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Abstract
In this article, we propose a shifted version of widely-used Lindley distribution. Some

statistical properties such as stochastic ordering, moment generating function, reliability
characteristic etc. are studied for this new distribution. For estimating unknown param-
eters, two types of estimation method viz. method of moments and maximum likelihood
method are explored. A simulation study for several choices of parameters is executed. Fi-
nally, a real data application illustrates the performance of our proposed distribution.
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1. Introduction

Lifetime distribution tries to capture, mathematically, the length of the life of a system
or a device. These distributions have relevance in the fields like environmental sciences,
medicine, engineering etc. To analyze lifetime data, gamma, Weibull, Rayleigh etc., distri-
butions are widely used in statistical literature. Chief advantage of these distributions is
that they only have more general mathematical closed form compared to the exponential
distribution with one additional parameter. Some applied areas such as finance, lifetime
analysis and insurance sometimes demand the extended forms of these distributions because
there still remain many important problems involving real data in these areas, which do
not fit to any of the existent classical statistical models. As a consequence, several classes
of generalized distributions have been formed by extending well-known continuous distribu-
tions. These generalized distributions entend more flexibility by adding new parameters to
the baseline model.

Since last decade, Lindley distribution, proposed by Lindley (1958), has been abruptly
acknowledged in different setup by many authors. Pretty recently, in the context of Bayesian
statistics as a counter example of fiducial statistics, the Lindley distribution has bagged
considerable attention because of its flexibility. Ghitany et al.(2008) discussed the various
statistical properties of Lindley distribution and showed its applicability over the exponen-
tial distribution. They established that in reliability analysis Lindley distribution performs
better than exponential model. One of the main reasons to consider the Lindley distribution
over the exponential distribution is its time dependent/increasing hazard rate.
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A random variable X is said to have Lindley distribution with parameter θ if its prob-
ability density function (PDF) is defined as:

f(x; θ) = θ2

1 + θ
(1 + x)e−θx, x > 0, θ > 0 (1)

and corresponding (cumulative density function) (CDF) is given by

F (x; θ) = 1 − θ + 1 + θx

1 + θ
e−θx, x > 0, θ > 0 (2)

Of late a lot of research articles came out on the extension of Lindley distribution. The
motivation for all these extension stems on the flexibility of the distribution to accommo-
date more complex data. Some of the advances in the literature of Lindley distribution are
given by Ghitanyet al. (2011) who has introduced a two-parameter weighted Lindley dis-
tribution. Generalized Poisson Lindley distribution has been proposed by Mahmoudi et al.
(2010). Bakouch et al. (2012) came up with extended Lindley (EL) distribution, Adamidis
et al. (1998) introduced exponential geometric (EG) distribution. Shanker et al. (2013)
introduced two-parameter Lindley distribution. Following a footstep Ghitany (2013) pro-
posed inferential problems stemmed from power Lindley. Zakerzadeh et al. (2012) idealized
a new two parameter lifetime distribution: model and properties. Hassan (2014) introduced
convolution of Lindley distribution. Ghitany et al. (2015) worked on the estimation of the
reliability of a stress-strength system from power Lindley distribution. Elbatal et al.(2013)
proposed a new generalized Lindley distribution. However all these extensions were based
on introducing more parameters in the constant part of the base Lindley.

The paper is organized as follows: Section 2 introduces a shifted Lindley distribution
and presents its basic properties including the behaviour of the density and some results
on stochastic orderings, moments, reliability characteristics. Distribution of the sum of iid
random variables has also been discussed. In Section 3, estimation process of parameters is
demonstrated at length. Monte Carlo simulation study is carried out in Section 4 followed
by a real data analysis in Section 5. This paper concludes with some discussions in Section
6.

2. The Shifted Lindley distribution

The extension, proposed in this article, is completely different. We define.

f(x; θ, µ) = θ2

1 + θ(1 + µ)(1 + x)e−θ(x−µ), x > µ > 0 (3)

as a Shifted Lindley distribution with parameters (θ, µ). It will be denoted by SL(θ, µ). The
CDF of a Shifted Lindley distribution with parameters (θ, µ) is given by

F (x; θ, µ) = 1 − 1 + θ(1 + x)
1 + θ(1 + µ)e−θ(x−µ), x > µ > 0 (4)

Note that if we put µ = 0 in equations (3) and in (4), these equations become the PDF and
CDF, respectively, of a Lindley distribution with a single parameter θ.
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The shape of shifted Lindley distribution depends on its parameters. Figure 1 shows
the pdf and cfd of shifted Lindley distribution for some choices of µ and θ. This figure reveals
that for smaller θ shifted Lindley pdf exhibits right skewed while for larger θ it looks as an
inverted J, more specifically tapering to a standard exponential curve.

