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Abstract
Choice experiments are conducted when it is important to study the importance of

different factors based on the perceived utility of choice options. We study the optimality
of discrete choice experiments under a newly introduced inference problem of test-control
discrete choice experiments; it is akin to the test-control inference problem in factorial ex-
periments. For each factor, we have one control level and this control level is then compared
with all the test levels of the same factor. For three-level choice designs with multiple factors,
we first obtain a lower bound to the A-values for estimating the two test-control contrasts for
each factor. We then provide some A-optimal designs for a small number of factors obtained
through a complete search. For practical use with a somewhat large number of factors, we
then provide some highly efficient designs.

Key words: Choice set; Test-control contrast effects; Hadamard matrix; Multinomial logit
model; Linear paired comparison model.
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1. Introduction

Discrete choice experiments are used for quantifying the influence of the attributes
which characterize the choice options. They are useful in many applied sciences, for example,
psychology, marketing research, etc., where options (or, products) have to be judged with
respect to a subjective criterion like preference or taste. For a latest application, see Ong
et al. (2020). In choice experiments, respondents are shown a collection of choice sets and
each of these choice sets consists of several options. Respondents are then asked to select
one preferred option from each of the choice sets. We consider choice experiments with N
choice sets each having two options (referred to as choice pairs hereafter); so, N choice pairs
are shown to respondents and they are asked to pick one of the two options that they prefer
from each of the N pairs. Each option is described by the same k factors, with each factor
having two or more levels. We consider each factor at three levels. A choice design d then is
a collection of these N choice pairs. Excellent reviews of the choice designs are provided in
Street and Burgess (2012) and Großmann and Schwabe (2015), and a recent paper (Das and
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Singh, 2020) provides a unified theory on optimal choice experiments connecting different
approaches to choice experiments.

Discrete choice experiments (DCEs) have usually been studied under the multinomial
logit model (El-Helbawy and Bradley, 1978; Street and Burgess, 2007). Under the multino-
mial logit model, D-optimal designs have been studied for several situations, and orthogonal
contrasts of main effects and two-factor interactions for the k factors are usually of interest.
The multinomial logit model is non-linear, hence, the information matrix is a function of
unknown parameters. The locally optimal designs are therefore obtained, and under the
indifference assumption (that all treatment combinations have equal utility) of choice ex-
periments, these locally optimal designs have been just termed as optimal designs. DCEs
with only two options in each choice set can be equivalently studied under the traditional
linear paired comparison model (McFadden, 1974; Huber and Zwerina, 1996; Großmann and
Schwabe, 2015). The relationship between the two approaches (MNL models and linear
paired comparison models) for studying DCEs has been studied in Das and Singh (2020).
They also obtained the information matrices under different inference problems including
briefly introducing the test-control inference problem in DCEs. So far, the inference prob-
lems that have been studied in choice experiments focus on comparing all levels of each factor
with equal importance (Street and Burgess, 2007; Großmann and Schwabe, 2015; Chai et al.,
2017). We focus on the test-control inference problem for paired choice DCEs with each fac-
tor at three levels. The same setup with a traditional inference problem (of equal focus on all
pairwise comparisons) was studied in Chai et al. (2017). The difference between the current
paper and Chai et al. (2017) lies only in the studied inference problem, which ultimately
leads to obtaining different optimal designs. We defer most of the technical details until the
next section.

The primary goal in a test-control inference problem is to compare the test levels to a
(pre-specified) control level. Here, we are not interested in making all pairwise comparisons,
we are only interested in a subset of those comparisons. To the best of our knowledge, no
one has worked on finding optimal choice designs when the interest might lie in making test-
control comparisons. We are also not aware of any practical choice experiment which was
conducted with this intention, however, it is not too hard to imagine that such an inference
problem will find its use with practitioners. This is useful when manufacturers/service
providers or policymakers want to study the effect of new test levels as against the existing
control levels. Test-control inference problem has been studied by several authors; see, for
example, Hedayat et al. (1988) and Majumdar (1996) for block designs, and Gupta (1995)
and Gupta (1998) for multiple factors.

