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Abstract
Let {Xj : j ≥ −m + 1} be a homogeneous Markov chain of order m taking values

in {0, 1}. For j = 0, −1, . . . , −l + 1, we will set Rj = 0 and we define Rj = ∏j−l
i=j−1(1 −

Ri)
∏j+k−1

i=j Xi. Now Rj = 1 implies that an l-look-back run of length k has occurred starting
at j. Here Rj is defined inductively as a run of 1’s starting at j, provided that no l-look-back
run of length k occurs, starting at time j − 1, j − 2, . . . , j − l respectively. We study the
conditional distribution of the number of overlapping runs of length k1 until the stopping
time i.e. the rth occurrence of the l-look-back run of length k where k1 ≤ k and obtain
it’s probability generating function. The number of overlapping runs of length k1 until the
stopping time has been expressed as the sum of r independent random variables with the
first random variable having a slightly different distribution. We introduce a new discrete
distribution, namely generalized Binomial type distribution, which plays a central role in our
study. The conditional distributions are identified using this and other known distributions,
such as extended negative binomial distribution of order k. Our results also generalize the
known results for the number of successes until a stopping time.

Key words: Overlapping runs; Stopping time; Markov chain; Strong Markov property; Prob-
ability generating functions.

AMS Subject Classifications: 60C05, 60E05, 60F05

1. Introduction

Since Feller (1968) introduced runs of successes as an example of a renewal event, the
theory of distributions of runs has been explored widely by the researchers. The application
of powerful techniques such as Markov embedding technique (see Fu and Koutras (1994)),
method of conditional p.g.f.s (see Ebneshahrashoob and Sobel (1990)) etc. has paved way to
develop and study the distributions of various run statistics and their properties extensively.

Two schemes of counting runs, namely non-overlapping counting and the overlapping
counting, have been extensively studied in the literature. As the name suggests, in the
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non-overlapping counting, runs are not allowed to overlap while in the overlapping counting
scheme the runs may overlap as much as possible. Philippou and Makri (1986) studied the
distribution of number of non-overlapping runs of successes of length k for i.i.d. Bernoulli
trials and introduced the Binomial distribution of order k. Ling (1988) derived the distri-
bution of the number of overlapping runs of successes of length k for a sequence of i.i.d.
Bernoulli trials. This distribution is referred as the Type II Binomial distribution of order k.
Aki and Hirano (1994) obtained the marginal distributions of number of failures, successes
and success-runs of length less than k until the first occurrence of consecutive k successes
when the underlying random variables were either i.i.d. or Markov dependent or binary
sequence of order k. Aki and Hirano (1995) derived the joint distributions of number of
failures, successes and runs of success under the same set up. Under different types of count-
ing schemes like runs of length k1, non overlapping runs of length k1, overlapping runs of
length k1 etc., Hirano et. al. (1997) gave interesting results on the distributions of number
of success runs of length l until the first occurrence of the success run of length k for an
mth order homogeneous Markov chain. The joint distributions of the waiting time and the
number of outcomes such as failures, successes and success runs of length less than k under
the set up of an mth order homogeneous Markov chain was developed by Uchida (1998) for
various enumeration schemes of runs. Chadjiconstantindis and Koutras (2001) also obtained
the distribution of failures and successes in a waiting time problem.

Another scheme of µ-overlapping counting was introduced by Aki and Hirano (2000)
where an overlap of at most µ successes was allowed between two consecutive runs of length
k where 0 ≤ µ ≤ k−1. They also introduced the generalized Binomial distribution of order k
and investigated some of it’s properties. It is easy to observe that when µ = 0, the counting
scheme matches with the non-overlapping counting while µ = k − 1 yields the overlapping
counting scheme. Han and Aki (2000) have extended this counting scheme for the negative
values of µ in which there should be at least |µ| trials between any two consecutive success
runs of length k. They have derived recurrence relations for the probability generating
function (pgf) of the number of µ-overlapping success runs of length k. Inoue and Aki (2003)
derived exact formulae for the pgf of the above-mentioned random variable in the case of two-
state Markov dependent trials. They also derived explicitly, in the same case, the pgf of the
waiting time until the rth occurrence of the µ-overlapping success run of length k. Makri and
Philippou (2005) obtained the exact formulas for the probability distribution function of the
number of µ-overlapping success runs of length k in n trials. Makri et. al. (2007) considered
the concept of µ-overlapping success runs in the Polya-Eggenberger sampling scheme and
obtained the distribution of the number of drawings according to the Polya-Eggenberger
sampling scheme until the rth occurrence of the µ-overlapping success run of length k. They
have also introduced Polya, inverse Polya, and circular Polya distributions of order k for
µ-overlapping success runs of length k.