Figure 1: The PDF’s of various Shifted Lindley distributions for different values
of parameters

2.1. Stochastic orders

One of the main objectives of statistics is the comparison of random quantities. These
comparisons are mainly based on the comparison of some measures associated to these ran-
dom quantities. Stochastic ordering of positive continuous random variables is an important
tool for judging such comparative behavior. Suppose Xi is distributed as SL(µi, θi), i = 1, 2.
Let Fi denote the cumulative distribution of Xi and fi denote the probability density function
of Xi. A random variable X1 is said to be smaller than a random variable X2 in the

• Stochastic order (X1 ≤st X2) if F1(x) ≥ F2(x) for all x.

• Hazard rate order (X1 ≤hr X2) if h1(x) ≥ h2(x) for all x.

• Likelihood ratio order (X1 ≤Lr X2) if f1(x)
f2(x) decreases in x.

In order to establish stochastic ordering of distributions we refer the following result from
Shaked et al. (1994).

X1 ≤LR X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

Taking a cue from this above-mentioned result, a pair of theorems are proposed regarding
the stochastic ordering pattern of SL(θ, µ) for different choices of (θ, µ).
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Figure 2: The CDF’s of various Shifted Lindley distributions for different values
of parameters

Theorem 1: Let X1 ∼ SL(θ1, µ1) and X2 ∼ SL(θ2, µ2). If µ1 = µ2 and θ2 < θ1, then
X1 ≤Lr X2 and hence X1 ≤hr X2 and X1 ≤st X2.

Proof:
Assume µ1 = µ2. Then δ

δx
lnf1(x)

f2(x) = θ2 − θ1. So δ
δx

lnf1(x)
f2(x) < 0 if θ2 < θ1 implying

f1(x)
f2(x) ↓ x.
This means that X1 ≤Lr X2 and hence X1 ≤hr X2 and X1 ≤st X2.

Theorem 2: Let X1 ∼ SL(θ1, µ1) and X2 ∼ SL(θ2, µ2). If θ1 = θ2 = θ > 0 and µ1 > µ2;
then X1 ≥st X2.

Proof:
The ratio of two pdf’s does not involve x. So the technique adopted in checking of

likelihood ratio ordering fails. Therefore, we would head to investigate via ratio of two
corresponding distribution functions and hence directly infering on stochastic ordering of
the distribution.

F1(x)
F2(x) =

1 − 1+θ(1+x)
1+θ(1+µ1)e

−θ(x−µ1)

1 − 1+θ(1+x)
1+θ(1+µ2)e

−θ(x−µ2)
=

1 −
[
1 + θ(x−µ1)

1+θ(1+µ1)

]
e−θ(x−µ1)

1 −
[
1 + θ(x−µ2)

1+θ(1+µ2)

]
e−θ(x−µ2)

.

Assume µ1 > µ2. Then 1 + θ(1 + µ1) > 1 + θ(1 + µ2) and θ(x − µ1) < θ(x − µ2)

θ(x − µ1)
1 + θ(1 + µ1)

<
θ(x − µ2)

1 + θ(1 + µ2)

1 + θ(x − µ1)
1 + θ(1 + µ1)

< 1 + θ(x − µ2)
1 + θ(1 + µ2)

. (5)
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Also
−e−θ(x−µ1) < −e−θ(x−µ2) (6)

Combining (5) and (6) we have

1 −
[
1 + θ(x − µ1)

1 + θ(1 + µ2)

]
e−(x−µ1) < 1 −

[
1 + θ(x − µ2)

1 + θ(1 + µ2)

]
e−(x−µ2)

which results F1 < F2 upon further simplification. Consequently X1 ≥st X2.
Therefore if µ1 > µ2, X1 ≥st X2 and vice-versa.