D-optimality is invariant to reparameterizations, and thus, D-optimal designs remain
optimal even when the inference problem is changed (Großmann and Schwabe, 2015). On
the other hand, A-optimal designs change with the inference problem which is one of the
reasons behind us studying the A-optimal designs under the inference problem of test-control
experiments. For linear models, it has been shown that when the inference problem is test-
control, one often benefits by using the A-optimal designs specially designed for catering to
this problem (see Banerjee and Mukerjee, 2008, for example). By studying optimal designs
for the test-control inference problem for DCEs, we intend to do the same for DCEs (results
in Table 2 and the final paragraph). A-optimal designs are the designs that minimize the sum
of variances of the treatment contrasts of interest. For example, if the information matrix
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for treatment contrasts of interest is Md, then the design d∗ which minimizes trace(M−1
d )

among all designs is called an A-optimal design. We provide constructions of A-optimal and
A-efficient designs for estimating the test-control contrasts under the indifference assumption
of the multinomial logit model. We also provide designs having high A-efficiencies.

2. Background

We only present here the details relevant to the current problem, and for more details,
Das and Singh (2020) is suggested to be consulted. With each of the k factors at three
levels, there are a total of 3k options. Let the systematic component of the utility for options
be denoted by a 3k-tuple vector τ . Without loss of generality, let the options be arranged
lexicographically. For example, for k = 2, the systematic component of the utility vector is
τ = (τ00, τ01, τ02, τ10, τ11, τ12, τ20, τ21, τ22). The coding that we use is more commonly known
as effects coding, see Großmann and Schwabe (2015), for example. In effects coding, for one
factor at three levels, level 0 is coded as (1 0), level 1 is coded as (0 1) and level 2 is coded
as (−1 − 1); here, level 2 is the control level, and levels 0 and 1 are test levels.

The nth choice pair is denoted by Tn = (t(n1), t(n2)), with t(nj) is the jth option in the
nth choice pair, n = 1, . . . , N , j = 1, 2. Corresponding to the jth option in N choice sets,
Aj = (tT(1j) t

T
(2j) · · · tT(Nj))T is a N × k matrix representing the levels of the k attributes. Let

a N × 2k matrix Xj denote the effects coded matrix corresponding to Aj implying that 0, 1
and 2 in Aj is replaced by the vectors (1, 0), (0, 1) and (−1,−1), respectively, in Xj. Then,
the effects coded difference matrix for the first and second option is

X = X1 −X2. (1)

Let B be a 2k × 3k matrix such that the ith column of B corresponds to the effects
coding for the ith option, i = 1, . . . , 3k. It is assumed that the 3k options are arranged
lexicographically. For example, if k = 3, the 3rd column in B would correspond to the
effects coding corresponding to the option (002) which is (1 0 1 0 − 1 − 1), or that, the
7th column would correspond to option (020), that is, (1 0 − 1 − 1 1 0). The matrix B
has been called BE in Das and Singh (2020). For simplicity, we drop the subscript E in the
current work. This should not be confused with B used in Street and Burgess (2007), since,
the matrix B has traditionally corresponded to the orthonormal coding.

The inference problem studied in the current paper is Bτ which corresponds to the
situations where the primary interest lies in making test-control comparisons which means
that some new levels (called test levels) of factors are compared with an existing control
level for the same factor. From Das and Singh (2020), the average information matrix for
the inference problem Bτ is I(Bτ) = 1

4N
Md where

Md = (BBT )−1XTX(BBT )−1. (2)

Note that the word average here comes from using N in the definition of the information
matrix implying that the information considered here is per choice pair. Given the structure
of B, it is easy to see that (BBT )−1 = ( 1

3k )diag(V −1
1 , . . . , V −1

k ) where V −1
i = (3I2 − J2) for

all i = 1, . . . , k. For three-level factors, a choice design d is connected if all the test-control
contrasts are estimable, and this happens if and only if Md has rank 2k. In what follows, the
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class of all connected paired choice designs with k three-level factors and N choice pairs is
denoted by Dk,N . As stated before, we use the standard A-optimality criteria. The A-value
of a design d in Dk,N is 4Ntrace(M−1

d ). A design that minimizes the A-value among all
designs in Dk,N is said to be A-optimal.