Anuradha (2023) introduced the l-look-back counting scheme for runs of successes. In
this scheme, if a run has been counted starting at time i, i.e., {Xi = Xi+1 = · · · = Xi+k−1 =
1}, then no runs can be counted till the time point i + l and the next counting of runs can
start only from the time point i + l + 1, where Xi = 1 represents a success at time i and
l is a non-negative integer. This process is repeated every time a run is counted. In other
words, if a run is counted starting at time i, then there are k-consecutive successes starting
from the time point i and no runs of length k has been counted starting at time points
i − 1, i − 2, . . . , i − l. The mathematical definition has been provided in the section 3.
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The look-back counting scheme generalizes the concept of run counting and encom-
passes both the definitions of overlapping counting as well as the non-overlapping counting
thereby giving rise to new objects for further study. Indeed, if l = 0, this matches exactly
with the counting of overlapping runs of length k, and if l = k − 1, this counting scheme
results in the counting of non-overlapping runs of length k. It should further be noted that
µ-overlapping scheme, for positive values of µ, can also be identified as l-look-back counting
where µ = k − l − 1. However, for negative values of µ, the definitions do not match with
the corresponding value of l = k − µ − 1. We illustrate this difference with the same example
as cited in Han and Aki (2000). Consider the following sequence of successes and failures:

1111011000111111110000111.

In this sequence, for k = 3 and l = 3, we have four 3-look-back runs of length 3 starting at
trials 1, 11, 15 and 23, while there are only three (−1)-overlapping runs of length 3, starting
at 1, 11 and 15. Therefore l-look-back counting scheme is an entirely new scheme of counting
which has not yet been studied in detail.

Under the set up of mth order homogeneous Markov chain, Anuradha (2023) proved
that the waiting time distribution of the nth occurrence of the l-look-back run of length k
converges to an extended Poisson distribution when the system exhibits strong propensity
towards success. Further central limit theorem was established for the number of l-look-back
runs of length k till the nth trial.

Aki and Hirano (2000) established that the number of (l − 1)-overlapping runs of
length k (l < k) until the nth overlapping occurrence of success run of length l follows a
generalized Binomial distribution of order (k − l) for the i.i.d. as well as the mth order
homogeneous Markov chain. In this paper, we pose a different problem from the counting
perspective. We fix two positive integers k1 ≤ k and another integer l ≥ 0 and count the
number of overlapping runs of length k1 until the nth occurrence of l-look-back run of length
k. The stopping time originates from the l-look-back counting scheme which encompasses
non-overlapping, overlapping as well as µ-overlapping (for positive µ) counting schemes. We
should also note that there is no restriction on l, which may equal or exceed k. Our focus is
on counting of runs of smaller lengths (k1) until a stopping rule which involves occurrences
of runs of larger length (k). We obtain a decomposition of the number of runs until the
stopping time into a sum of independent random variables. This, in turn, brings out a new
discrete distribution of order k and also establishes new connections with the other known
discrete distributions.

Koutras (1997) defined a Markov Negative Binomial distribution of order k where he
studied the waiting time distributions associated with the runs of length k for a two-state
Markov chain. In this paper, we introduce a new distribution which is different from the
above. We denote it by generalized Binomial type distribution. The probability generating
function of this distribution has been derived, which also shows how it generalizes the classical
Binomial distribution and the classical negative Binomial distribution (refer to Definition 1).
In our study, the generalized Binomial type distribution will play a central role, along with
the extended negative binomial distribution of order k with parameters n and (p1, p2, . . . , pk)
which was introduced by Aki (1985).