2.2. Moments

In applications, moments are necessary and very important. Through moments, it is
possible to study many of the interesting characteristics and features of a distribution. The
mean of the distribution can be obtained as:

µ′
1 = E(X) = θ2

1 + θ(1 + µ)

� ∞

µ

x(1 + x)e−θ(x−µ)dx

= µ + 2
θ

− 1 + µ

1 + θ(1 + µ) (7)

To find all higher order moment we will use the following result:

Theorem 3: For k ≥ 0, the recurrence relation for the higher order moments are

µ′
k+1 = µ′

1µ
′
k − d

dθ
µ′

1 (8)

Proof:

d

dθ
µ′

k =
� ∞

µ

xk(1 + x)
[

θ2

1 + θ(1 + µ)(−1)(x − µ)e−θ(x−µ)

+ e−θ(x−µ)
[ 2θ

1 + θ(1 + µ) − θ2(1 + µ)
(1 + θ(1 + µ))2

] ]

= − θ2

1 + θ(1 + µ)

� ∞

µ

xk+1(1 + x) e−θ(x−µ) dx

+ µ
θ2

1 + θ(1 + µ)

� ∞

µ

xk(1 + x) e−θ(x−µ) dx

+
[ 2θ

1 + θ(1 + µ) − θ2(1 + µ)
(1 + θ(1 + µ))2

] � ∞

µ

xk(1 + x) e−θ(x−µ) dx

= −µ′
k+1 + µ′

1µ
′
k

i.e.

µ′
k+1 = µ′

1µ
′
k − d

dθ
µ′

k
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Hence the proof.

Putting k = 1 we get,

µ′
2 =

(
µ + 2

θ
− 1 + µ

1 + θ(1 + µ)

)
µ′

1 − d

dθ
µ′

1

=
(

µ + 2
θ

− 1 + µ

1 + θ(1 + µ)

)2
−
[

− 2
θ2 + (1 + µ)2

(1 + θ(1 + µ))2

]

and hence

µ2 = µ′
2 − µ′2

1

= 2
θ2 − (1 + µ)2

(1 + θ(1 + µ))2

Putting µ = 0 will imply

µ2 = 2
θ2 − 1

(1 + θ)2

which is the variance of a Lindley distribution with parameter θ. Similarly it can be shown
that, for a SL(µ, θ) distribution

µ3 = 4
θ3 − 2(1 + µ)3

(1 + θ(1 + µ))3

and

µ4 = 24
θ4 − 3(1 + µ)4

(1 + θ(1 + µ))4 − 12(1 + µ)2

θ2(1 + θ(1 + µ))2

In reference to the moments of shifted Lindley distribution, next we present heat plot
(Figure 3) which unravels the intertwining effect of parameters µ and θ on mean, variance,
skewness and kurtosis. Heat plot (or heatmap) is a data visualization technique that shows
impact of variables in terms of intensity of color in two dimensions. The variation in color
exhibits obvious visual clues about the relationship between two categories. From the matrix
layout with color and shading of heat plot furnished here, it comes up that the mean and
variance drop as both the parameters increase while the skewness and kurtosis shoot up with
the increase of both parameters.
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Figure 3: The mean, variance, skewness and kurtosis (from left to right) of the
shifted Lindley distributions with respect to the parameters µ and θ.

2.3. Moment generating function (MGF)

In this subsection, we derived the MGF of SL(µ, θ) distribution.

Theorem 4: If X ∼ SL(µ, θ), then the moment generating function MX(t) has the following
form:

MX(t) = θ2 [1 + (θ − t)(1 + µ)]
(θ − t)2[1 + θ(1 + µ)]e

tµ, |t| < θ (9)
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Proof:

MX(t) = E(etX)

= θ2

1 + θ(1 + µ)

� ∞

µ

etX(1 + x)e−θ(x−µ)dx

= θ2

1 + θ(1 + µ)

� ∞

µ

(1 + x)e−θ(x−µ)+txdx

= θ2

1 + θ(1 + µ)

� ∞

µ

(1 + x)e−(θ−t)(x−µ)etµdx

= θ2

1 + θ(1 + µ)etµ

� ∞

µ

(1 + x)e−(θ−t)(x−µ)dx

= θ2

1 + θ(1 + µ)etµ 1 + (θ − t)(1 + µ)
(θ − t)2

= θ2 [1 + (θ − t)(1 + µ)]
(θ − t)2[1 + θ(1 + µ)]e

tµ

So, when µ = 0

MX(t) = θ2[1 + (θ − t)]
(θ − t)2(1 + θ)

= 1
1 + θ

[
θ2

(θ − t)2 + θ2

(θ − t)

]
which coincides the MGF of a Lindley distribution with parameter θ.