3. Lower Bounds to the A-value

To find the lower bound to the A-value under the inference problem Bτ , we adopt the
same strategy as in Chai et al. (2017). We first find the lower bound of the A-value for
designs with only one factor, and then use the same to find a näıve bound to the A-value
when k factors are taken into consideration. Let the matrix X in (1) be partitioned as
(X(1)|X(2)| · · · |X(k)), where X(p) is a N × 2 matrix corresponding to the pth factor. Notice
that rows in X(p) determine the corresponding options in a design for the pth factor. In
X(p), rows (+2, +1), (−2, −1), (+1, +2), (−1, −2), (+1, −1) and (−1, +1) correspond to
choice pairs (0, 2), (2, 0), (1, 2), (2, 1), (0, 1) and (1, 0) respectively. Similarly, row (0, 0)
in X(p) could correspond to any of the three choice pairs (0, 0), (1, 1) or (2, 2).

Similarly, the matrix Md = (Mdpq) for a design d can also be partitioned into 2 × 2
blocks such that the block corresponding to the pth and qth factor is Mdpq = 1

32k (3I2 −
J2)XT

(p)X(q)(3I2 − J2); p = 1, . . . , k; q = 1, . . . , k. It can be shown that we always benefit by
not considering the pairs corresponding to the type (0, 0) in X(p) (for an explanation, see
Chai et al. (2017)). Also, note that (0, 0) in X(p) implies that the corresponding value for a
factor in both the options are same. Let y be the number of rows of X(p) that are equal to
either (2, 1) or (−2,−1) and z be the number of rows of X(p) that are equal to either (1, 2)
or (−1,−2). Then the remaining N − y − z (= x, say) rows of X(p) are necessarily equal to
either (1, −1) or (−1, 1). It can then be shown that for the pth factor,

Mdpp = 1
32(k−1)

[
N − z y + z −N

y + z −N N − y

]
= 1

32(k−1)Cdpp, (3)

where
Cdpp =

[
N − z y + z −N

y + z −N N − y

]
.

We need to obtain a lower bound to trace(M−1
dpp) = 32(k−1)trace(C−1

dpp), which is equiv-
alent to obtaining a lower bound to trace(C−1

dpp). The

trace(C−1
dpp) = (2N − y − z)/hN(y, z) = gN(y, z),

where
hN(y, z) = det(Cdpp) = yz +N(y + z)− (y + z)2.

Note that both hN(y, z) and gN(y, z) are symmetric in y and z. We now find the
values y and z for which gN(y, z) is minimized for 1 ≤ y + z ≤ N , y 6= N , z 6= N . These
conditions are required for every p so that the design d is connected, that is, rank(Md) = 2k.
We need these conditions because our eventual goal is to find a lower bound to the A-
value for a design with k factors. Let bxc denote the greatest integer contained in x. Let
La = mind∈D1,N

trace(C−1
dpp) = min1≤y+z≤N,y 6=N,z 6=NgN(y, z) = gN(a∗, b∗).
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Lemma 1: For the pth (p = 1, . . . , k) factor in design d ∈ D1,N with N > 3,

trace(C−1
dpp) = gN(y, z) ≥ gN(a∗, b∗)

where gN(a∗, b∗) = min{gN(a1, b1), gN(a2, b2), gN(a3, b3)} with

(i) a1 = b1 = t,

(ii) a2 = b2 = t+ 1,

(iii) a3 = t, b3 = t+ 1

and t = bN(3−
√

3)/3c.

Proof: The proof follows on similar lines as the proof of corresponding lemma in Chai et al.
(2017). Treating y and z as continuous variables and adopting the usual derivative approach
to minimize gN(y, z), we get ∂gN(y, z)/∂y = (2N(y+ z−N)− yz+ y(2N − y− z))/h2

N(y, z).
Similarly, ∂gN(y, z)/∂z = (2N(y + z −N)− yz + z(2N − y − z))/h2

N(y, z).

Now, ∂gN(y, z)/∂y = ∂gN(y, z)/∂z = 0 implies that (y − z)(2N − y − z) = 0. In other
words, y=z, since 2N − y − z > 0.

Now, for y = z, it follows that ∂gN(y, z)/∂y = 0 implies that 3y2 − 6Ny + 2N2=0 or
y = N(3±

√
3)/3. However, since y < N , the only feasible solution of y is N(3−

√
3)/3 = t1.

Similarly, checking the matrix of second derivatives, we see that the minimum of
gN(y, z) is attained at y = z = t1. Since t1 is non-integer, gN(y, z) = La at one of the
integer points nearest to (t1, t1).