Our results show that the number of overlapping runs of length k1 up to the rth

occurrence of the l-look-back run of length k (k1 ≤ k) can be split into a sum of r independent
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random variables. We further establish that except the first one, all the other random
variables are identically distributed. The result has a number of interesting corollaries. For
example, the results of Aki and Hirano (1994), on the number of successes until the first
occurrence of the k consecutive successes for the i.i.d. as well as the Markov chain set-up
can be derived as a corollary from our result (see Corollary 3). We also show that under
the assumption of strong tendency towards failure after k consecutive successes, the number
of overlapping success runs of length k1 can be approximated by Poisson random variable
translated by r (see Corollary 2).

We employ a new technique to prove our results. First we convert the mth order
Markov chain to a first order Markov chain which takes values in a finite set and recast our
problem into this new set-up, i.e., define the success / failure in the original chain in terms
of the new chain and convert all relevant definitions in terms of the new chain. Thereafter,
the main tool that we employ is the method of generating functions. We use the strong
Markov property on this first order Markov chain to derive a recurrence relations between
the probabilities. This, in turn, yields recurrence relations between the probability generating
functions (pgfs). Finally we consider the generating function of the pgfs. Using the recurrence
relations between the pgfs we obtain a linear equation involving the generating function of
the pgfs which is used to establish its expression. Expanding this generating function of the
pgfs, we obtain the expression for the individual pgf.

In the next section, we introduce the new discrete distribution, namely generalized
Binomial type distribution and provide the probability generating function of the distribution.
In section 3, we give all the definitions and state the main result and the corollaries. Section
4 is devoted to setting up the new Markov chain and recasting of the problem in terms of
the new Markov chain. In Section 5, the proof of the main theorem has been established. In
the final section, we provide the conclusion of the paper.

2. A new discrete distribution

In this section we introduce a discrete distribution which will be important for our
work.

Definition 1: We say that a random variable W follows a generalized Binomial type distri-
bution with parameters 0 < p < 1, n ≥ 0 and t ≥ 1 (denoted by GB(p, n, t)) if

W =
n∑

i=1
Wi

where each {Wi : i = 1, . . . , n} is i.i.d. geometric random variable truncated at t with
parameter p. In case n = 0, the sum should be understood as 0. In other words, for
i = 1, . . . , n,

P (Wi = u) =


qpu if 0 ≤ u < t

pt if u = t

0 otherwise.

If n = 1, we will refer a GB(p, n, t) random variable as a generalized Bernoulli type
and we will denote it by a GBer(p, t).



2023] GENERALIZED RUNS 263

The probability generating function χ(p,n,t) of the GB(p, n, t) is given by

χ(p,n,t)(s) =
(
q + qps + · · · + qpt−1st−1 + ptst

)n
. (1)

Thus, the generating function of a GBer(p, t) is given by

χ(p,t)(s) =
(
q + qps + · · · + qpt−1st−1 + ptst

)
.

It should be noted that if t = 1, W follows the binomial distribution with parameters
n and p. In this sense, this can be thought of as a generalization of the binomial distribution.
Further, if n is fixed and t ↑ ∞, then W follows the usual negative binomial distribution
with parameters n and p. Also note that, if we set p = λ/n, then

χ(p,n,t)(s) =
[
1 − λ

n

(
1 − s

)
+ o

( 1
n

)]n

→ exp
(
−λ(1 − s)

)
(2)

as n → ∞. The limit is the probability generating function of a Poisson random variable
with parameter λ. Hence, when p and n are related in such a way as above, then GB(p, n, t)
converges to a Poisson random variable as n → ∞.

Another discrete distribution will be important for our results. Aki (1985) had defined
an extended negative binomial distribution of order t with parameters n and (p1, p2, . . . , pt)
and gave the probability generating function as

φ(s; n, (p1, p2, . . . , pt)) =
[

p1p2 . . . pts
t

1 − ∑t
j=1 p1p2 · · · pj−1qjsj

]n

. (3)

We will mostly consider the case when p1 = p2 = · · · = pt = p. Indeed, when t = 1,
this is the usual negative binomial distribution with parameters 0 < p < 1 and n ≥ 1. When
n = 1 and p1 = p2 = · · · = pt = p, we will call this distribution as extended geometric
distribution of order t with parameter p.

