 
the pipeline on publicly available SARS-CoV-2 datasets and demonstrated that the analysis 
pipeline accurately identified country or region-specific viral lineages and specific mutations 
that discriminate different lineages. The results presented here can help designing country-
specific diagnostic strategies and prioritizing the mutations for functional interpretation and 
experimental validations.  
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1. Introduction 

In December 2019, researchers identified a novel coronavirus that first infected and 
caused coronavirus disease (COVID) in patients in Wuhan, China (Lu et al. 2020b). The virus, 
initially named as 2019-nCoV, was officially renamed as SARS-CoV-2 by the International 
Committee on Taxonomy of Viruses to indicate that it was very closely related to the SARS 
(Severe Acute Respiratory Syndrome Coronavirus). It infected 6,265,496 confirmed cases and 
caused 375,526 deaths globally as of June 1, 2020 (https://coronavirus.jhu.edu/).  SARS-CoV-
2 is an enveloped single-stranded RNA virus. It infects a human host by breaking into the host’s 
cell and acquires mutations during replications in the cell. As it spreads from person to person, 
the accumulated mutations in the viral genomes can lead to different viral lineages. One 
particular type of mutations, called missense mutations, alter the amino acids encoded by the 
RNA sequences. For example, some missense mutations alter a protein to give growth 
advantage for the virus – allowing virus entry into a host cell, and others can lead to changes 
in the target region of a drug or antibody that acts against the virus protein (Zhao et al. 2018; 
Holland et al. 2020). Therefore, computational methods to prioritize specific mutations from a 
large set of passenger mutations and classify different lineages is of great importance for the 
ongoing COVID research.  
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We developed a computational pipeline for constructing a tree based Random Forest 
classifier to discriminate SARS-CoV-2 lineages from different geographic regions and identify 
important mutations, using the rich source of existing mutational profiles and associated 
genomic annotations and geographic information. Here, we attempt to classify viral lineages 
from four geographic locations – 1) USA-New York; 2) China; 3) Europe-Spain and Italy; and 
4) India.  We prepared a dataset by processing publicly available mutational profiles that were 
curated by analyzing 20,746 SARS-CoV-2 genome sequences. These genome sequences were 
sequenced from infected patient samples in different countries. We systematically trained and 
evaluated Random Forest (RF) classifiers on subset of this dataset, using both cross validation 
and testing on independent test set, and selected the best performing RF classifier for the final 
algorithm.  
 
2. Data Description 
 

Working around the world in different countries, teams of scientists are racing to 
understand the virus’s genetic sequences, develop treatments and vaccine candidates, and to 
accurately forecast future outbreaks. In this unprecedented effort, more than 30,000 SARS-
CoV-2 genomes have been sequenced and submitted to public data repositories since the 
outbreak in December, 2019 (Colson et al. 2020; Lu et al. 2020a; Yadav et al. 2020). By 
aligning these genomic sequences to a reference SARS-CoV-2 genome, numerous mutation 
sites are identified and stored in public databases. We downloaded the following data files from 
2019 Novel Coronavirus Resource at China National Center for Bioinformation 
(https://bigd.big.ac.cn/ncov/release_genome).  

 
1. VCF file from https://bigd.big.ac.cn/ncov/variation/statistics?lang=en. File name “2019-

nCoV_total.vcf”. VCF (Variant Call Format) file contains meta-information lines, header 
lines, and then data lines (rows) each containing information about a mutation in the 
genome. The columns contain genotype information on samples for each position. The 
downloaded file contains 10,261 non-header rows (each corresponding to specific 
mutation in the genome) and 20,755 columns, of which first 9 columns are mutation 
information and the rest of the columns contain genotype information for 20,746 virus 
samples. Supplement Table 1 provides an example of top-ranking mutations, and their 
genotype information for two samples (columns 10 and 11).    