In the same way the characteristic function of the shifted Lindley distribution becomes
as follows.

ϕX(t) = MX(it) = θ2

1 + θ(1 + µ)

[ 1
(θ − it)2 + (1 + µ)

(θ − it)

]
eitµ (10)

where i =
√

−1 is the unit imaginary number.

2.4. Quantile function

Let X denotes a random variable with the probability distribution function Eq. (4).
The quantile function , say Q(p), defined by F (Q(p)) = p is the root of the equation

1 + θ(1 + Q(p))
1 + θ(1 + µ) e−θ(Q(p)−µ) = 1 − p (11)

for 0 < p < 1. On further simplification of the equation (11),

1 + θ(1 + Q(p))e−θ(Q(p)−µ) = [1 + θ(1 + µ)](1 − p)

(1 + Q(p))e−θQ(p) =
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ
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Substituting Z(p) = 1 + Q(p) in the above

Z(p)e−θZ(p)eθ =
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

(−θZ(p))e−θZ(p) = −θe−θ
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

So, the solution for Z(p) is

Z(p) = −1
θ

W
(

− θe−θ
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

)

for 0 < p < 1, where W (.) is the Lambert W function (see Corless et al. (1996)). Inverting
the above equation in Z(p)

Q(p) = −1
θ

W
(

[1 − {1 + θ(1 + µ)}(1 − p)] e−θ(µ+1)
)

− 1,

for 0 < p < 1.

2.5. Distribution of the sum of iid RVs

Theorem 5: If X1, X2, · · · , Xn are IID RVs from SL(µ, θ), then the pdf of Z = X1 + X2 +
· · · + Xn is

g(z; n, θ, µ) =
n∑

k=0
pk,n(θ, µ)fSG(z; 2n − k, µ, θ) (12)

where pk,n(θ, µ) =
(

n
k

)
(θ(1+µ))k

(1+θ(1+µ))n and fSG(z; k, µ, θ) = θ[θ(x−µ)]k−1

Γk
e−θ(x−µ) , the pdf of a shifted

gamma (SG) distribution (or Pearson type III) with parameters (k, µ, θ).

Proof: Recall that, if X1 ∼ SL(µ, θ) then the pdf of X1 is

fX1(x; θ, µ) = θ2

1 + θ(1 + µ)(1 + x)e−θ(x−µ) = (1 + µ)θ
1 + θ(1 + µ)fSG(x;1,θ,µ) + 1

1 + θ(1 + µ)fSG(x;2,θ,µ)

Next let us have the following lemma to expedite the proof.

Lemma 6: If X ∼ SG(k, µ, θ) then moment generating function of X is given by

MX(t) = (1 − t/θ)−k etµ.
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Proof:

MX(t) = θk

Γk

� ∞

µ

(x − µ)k−1 etx−θx+θµdx

= θk

Γk

� ∞

0
zk−1 e−θz+tz+tµdz put(x − µ) = z

= θk

Γk
etµ

� ∞

0
zk−1 e−(θ−t)zdz

= θk

Γk
etµ Γk

(θ − t)k
= θk

(θ − t)k
etµ

= 1
(1 − t/θ)k

etµ = (1 − t/θ)−k etµ

The moment generating function (MGF) for X1 for |t| < θ is

MX1(t) = E(etX1) =
(

θ(1 + µ)
1 + θ(1 + µ)(1 − t/θ)−1 + 1

1 + θ(1 + µ)(1 − t/θ)−2
)

e(tµ)

Hence the MGF of Z for |t| < θ is

Mz(t) = E(etZ) =
(

θ(1 + µ)
1 + θ(1 + µ)(1 − t/θ)−1 + 1

1 + θ(1 + µ)(1 − t/θ)−2
)n

e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n[
θ(1 + µ)(1 − t/θ)−1 + (1 − t/θ)−2

]n
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n

(1 − t/θ)−2n
[
θ(1 + µ)(1 − t/θ) + 1

]n
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n

(1 − t/θ)−2n
n∑

k=0

(
n

k

)[
θ(1 + µ)(1 − t/θ)

]k
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n n∑
k=0

(
n

k

)
(θ(1 + µ))k(1 − t/θ)−(2n−k)e(tnµ)

Using the Lemma stated above, Theorem 5 follows.