Using Lemma 1, we have computed the values of a∗ and b∗ for 4 ≤ N ≤ 64 and
summarize it in Table 1. Also, note that since gN(y, z) is symmetric in y and z, interchanging
the values of a∗ and b∗ yield the same values of gN(a∗, b∗) and therefore from Table 1, we
could either say that y = a∗ and z = b∗ or that z = a∗ and y = b∗. The optimal value for x
can then be computed as N − y − z. Recall that we consider choice designs with y number
of rows of X(p) equal to either (2, 1) or (−2,−1), z number of rows equal to either (1, 2) or
(−1,−2), and the remaining x rows equal to either (1, −1) or (−1, 1).

Results in Table 1 are not surprising since we know that for block designs or for facto-
rial experiments, when test-control inference problem is of interest then unequal replication
of levels, often with control treatment being repeated more number of times than other
treatments, is common. Let LA = mind∈Dk,N

trace(M−1
d ). We now give a lower bound of LA

for paired choice designs with k factors in N choice pairs.

Theorem 1: For a paired choice design d ∈ Dk,N , trace(M−1
d ) ≥ LA ≥ k32(k−1)La =

k32(k−1)gN(a∗, b∗) where a∗ and b∗ are as in Lemma 1.

Proof: Similar to the proof of Theorem 2.1 in Chai et al. (2017), first we apply the in-
equality trace(M−1

d ) ≥ ∑k
p=1 trace(M−1

dpp) which, using Schur complement and the inverse of
partitioned matrices, follows easily for k = 2. For example, for k = 2, let the 2×2 partitioned
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Table 1: Values of a∗ and b∗ for 4 ≤ N ≤ 64 for Lemma 1

N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗

4 2 2 14 6 6 24 10 10 34 14 15 44 18 19 54 23 23
5 2 2 15 6 6 25 10 11 35 15 15 45 19 19 55 23 23
6 2 3 16 7 7 26 11 11 36 15 15 46 19 20 56 24 24
7 3 3 17 7 7 27 11 12 37 15 16 47 20 20 57 24 24
8 3 4 18 7 8 28 12 12 38 16 16 48 20 20 58 24 25
9 4 4 19 8 8 29 12 12 39 16 17 49 21 21 59 25 25
10 4 4 20 8 9 30 13 13 40 17 17 50 21 21 60 25 26
11 4 5 21 9 9 31 13 13 41 17 17 51 21 22 61 26 26
12 5 5 22 9 9 32 13 14 42 18 18 52 22 22 62 26 26
13 5 6 23 10 10 33 14 14 43 18 18 53 22 23 63 26 27

64 27 27

matrix M be M =
[
M11 M12
M21 M22

]
. Then

M−1 =
[

(M11 −M12M
−1
22 M21)−1 −M−1

11 M12(M22 −M21M
−1
11 M12)−1

−M−1
22 M21(M11 −M12M

−1
22 M21)−1 (M22 −M21M

−1
11 M12)−1

]
.

Since M12M
−1
22 M21 is non-negative definite, (M11 − M12M

−1
22 M21) ≤ M11 and therefore

(M11 − M12M
−1
22 M21)−1 ≥ M−1

11 . Similarly, (M22 − M21M
−1
11 M12)−1 ≥ M−1

22 . Therefore,
trace(M−1) = trace(M11 −M12M

−1
22 M21)−1 + trace(M22 −M21M

−1
11 M12)−1 ≥ trace(M−1

11 ) +
trace(M−1

22 ). Now, using the method of induction, one can see that the inequality holds for
a general k, that is, the trace(M−1) ≥ ∑t

p=1 trace(M−1
pp ). Finally, using Lemma 1, the proof

follows.

In the next section, we provide some A-optimal designs attaining the lower bounds
of Theorem 1. In some situations, since we are not able to provide designs attaining the
A-lower bounds, A-efficiencies are given.