 
2. Variant Annotation file from https://bigd.big.ac.cn/ncov/variation/annotation. File 

name “Variation Annotation.xls”. This file contains the genomic annotations of the 
identified mutations, such as a) genomic position, b) gene name or region in which the 
mutation is located, c) Number of viruses with the mutation, d) Annotation type – 
missense, synonymous or intergenic variant, etc., e) Mutation type – SNP, insertion or 
deletion, etc., and f) Protein position and amino acid change, etc.  

 
In particular, we focused our analysis of missense variants – those genomic variants that 

alter the encoded amino acid sequences; because study of proteins is key to understanding the 
viral spread and successful development of vaccines and neutralizing antibodies. We choose 
four countries/regions based on the wide variations in infection and death rates. The four 
regions are –1) USA-NY, the epicenter in the United States; 2) China, where the pandemic 
originated; 3) Spain and Italy, two epicenters in Europe; and 4) India, where the world's biggest 
coronavirus lockdown measures were strictly implemented.  
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3. Methodology and Computational Framework 
 

This Section describes the methodology and computational processing used in this 
analysis. We applied advanced tree-based ensemble learning algorithm – Random Forests 
(Breiman 2001) for building the classification model for discriminating the virus lineages of 
four geographical locations. Since RF results its output in a ‘black-box’ model, we applied 
Classification and Regression Tress (CART) methodology on selected feature sets due to its 
key advantage in terms of interpretability  (James et al. 2013). 

Random forest: Fandom forest is a collection of tree structured classifiers {ℎ(𝑥, Θ'), 𝑘 =
1,… }, where the Θ' are independent identically distributed random vectors and each tree casts 
a unit vote for the most popular class at input x. For a given ensemble of classifiers, with the 
training set drawn at random from the distribution of the random vector Y,X, the margin 
function is defined as,  

𝑚𝑔(𝑿, 𝑌) = 𝑎𝑣'𝐼(ℎ'(𝑿) = 𝑌) −𝑚𝑎𝑥678 	𝑎𝑣'𝐼(ℎ'(𝑿) = 𝑗), 
 

where 𝐼(. ) is the indicator function. The confidence in the classification is directly proportional 
to the margin, as the margin measures the extent to which the average number of votes at X,Y 
for the right class exceeds the average vote for any other class. Each tree is constructed using 
a different bootstrap sample from the original data where about one-third (33%) of the cases 
are left out of the bootstrap sample and not used in the construction of the k-th tree. These left 
out samples, usually called “out-of-bag” data, is used to get a running unbiased estimate of the 
classification error as trees are added to the forest. Thus, a test set classification is obtained for 
each case in about one-third of the trees. At the end of the run, let j to be the class that got most 
of the votes every time case/sample n was out-of-bag. The proportion of times that j is not equal 
to the true class of n averaged over all cases is the out-of-bag error estimate. At each node, only 
a subset of the possible predictors are used, primarily for reducing the correlation between trees 
and improving the accuracy of classification (Breiman and Cutler 2001). 
 
CART and rpart: CART is a tree-based algorithm that works via recursive partitioning of the 
training set in order to obtain multiple subsets that are closest (or as homogeneous as possible) 
to a given target class (Breiman 1984).  At each step, the split is made based on the independent 
variable that results in the largest possible reduction in heterogeneity of the dependent 
(predicted) variable.  
  
We describe the computational pipeline (Supplementary Figure 1) in the following two steps: 
 
Step 1 (Data processing step):  We wrote a Perl program to scan the two downloaded files for 
extracting the geographic information (from sample IDs) and selecting only the missense 
mutations with minor allele frequency greater than a certain cut-off.  For each mutation site, 
major allele is the one with the highest count and minor allele is the one with the second highest 
count. In other words, Minor Allele Frequency (MAF) is the frequency at which the second 
most common allele occurs in a given population. We included only those missense variants 
with minor allele count greater than 10. This step prepares the data in tab-separated tabular 
form for statistical analysis in R programing environment.      