2.6. Reliability characteristics of shifted Lindley distribution

In present section, we consider shifted Lindley distribution as a lifetime model and
study different reliability characteristics. The reliability function of the SL(µ, θ) distribution
is given by:

R(t) = P (X > t) = 1 − F (t) (13)

The mean time to system failure (MTSF) is same as: We know that the hazard function
h(x) can be computed as

h(t) = f(t; θ, µ)
1 − F (t; θ, µ)



2022] ESTIMATION IN SHIFTED LINDLEY DISTRIBUTION 257

which implies

h(t) = θ2(1 + t) (14)

The cumulative hazard function H(x) is defined as

H(x) = − log(1 − F (x; θ, µ)) = − log
(θ + 1 + θx

1 + θ
e−θx

)
= − log(R(x))

and the failure rate average (fra) is defined by FRA(x) = H(x)/x, where x > µ. The
conditional survival of t is:

R(x|t) = R(x + t)
R(t) ; θ, R(.) > 0; t, x > µ, µ > 0

2.7. Rényi entropy

Entropy is used to measure the randomness of systems, and it is widely used in areas
like physics, molecular imaging of tumors and sparse kernel density estimation. If X has the
probability distribution function f(.), Rényi entropy is defined by

Iδ(x) = 1
1 − δ

log
( � ∞

0
f δ(x) dx

)
, δ > 0, δ ̸= 1.

Using equation (3), it is observed that

f δ(x) = θ2δ

[1 + θ(1 + µ)]δ (1 + x)δe−θδ(x−µ)

= θ2δ

[1 + θ(1 + µ)]δ
δ∑

i=0

(
δ

i

)
xie−θδ(x−µ)

After some algebra, the Rényi entropy of X is reduces to

Iδ(x) = 1
1 − δ

log(
δ∑

i=0
ei)

where, ei = 1
(θδ)i+1 Γ(i + 1, θδµ), Γ(.) is the incomplete Gamma function.

3. Estimation

Here, we consider two estimation methods: the methods of moments and maximum
likelihood estimation. We provide expressions for the associated Fisher information matrix.
Suppose X1, X2, · · · , Xn is a random sample from equation (3). For the moments estimation,
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let m1 = (1/n)∑n
i=1 Xi and m2 = (1/n)∑n

i=1(Xi − m1)2. By equating the theoretical
moments of equation (3) with the sample moments, the following equations are obtained.

m1 = µ + 2
θ

− 1 + µ

1 + θ(1 + µ) (15)

m2 = 2
θ2 − (1 + µ)2

[1 + θ(1 + µ)]2 (16)

Solving (15), (16) we can estimate the parameters µ and θ.

3.1. Maximum likelihood (ML) estimation of parameters

The likelihood function for a random sample X1, X2, ...., Xn which is taken from SL(µ, θ)
distribution is:

L(X, µ, θ) = θ2n

(1 + θ(1 + µ))n

[ n∏
i=1

(1 + xi)
]
e−θ

∑n

i=1(xi−µ) (17)

It is to be noted that mle of µ is

µ̂mle = min
i

Xi = X(1) (18)

Differentiating the log-likelihood w.r.t. θ, we get the following equation:

2n

θ
− n(1 + µ̂mle)

1 + θ(1 + µ̂mle)
−

n∑
i=1

(Xi − µ̂mle) = 0 (19)

which needs to be solved using some iterative procedure.

4. Simulation Study

It may be noted that it is not possible to generate samples from shifted Lindley dis-
tribution using the inversion of the CDF. It has already been established that an SL(µ, θ)
distribution can be viewed as a mixture of two shifted gamma distributions. This property
is devised to generate random sample from simulation study. In R, function rgamma3 of
package FAdist generates samples from a shifted gamma distribution. Using the aforesaid
function a convenient sampling scheme for data generation can be framed as follows.

To estimate the parameters µ and θ, we have generated 10, 000 samples from the shifted
Lindley distribution. We have considered four different combinations of the parameter to
study their influence. Then using the sample moments and equations (15) and (16), we
obtain the moment estimates of µ and θ. We have replicated these processes 50, 100 and
500 times and computed standard error of corresponding estimates. The ML estimates are
obtained by using the equations (18) and (19) and respective standard errors have been
computed using the above techniques.
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Algorithm
1. Select values of θ and µ

2. Calculate weight w = (1+µ)θ
1+θ(1+µ)

3. Generate U from U(0, 1)
4. If U < w, generate a sample from fSG(x;1,θ,µ) else from fSG(x;2,θ,µ)
using rgamma3(1, shape, scale, thres)