4. Design Constructions

A design d ∈ Dk,N would be A-optimal under the test-control inference problem if
trace(M−1

d ) attains the bound obtained in Theorem 1. To attain this bound, the design
should not only have the values of a∗ and b∗, for each factor, as in Table 1 (or, Lemma 1) but
should also satisfy the orthogonality property, that is, the blocks Mdpq for p 6= q = 1, . . . , k
should be block matrices with all values equal to 0s. The closer these block matrices are
to zero matrices, the higher is the efficiency expected to be. This is a somewhat hard
combinatorial problem, less studied, and it is more difficult to deal with the problem as
compared to finding designs for other inference problems. For finding optimal designs, an
algorithm such as the one recently studied in case of factorial experiments (Chai and Das,
2020) would be more helpful. The A-efficiency of a design d ∈ D(k,N) is given by

φA =
mind0∈D(k,N)trace(M−1

d0 )
trace(M−1

d )
.
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It then follows from Theorem 1 that for d ∈ Dk,N

φA ≥
k32(k−1)gN(a∗, b∗)
trace(M−1

d )
. (4)

As an example, consider N = 9 and k = 2. Here, the optimal values for a∗ and b∗

are both equal to 4, and, from the result of complete search, we see that no design with
a∗ = b∗ = 4 for N = 9 achieves the bound in Theorem 1. One of the designs d9 with the
smallest A-value (= 282.8769) among the designs having a∗ = b∗ = 4 is provided below.
In fact, it is surprising to note that designs for a∗ = 3 and b∗ = 4 (or vice versa) while
satisfying the orthogonality condition have A-value (= 274.1538) which is smaller than d9.
This design is provided below as d+

9 . The bound from Theorem 1 (= k32(k−1)gN(a∗, b∗)) is
7.5, and, therefore, the bound for A-value is then 4N(7.5) = 270. Thus, the design d9 has
an A-efficiency of at least 0.9545 whereas d+

9 has an A-efficiency of at least 0.9848.

Similarly for N = 7, k = 2, no design with a∗ = b∗ = 3 achieves the bound in Theorem
1. Design d7 with the smallest A-value (= 279.7321) among the designs having a∗ = b∗ = 3
is provided below. The designs having either a∗ = 2, b∗ = 3 or vice versa for one factor and
a∗ = b∗ = 3 for another factor and additionally satisfying the orthogonality condition have
A-value (276.1500) which is smaller than d7. This design is also given below as d+

7 . The
bound from Theorem 1 is 9.6, and, therefore the bound for A-value is then 4N(9.6) = 268.8.
Thus, the design d7 has an A-efficiency of at least 0.9609 whereas d+

7 has an A-efficiency of
at least 0.9734.

d9 =



00, 22
01, 22
02, 11
02, 20
02, 21
10, 22
11, 20
12, 20
12, 21


, d+

9 =



00, 22
01, 10
01, 22
02, 11
02, 21
10, 22
11, 20
12, 20
12, 21


and d7 =



00, 22
01, 22
02, 11
02, 20
10, 22
11, 20
12, 21


, d+

7 =



00, 22
01, 22
02, 11
02, 20
10, 21
11, 20
12, 21



The designs obtained for N = 7 and N = 9 suggest that the lower bound in Theorem
1 is not tight. In fact, it suggests that orthogonality is somewhat more important than the
designs satisfying the property in Lemma 1 for every factor. For k = 2 and N = 4, 5, 6
and 8, A-optimal designs have been obtained using complete search and reported below as
d4, d5, d6, and d8, respectively. These designs satisfy the orthogonality property and satisfy
the values of a∗ and b∗ in Lemma 1 thereby attaining the optimal bound in Theorem 1.
In fact, the complete search result also shows that d+

7 and d+
9 have the smallest A-value

and are, therefore, A-optimal. Note that there exists more than one design with the same
A-values and only one of them is reported here. Besides, these complete searches are carried
out within the class of designs having distinct choice pairs since that is more desirable in
practice (Chai et al., 2017).
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d4 =


01, 22
02, 21
10, 22
12, 20

, d5 =


00, 22
01, 10
02, 21
11, 22
12, 20

, d6 =



00, 12
01, 20
02, 21
10, 22
11, 22
12, 21

 and d8 =



00, 22
01, 22
02, 11
02, 20
10, 21
11, 22
12, 20
12, 21


.

A Hadamard matrix Hm is a m × m matrix with elements ±1 such that HT
mHm =

HmH
T
m = mIm. Using the construction in Chai et al. (2017) and designs reported above,

called base designs, we now find designs with larger numbers of factors k and N ≥ 8.
Consider a base design d0 ∈ Dk0,N0 with the trace (M−1

d0 ) = k032(k0−1)gN0(a0, b0). Using d0,
a paired choice design dH with parameters k = mk0, N = mN0 is constructed with the
corresponding design matrix XH = Hm ⊗ X, where X is the design matrix of d0. This
method of construction obtains a final design by performing Kronecker product of the small
design with a Hadamard matrix. To find the A-value of design dH , we first note that

XT
HXH = HT

mHm ⊗XTX = mIm ⊗XTX.