 
Step 2 (Variable Selection and Classification Steps): Prior to building the final classification 
model using RF, we applied  a variable selection algorithm (Diaz-Uriarte 2007) to select a 
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small set of important non-redundant mutations. Feature selection was done using an RF based 
algorithm, that uses hybrid approach of selecting the virus mutations (predictor variables) based 
on importance spectrum (similar to scree plot) and backward variable elimination (for the 
selection of small sets of non-redundant variables) by changing parameters related to trees and 
iteration. Using 80,000 initial trees and a fractional variable drop of 10%, we finally selected 
42 mutations as the most discriminative variables between the four geographic regions (classes) 
and created the RF classifier for viral lineage prediction with high accuracy. The accuracy of 
the classifier was determined by RF’s cross-validation analysis (out-of-bag approach) and 
testing on independently set aside dataset.  We split the data into 80:20 ratio and classification 
model generated from the training set (80%) was applied to the test set (20%) to strengthen the 
accuracy claims. We then developed CART model for better visualization of mutation 
differences among classes. For developing CART model, we used the important features as 
selected by RF. Analyses were done using custom scripts in R and libraries including, 
randomForest and varSelRF. Recursive Partitioning and Regression Trees (rpart), an R 
implementation of the CART algorithm, is used for developing CART model in this study.  
randomForest library provides an R interface to the Fortran programs (available at 
https://www.stat.berkeley.edu/~breiman/RandomForests/). varSelRF library is used for 
selecting a small set of mutations while preserving Random Forest classification accuracy.  
 
4. Results 

 
We downloaded mutation profile of 10,261 mutations in 20,746 SARS-CoV-2 samples 

as described in Section 3. After selecting only missense variants that show variation in at least 
10 samples, we retained 588 missense mutations. Further, we selected a total of 2,927 samples 
that correspond to four geographic locations. Data was divided into training (2,341) and testing 
(586) sets based on number of samples, maintaining the class ratios. In Table 1, we list the top 
50 mutations observed among all the sequenced viral samples. USA-NY samples showed 
highest mutation rate, suggesting that coronavirus was probably circulating undetected in the 
NY area for quite some time. Additionally, we found that the top four most common mutations 
showed significantly higher mutation rates in USA-NY samples than the other geographical 
regions, including rest of the world samples. For example, two of the mutations – one at 
genomic location 23403 (A mutated to G) and the other at 25563 (G mutated to T) – alter amino 
acids QHD43416.1:D614G and QHD43417.1:Q57H, respectively, in the S and ORF3a proteins 
of the SARS-Cov-2 virus. For the virus to break into a human cell (host cell), the S protein of 
the virus binds to ACE2 (angiotensin converting enzyme 2) protein on the human cell surface. 
The D614G mutation in S protein might change the protein structure so that it binds to the 
target enzyme (ACE2) with different affinity than the other lineage proteins (Amin et al. 2020). 
Similarly, the Q57H mutation in ORF3a protein might change important functional domains 
linked to virulence, infectivity, ion channel formation, and virus release (Issa et al. 2020). We 
speculate that this may partly explain why the infection rate is much higher in USA-NY area 
than other geographic locations.  

 
Next, we built a four-class classification model for discriminating the SARS-CoV-2 

samples grouped according to the four geographic locations, by specifying the country/region 
as factor variable y and mutation profile as predictor variable matrix X (a binary matrix, where 
1 and 0 denote presence and absence of the mutation respectively). The accuracy of the finally 
selected classifier based on cross-validation analysis (out-of-bag approach) is 85%. Table 2 
shows the confusion matrix for the final model and Figure 1 shows corresponding AUC. The 
robustness of developed model was then confirmed on the test data with high accuracy. Table 
3 shows evaluation metrics of the model on training and test data. USA-NY and China classes 
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have shown the best classification accuracy, followed by Italy-Spain class. The least accuracy 
was observed for India class, which could be due to small sample size of that class. However, 
we speculate that the misclassification of 26.8% and 10.3% of India class into Italy-Spain and 
USA classes, respectively, might be due the viral samples from the infected patients who 
traveled back to India from those geographic regions and not due to local spread of the virus.  