The simulation study is carried out with N = 10, 000 sample size for (µ, θ) = (0.5, 0.3),
(1.5, 1.1), (0.5, 1.1), (1.5, 0.3) and replication n = (50, 100, 500). The following measures are
calculated to asses the simulation results:
θ̂ and µ̂, estimates obtained through both of the case along with the corresponding standard
error of estimates (SE), Biasµ =

n∑
i=1

µ̂j−µ

n
, magnitude of relative error = MREµ =

n∑
i=1

µ̂j/µ

n
,

mean square error MSEµ =
n∑

i=1

(µ̂j−µ)2

n
, Biasθ =

n∑
i=1

θ̂j−θ

n
, MREθ =

n∑
i=1

θ̂j/θ

n
, MSEθ =

n∑
i=1

(θ̂j−θ)2

n
. Results against the parameter θ are shown in Table 3 and that of parameter µ in

Table 4. Both of the tables are placed in Appendix at the end of this article.
From Table 3 and Table 4, it may be observed that moment estimators for both are also
performing well in terms of small biases. As expected the MRE values are found close to 1,
whereas the MSE values are tending close to 0. This study also reveals that moment and
ML estimators are equally efficient.

5. Real Data Analysis

The proposed distribution is fitted for a data set available in Duffy et al.(1993). The
data consists of measurements on strength of the sintered silicon nitride after four-point
bend system is applied. On four point bend specimen, the support span of test fixture was
40.373 mm and the inner load span of 19.622 mm. All specimens are subjected to pure
four-point bending. Number of complete specimens in the data set is found to be 27. We
apply Lindley and shifted Lindley in order to fit this data. Subject to the fitting of shifted
Lindley distribution on the data we figure out estimates of the parameters θ and µ by both
moment and maximum likelihood method. Estimates alongwith standard errors (SE) are
given in Table 1. For the shifted Lindley distribution,it can be seen that both the methods
are producing different estimates.

Table 1: Parameter estimates for the four point bend data

Distribution µ̂ML µ̂MOM θ̂ML θ̂MOM

(SE) (SE) (SE) (SE)
Lindley 0 0 0.0027 0.0027

(-) (-) (0.0001) (0.0001)
shifted Lindley 613.9 654.873 0.0096 0.014

(0.0006) (0.0531) (0.0001) (0.0001)

For further comparison between two distributions fitted to the data, we also report some
model selection criteria— Akaike information criterion (AIC), Bayesian information Crite-
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Table 2: Model selection criteria for the four point bend data

Distribution KS(p-value) AIC BIC CAIC HQIC

Lindley 2.4(0.823) 391.7628 393.0586 391.9109 392.1481
Shifted Lindley 0.632(0.001) 315.8982 318.49 316.36 316.669

rion (BIC), Corrected AIC (CAIC) and Hannan and Quinn information criterion (HQIC).
The definitions used for these selection tools are as: AIC= −2ln L(θ)+2k, CAIC= −2ln L(θ)+
2k n

n−k−1 ; BIC= −2ln L(θ) + k ln(n); and HQIC= −2ln L(θ) + 2k ln{ln(n)}, where lnL(θ)
denotes log likelihood, n being the number of observations and k being the number of param-
eters of the distribution. These are reported in Table 2. Considering all the model selection
criteria, reported in Table 2, we found that shifted Lindley fits the data well compared to
Lindley distribution. The Kalmogorov-Smirnoff (KS) statistic for shifted Lindley is found
to be 0.632 with a p-value of 0.001 confirming the claim of better fit.

6. Conclusion

In this study we have proposed a new distribution called shifted Lindley distribution.
Some mathematical properties along with estimation issues are addressed. The hazard rate
function of shifted Lindley distribution shows that the subject distribution can be used to
model reliability data as well. We derived the moment and maximum likelihood estimates
of the parameters along with the biases, mean square error and mean relative errors. A
real data application of the shifted Lindley distribution projects that it could provide a
meaningful fit than a set of usual statistical distributions, while being considered specially
in life time data analysis. A further extension of shifted Lindley might be thought in the
context of power Lindley distribution, thereby a comparative study on relative quality of
statistical models for a given set of data can be delved into.
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ANNEXURE

Table 3: Estimate, SE, Bias, MSE and MRE of (θ) based on the Moment and
ML estimation methods
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Table 4: Estimate, SE, Bias, MSE and MRE of (µ) based on the Moment and
ML estimation methods
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