Then, from (2), we have

MdH
= 1

32k
diag(V −1

1 , . . . , V −1
k )(mIm ⊗XTX)diag(V −1

1 , . . . , V −1
k )

= 1
32mk0

diag(V −1
1 , . . . , V −1

k )(mIm ⊗XTX)diag(V −1
1 , . . . , V −1

k ) (5)

= m

32k0(m−1) Im ⊗Md0 .

Therefore, trace(M−1
dH

) = 32k0(m−1)trace(M−1
d0 ), and the A-efficiency of dH is given by

φA ≥
k32(k−1)gN(a∗, b∗)

32k0(m−1)trace(M−1
d0 )

= k32(k0−1)gN(a∗, b∗)
trace(M−1

d0 )
= φ∗A, (6)

where d0 is a base design in Dk0,N0 and a∗ and b∗ are as in Theorem 1 for a design with N runs
and k factors. In Table 2, for N ≥ 4 and k ≥ 2, we provide A-optimal and A-efficient designs
with efficiency bounds as in (6), and the corresponding methods of constructions. One of
the designs with k = 4 and N = 10 is A-optimal. We denote designs dH obtained using the
Hadamard matrix Hm and a base design dN0 by Hm⊗dN0 . A design with a smaller k retains
its optimality property for given N when factors are deleted from a design with larger k. As
is expected, designs that are obtained using d+

7 and d+
9 are better (higher efficiency) than the

designs obtained using d7 and d9. Note that the A-efficiencies of designs reported in Table 2
could actually be higher than the reported lower bounds.

We have obtained optimality bounds for the test-control inference problem for DCEs.
From Table 2, we see that the designs obtained for k ≥ 2 are highly efficient. It is worth
observing that corresponding designs obtained in Chai et al. (2017) are less efficient as
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Table 2: A-optimal/efficient designs with distinct choice pairs (N ≥ 4 and k ≥ 2)

k N φ∗A Method k N φ∗A Method k N φ∗A Method
2 4 1 d4 4 14 0.9609 H2 ⊗ d7 8 36 0.9502 H4 ⊗ d9
2 5 1 d5 4 14 0.9734 H2 ⊗ d+

7 8 36 0.9805 H4 ⊗ d+
9

2 6 1 d6 4 16 0.987 H2 ⊗ d8 16 32 0.9338 H8 ⊗ d4
2 7 0.9609 d7 4 18 0.9526 H2 ⊗ d9 16 40 0.9953 H8 ⊗ d5
2 7 0.9734 d+

7 4 18 0.9829 H2 ⊗ d+
9 16 48 0.9778 H8 ⊗ d6

2 8 1 d8 8 16 0.9351 H4 ⊗ d4 16 56 0.9609 H8 ⊗ d7
2 9 0.9545 d9 8 20 0.9973 H4 ⊗ d5 16 56 0.9734 H8 ⊗ d+

7
2 9 0.9848 d+

9 8 24 0.9778 H4 ⊗ d6 16 64 0.9849 H8 ⊗ d8
4 8 0.9474 H2 ⊗ d4 8 28 0.9609 H4 ⊗ d7 16 72 0.9501 H8 ⊗ d9
4 10 1 H2 ⊗ d5 8 28 0.9734 H4 ⊗ d+

7 16 72 0.9803 H8 ⊗ d+
9

4 12 0.9778 H2 ⊗ d6 8 32 0.9856 H4 ⊗ d8

compared to the designs reported in Table 2 under the current test-control inference problem.
For example, the design for k = 2, N = 4 reported in Chai et al. (2017) (given below for
convenience) is shown to be both A- and D-optimal under the traditional inference problem
of pairwise comparisons, but it is only 83% efficient under the current test-control inference
problem.

Design for k = 4 in Chai et al. (2017) is


20, 01
21, 10
12, 00
02, 11

. Note that this design has

with a = b = 1, whereas the optimal design for test-control inference problem should have
a∗ = b∗ = 2 from Table 1.
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