 
Class 4 (India) and Class 2 (China) showed better Specificity and PPV and lower FDR 

than the other two classes. DOR, ratio of the odds of positivity was also higher for Indian and 
Chinese lineages than the other two geographical regions.  DOR depends significantly on the 
sensitivity and specificity of a test. A test with high specificity and sensitivity with low rate of 
false positives and false negatives has high DOR. A diagnostic odds ratio of 1 is similar to an 
AUC of 0.5 and represents an uninformative test. Higher values for both reflect usefulness of 
the classification model. Youden index analysis is useful in finding the optimal cutoff value. 
The value provides the best tradeoff between sensitivity and specificity and is highest for Class 
2. F-score, which combines precision with recall is a good measure of goodness of model and 
shows high value for the current model predictions. Similarly, greater the value of positive 
likelihood ratio (PLR) for a particular test, the more likely a positive test result be a true 
positive. A good classifier should have high PLR and low Negative Likelihood Ratio (NLR). 
Matthews correlation coefficient (MCC), initially developed for binary classifier, considers 
true and false positives and negatives and is regarded as a balanced measure, which can be used 
even if the classes are of very different sizes. Optimized precision, a novel metrics used to 
negate the detrimental effects of using Precision (P) for performance evaluation of unbalanced 
data, also shows high values for all classes. The evaluation results from training model clearly 
indicate that the algorithm effectively distinguished the samples from the four regions based 
on the mutation profile of SARS-CoV-2. Results from testing the classifiers on test data agree 
with the cross-validation results and support the accurate predictive performance of the 
classification model.  

The results from CART analysis are shown in Table 4 and Figure 2. Although, the CART 
model is not as accurate as the random forest model, it provided a better visualization of the 
associations between viral samples/lineages in different geographic regions and the mutation 
patterns. For example, the final CART model (Figure 3) found that the presence of mutations 
at genomic locations 1059_C and 17747_C, but not at genomic locations 14408_C, 13730_C, 
9477_T and 11083_G classified majority of USA-NY samples from the rest in one branch of 
the tree. Similarly, mutation at genomic location 13730_C, but not at 1059_C, 14408_C 
classified majority of India samples in one branch of the tree. Interestingly, most of the 
missense mutations in the model alter the amino acids encoded by gene orf1ab. This gene 
encodes 16 non-structural poly-proteins (Nsp1-Nsp16) of viral RNA synthesis complex 
(Kirchdoerfer and Ward 2019). We expect that these results will help prioritization of select 
mutations, and study of their effect on SARS-Cov-2 and Human protein-protein interactions 
through focused experimental validations.  
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Table 1: Top 50 Mutations in the four geographic regions and the rest of the world. 
Column 2 – Genomic location of the mutation and the reference allele; Column 3 
– Gene location of the missense mutation; Columns 4-8 – Percentage of samples 
mutation observed in each geographic location; Column 9 – Range (difference of 
highest and lowest mutation percentages among the four geographic locations).  

   Percentage of mutated samples/isolates in  
(Total number of samples in the parentheses)  

Mutation 
rank 

Genomic 
location of 

the mutation 
(Ref Allele) 

Gene 
name 

Rest of 
the 

World 
(17816) 

USA-
NY 

(1243) 

China 
(656) 

Italy, 
Spain 
(534) 

India 
(494) Range 

1 23403 (A) S 74.45 93.24 5.34 65.92 62.35 87.91 
2 14408 (C) orf1ab 74.25 93.24 3.66 64.42 62.35 89.58 
3 25563 (G) ORF3a 28.37 86.32 0.91 1.69 23.08 85.41 
4 1059 (C) orf1ab 21.57 79.00 0.91 1.31 0.61 78.40 
5 28881 (G) N 24.36 4.02 1.52 17.04 12.15 15.52 
6 28882 (G) N 24.33 4.10 1.22 16.67 12.15 15.45 
7 28883 (G) N 24.29 4.10 1.22 16.85 12.15 15.63 
8 28144 (T) ORF8 10.22 2.65 31.10 27.53 4.25 28.44 
9 11083 (G) orf1ab 9.65 4.67 5.95 6.55 34.01 29.34 

10 17858 (A) orf1ab 6.93 1.21 0.00 0.00 0.20 1.21 
11 17747 (C) orf1ab 6.87 1.21 0.00 0.00 0.20 1.21 
12 26144 (G) ORF3a 5.96 3.78 5.03 4.87 0.61 4.42 
13 27964 (C) ORF8 3.09 0.56 0.00 0.00 0.00 0.56 
14 2558 (C) orf1ab 2.23 0.48 0.15 0.00 0.61 0.61 
15 28854 (C) N 1.82 0.00 1.37 0.00 14.17 14.17 
16 13730 (C) orf1ab 1.36 0.08 0.46 0.19 30.16 30.08 
17 28311 (C) N 1.40 0.00 0.46 0.19 28.95 28.95 
18 27046 (C) M 2.09 0.16 0.00 1.12 0.00 1.12 
19 2480 (A) orf1ab 2.07 0.48 0.15 0.00 0.40 0.48 
20 6312 (C) orf1ab 1.25 0.00 0.46 0.19 28.14 28.14 
21 11916 (C) orf1ab 0.74 17.62 0.00 0.00 0.00 17.62 
22 10097 (G) orf1ab 1.96 0.08 0.00 0.00 0.00 0.08 
23 25429 (G) ORF3a 1.80 0.08 0.00 0.19 0.20 0.20 
24 28077 (G) ORF8 1.55 0.72 1.52 0.00 0.81 1.52 
25 1440 (G) orf1ab 1.48 0.00 0.00 0.00 0.00 0.00 
26 2891 (G) orf1ab 1.46 0.00 0.00 0.00 0.00 0.00 
27 26530 (A) M 1.32 0.24 0.00 1.12 0.61 1.12 
28 18998 (C) orf1ab 0.34 14.32 0.00 0.00 0.00 14.32 
29 3177 (C) orf1ab 1.27 0.40 0.15 0.00 0.00 0.40 
30 490 (T) orf1ab 1.22 0.40 0.15 0.00 0.00 0.40 
31 28863 (C) N 0.63 0.24 0.15 19.66 0.20 19.51 
32 1397 (G) orf1ab 0.98 0.16 2.90 0.94 3.85 3.69 
33 9477 (T) orf1ab 0.59 0.24 0.15 20.04 0.20 19.89 
34 18736 (T) orf1ab 1.19 0.40 0.00 0.00 0.00 0.40 
35 25979 (G) ORF3a 0.61 0.16 0.15 19.10 0.20 18.95 
36 11109 (C) orf1ab 1.20 0.00 0.00 0.00 0.00 0.00 
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37 6310 (C) orf1ab 0.82 0.00 0.00 0.00 9.51 9.51 
38 4002 (C) orf1ab 1.03 0.08 0.00 0.00 0.00 0.08 
39 28836 (C) N 0.95 0.16 0.00 0.00 0.00 0.16 
40 13862 (C) orf1ab 0.94 0.00 0.00 0.00 0.40 0.40 
41 24368 (G) S 0.88 0.00 0.00 0.00 0.00 0.00 
42 21575 (C) S 0.69 1.13 0.00 0.37 0.61 1.13 
43 28878 (G) N 0.55 0.72 1.22 0.75 3.85 3.12 
44 16289 (C) orf1ab 0.72 0.16 0.00 0.19 0.00 0.19 
45 25688 (C) ORF3a 0.68 0.32 0.00 0.19 0.00 0.32 
46 10323 (A) orf1ab 0.68 0.08 0.30 0.19 0.00 0.30 
47 10798 (C) orf1ab 0.70 0.00 0.00 0.00 0.00 0.00 
48 25350 (C) S 0.66 0.00 0.00 0.00 0.20 0.20 
49 28580 (G) N 0.66 0.00 0.00 0.19 0.00 0.19 
50 1302 (C) orf1ab 0.66 0.00 0.00 0.00 0.00 0.00 

While the Random Forest classification method used here is considered as a “black box” 
method, with no interpretable classification model, the method provides useful information, 
such as variable importance. One of the measures of variable importance in Random Forest 
method is the mean decrease in accuracy, calculated using the out-of-bag sample. The 
difference between the prediction accuracy on the untouched out-of-bag sample and that on the 
out-of-bag sample permuted on one predictor variable is averaged over all trees in the forest 
and normalized by the standard error. This gives the mean decrease in accuracy of that 
particular predictor variable which has been permuted.  Figure 3 shows the list of feature 
variables ranked according to mean decrease in accuracy of classification. It is interesting to 
note that the mutations in genes orf1ab, ORF3A and S genes rank among the most 
discriminative variables from mean decrease in accuracy graph (Figure 3).  

 

Table 2: Confusion matrix of the prediction results of fitted model on Training set  

 
 

 
 
 
 

  True Class – Number of real samples in each class 

  USA-NY 
(Class 1) 

China 
(Class 2) 

Italy, Spain 
(Class 3) 

India 
(Class 4) Total 

Predicted 
Class –  
Number 

of 
predicted 
samples 
in each 
class 

USA-
NY 

907  
(91.25%) 

15  
(1.51%) 

72  
(7.24%) 

0  
(0.00%) 994 

China 9  
(1.71%) 

497 
(94.67%) 

16 
(3.05%) 

3  
(0.57%) 525 

Italy, 
Spain 

20  
(4.68%) 

42  
(9.84%) 

362 
 (84.78%) 

3  
(0.70%) 427 

India 41 
 (10.38%) 

23  
(5.82%) 

106  
(26.84%) 

225  
(56.96%) 395 

Total 977 577 556 231  
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Table 3: Evaluation metrics of the four-class classification model based on cross-
validation and independent test data. Bold numbers represent best performance among 
classes in training and test set. NPV – Negative Predictive Value; FDR – False Detection 
Rate; FNR – False Negative Rate; DRO – Diagnostic Odds Ratio; PLR – Positive Likelihood 
Ratio; NLR – Negative Likelihood Ratio; MCC – Matthews correlation coefficient. 

 

Metric 

 
Cross validation  

 
Test data 

USA 
(Class 

1) 

China 
(Class 

2) 

Europe 
(Class 3) 

India 
(Class 

4) 

USA 
(Class 

1) 

China 
(Class 

2) 

Europe 
(Class 3) 

India 
(Class 

4) 
Balanced 
accuracy  0.93 0.95 0.87 0.78 0.91 0.94 0.83 0.82 

Sensitivity or 
Recall 0.91 0.95 0.85 0.57 0.91 0.95 0.74 0.65 

Specificity 0.94 0.95 0.89 1.00 0.92 0.94 0.91 0.99 
PPV or 
Precision 0.93 0.86 0.65 0.97 0.90 0.83 0.66 0.94 

NPV 0.93 0.98 0.96 0.91 0.92 0.98 0.94 0.92 

FDR 0.07 0.14 0.35 0.03 0.10 0.17 0.34 0.06 

FNR 0.09 0.05 0.15 0.43 0.09 0.05 0.26 0.35 
False Omi-
ssion Rate 0.07 0.02 0.04 0.09 0.08 0.02 0.06 0.08 

False 
Positive Rate 0.06 0.05 0.11 0.00 0.08 0.06 0.09 0.01 

DRO 161.44 331.48 46.76 389.56 109.32 261.46 29.20 196.11 
Youden's 
Index 0.85 0.90 0.74 0.57 0.83 0.88 0.65 0.64 

Geometric 
Mean 0.93 0.95 0.87 0.75 0.91 0.94 0.82 0.80 

F-score  
(beta 0.5) 0.93 0.88 0.68 0.85 0.90 0.85 0.68 0.86 

F-score  
(beta 1) 0.92 0.90 0.74 0.72 0.91 0.89 0.70 0.77 

F-score  
(beta 2) 0.92 0.93 0.80 0.62 0.91 0.92 0.72 0.69 

PLR 15.04 18.63 7.97 168.23 11.01 14.92 8.38 69.98 
NLR 0.09 0.06 0.17 0.43 0.10 0.06 0.29 0.36 
MCC 0.85 0.87 0.67 0.71 0.82 0.85 0.62 0.74 
Markedness 0.85 0.87 0.67 0.71 0.82 0.85 0.62 0.74 
Optimization 
Precision  0.84 0.85 0.82 0.58 0.84 0.84 0.74 0.63 

 
 



2020]              IDENTIFYING GEOGRAPHIC SPECIFIC SARS-COV-2 MUTATIONS                  261 
  

Table 4: Confusion matrix of the prediction results using CART on training set 

 
5. Conclusions 
 

In theory, accumulation of mutations could make a virus more infectious or deadly, or 
vice versa, but the vast majority of mutations do not affect a virus’s performance. While some 
mutations lead to more virulent and lethal strains, other mutations make the virus less infectious 
and less lethal in the populations. Computational methods that effectively integrate genomic 
profiles to identify and prioritize important genomic features and classify different groups of 
samples are valuable tools for Bioinformatics researchers. SARS-CoV-2 related research is 
rapidly evolving with numerous publications. Phylogenetic methods have been applied to 
SARS-CoV-2 genome sequences to construct the phylogenetic trees (clusters of closely related 
lineages) and predict future global hot spots of disease transmission and surge (Forster et al. 
2020).  Similarly, analysis pipelines are being developed for analysis of SARS-CoV-2 genomes 
to facilitate identification of novel mutations (Pachetti et al. 2020) and for functional 
annotations of mutations in specific gene regions, for example, nonsynonymous mutations in 
the ORF3a protein (Issa et al. 2020). Here, we have developed a complementary computational 
pipeline based on Random Forest based classification methods to identify a subset of missense 
mutations that can classify groups of virus lineages. It was previously reported, based on 
analysis of 220 genomic sequences, that the mutations located at positions 2891, 3036, 14408, 
23403 and 28881 positions were predominantly observed in Europe, whereas those located at 
positions 17746, 17857 and 18060 were exclusively present in North America (Pachetti et al. 
2020). However, we found that the top-ranking mutations located at positions 14408 and 23403 
were most frequent in USA-NY samples than the rest of the geographical regions. We believe 
that this contradictory result could be due to much bigger sample size and small geographic 
regions in our analysis. Our findings suggest that the virus is evolving locally, and presence of 
small geographic region-specific strains that could be accurately classified by different 
mutational patterns.  
 

Random Forest based algorithms have been successfully applied in various genomic 
analysis studies. For example,  we have earlier used an integrative modeling approach that 
combines CART (Breiman 1984) and Random Forest to classify different estrogen receptor 
alpha responsive promoters (Cheng et al. 2006) and SMAD target promoters (Qin et al. 2009) 
with reasonably good classification accuracy and reduced instability (Qin et al. 2009).  
Although the main goal in classification is to build a model with minimal misclassification 
error in cross-validation, in these applications we are equally interested in identifying 

  True Class – Number of real samples in each class 

  USA-NY 
(Class 1) 

China 
(Class 2) 

Italy, Spain 
(Class 3) 

India 
(Class 4) Total 

Predicted 
Class –  
Number 

of 
predicted 
samples 
in each 
class 

USA-
NY 

914  
(91.95%) 

9  
(0.91%) 

65  
(6.54%) 

6  
(0.60%) 994 

China 10  
(1.90%) 

489 
(93.14%) 

16  
(3.05%) 

10  
(1.90%) 525 

Italy, 
Spain 

22  
(5.15%) 

38  
(8.90%) 

363  
(85.01%) 

4  
(0.94%) 427 

India 41  
(10.38%) 

10  
(2.53%) 

115  
(29.11%) 

229  
(57.97%) 395 

Total 987 546 559 249  
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biologically important features, such as genomic mutations or single nucleotide 
polymorphisms, for future experimental prioritization. The computational pipeline presented 
here will help the discovery of geographic specific SARS-CoV-2 mutations for further 
computational modeling and experimental validations and help in the interpretation of their 
functional effects. 
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Figure 1: ROC curve between classes for (a) training set USA-NY (Class 1); China 
(Class 2); Italy, Spain (Class 3); India (Class 4) 

 

 
 
 
 
 
 
 
 
 
 
 
  

a. 
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Figure 2: Model features and their importance 
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Figure 3: Pruned Tree representation of CART model, generated using 42 features 
selected by Random forest feature selection method. The gene name and UniProt Protein 
Products or Polypeptide Chains (in parentheses) in which the mutation is located is 
mentioned at the bottom of each mutation in the tree.  
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Supplement Table 1: List of top ranking (top 10) mutations. First four rows are header 
lines; fifth line is for column headings. Columns 1 to 9 provide mutation information, 
such as the chromosome (CHROM), genomic position (POS), unique identifier (ID), 
reference allele (REF), alternative alleles (ALT) identified in different lineages, 
sequence quality score (QUAL), filtering out (FILT) criteria for low quality 
mutations, any information (INFO) and format of the mutation, GT – Genotype. 
Genotype data are given for two samples, one for USA and the other from India. 
Missing information is denoted by period “.” symbol. If more than one alternative 
alleles exist, those are comma-separated in ALT column. The nucleotide symbols in 
REF and ALT columns are: A – Adenine; C – Cytosine; G – Guanine; T – Thymine; 
R – G or A (purine); Y – C or T (pyrimidine); K – G or T; M – A or C; S – G or C; 
W – A or T; B – G or T or C; D – G or A or T; H – A or C or T; V – G or C or A.  

 
##fileformat=VCFv4.2 
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 
##reference=file:///xtdisk/apod/licp/Virus/ref/2019-nCoV.fa 
##contig=<ID=2019-nCoV,length=29903> 

#CHR
OM POS ID REF ALT QUAL FILTER INFO FORMAT 

2019-
nCoV/USA
-AZ1/2020 

SARS-CoV-
2/human/IND
/GMCKN318/

2020 
2019-
nCoV 23403 

2019-
nCoV_23403 A R,G . . . GT 0 2 

2019-
nCoV 14408 

2019-
nCoV_14408 C A,T,Y . . . GT 0 2 

2019-
nCoV 3037 

2019-
nCoV_3037 C T,Y . . . GT 0 1 

2019-
nCoV 241 

2019-
nCoV_241 C T,Y . . . GT 0 1 

2019-
nCoV 25563 

2019-
nCoV_25563 G T,C,R,K . . . GT 0 0 

2019-
nCoV 1059 

2019-
nCoV_1059 C T,Y . . . GT 0 0 

2019-
nCoV 28881 

2019-
nCoV_28881 G A,T,R . . . GT 0 0 

2019-
nCoV 28882 

2019-
nCoV_28882 G A,T,R . . . GT 0 0 

2019-
nCoV 28883 

2019-
nCoV_28883 G A,S,C . . . GT 0 0 

2019-
nCoV 8782 

2019-
nCoV_8782 C T,Y . . . GT 1 0 
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Supplementary Figure 1: Flowchart of the computational frame-work 
 

Perl Script to prepare the Data Matrix X (a binary matrix, where 1 denotes 
presence of mutation and 0 otherwise) and Y – Vector of factor/class variable   

VCF data-file (File name “2019-
nCoV_total.vcf”) of 10,261 (rows) and 20,746 

SARS-Cov-2 samples/lineages (columns) 

1/5th testing set 

4/5th training set 

Select most discriminating mutations 
(42) by applying varSelRF R package 

Apply the classifiers on 
test set and report 

performance metrics 

Variant annotation file 
for 10,034 mutations 

Split the Data 

Build two separate classifiers 
by applying randomForest and 

rpart R packages 

Report classifiers’ performance metrics by cross-validation 