3. Definitions and statement of results

Let X−m+1, . . . , X0, X1, . . . be a sequence of stationary m-order {0, 1} valued Markov
chain. Assume that the states of X−m+1, . . . , X0 are known i.e., x0, x−1, . . . , x−m+1 are known
and we take the initial state as X0 = x0, X−1 = x−1, . . . , X−m+1 = x−m+1.

Define the set Si = {0, 1, . . . , 2i − 1} for any i ≥ 0. It is clear that Si and {0, 1}i

can be connected by the one-to-one and onto mapping x = (x0, x1, . . . , xi−1) −→ ∑i−1
j=0 2jxj.

Since {Xn : n ≥ −m+1} is the mth order Markov chain, we have the transition probabilities

px = P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) (4)

where x = ∑m−1
j=0 2jxj ∈ Sm, for any n ≥ 0. Therefore, we have qx = P(Xn+1 = 0|Xn =

x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) = 1 − px. We assume that 0 < px < 1 for all x ∈ Sm.
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Definition 2: (l-look-back run) (Anuradha (2023)) Fix two integers k ≥ 1 and l ≥ 0. We
set Ri(k, l) = 0 for i = 0, −1, . . . , −l + 1 and for any i ≥ 1, define inductively,

Ri(k, l) =
i−l∏

j=i−1
(1 − Rj(k, l))

i+k−1∏
j=i

Xj (5)

where the first product is to be taken as 1 when l = 0. If Ri(k, l) = 1, we say that a
l-look-back run of length k has been recorded which started at time i.

It should be noted that for a l-look-back run to start at the time point i, we need to
look back at the preceding l many time points, i.e., i − 1 to i − l, none of which can be the
starting point of a l-look-back run of length k.

Next we define the stopping times where the rth l-look-back run of length k is com-
pleted.

Definition 3: For r ≥ 1, the stopping time τr(k, l) be the (random) time point at which
the rth l-look-back run of length k is completed. In other words,

τr(k, l) = k − 1 + inf{n :
n∑

i=1
Ri(k, l) = r}. (6)

Note that rth l-look-back run of length k is completed at time point τr(k, l). Next we
define the overlapping runs of length k.

Definition 4: (Overlapping runs of length k) When k(≥ 1) consecutive successes occur,
we call it an overlapping run of length k.

We may represent this mathematically as follows:

R
(k)
i =

k∏
j=1

Xi+j−1.

Note here that R
(k)
i = 1 if and only if an overlapping run of length k starts at time point

i. Here a trial can contribute to more than one runs. Indeed, if k + 1 successes appear
consecutively, starting from time i, two overlapping runs will be counted with first one
starting at i and the next one starting at i + 1. Clearly all successes between time i + 1 to
i + k − 1 will contribute to two overlapping runs.

Let Nn(k) be the number of occurrences of overlapping runs of length k until time n.
In other words,

Nn(k) =
n−k+1∑

i=1
R

(k)
i .

In this paper, we study the number of overlapping runs of length k1 till the stopping time
τr(k, l) (see Definition (3)). Fix any constant k1 ≤ k. For each r ≥ 1, we define the random
variable

Nr(k1) := Nτr(k,l)(k1) =
τr(k,l)∑

i=1
R

(k1)
i (7)
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as the number of overlapping runs of length k1 until the stopping time τr(k, l).

Let us consider the following example to facilitate understanding: Consider the fol-
lowing sequence of 1’s and 0’s of length 25

1110111010110111111101011.

Let k = 3 and l = 1. Now using the definition we have R1(3, 1) = R5(3, 1) = R14(3, 1) =
R16(3, 1) = R18(3, 1) = 1, while for other values of i, Ri(3, 1) = 0. Thus, stopping times
become τ1(3, 1) = 3, τ2(3, 1) = 7, τ3(3, 1) = 16, τ4(3, 1) = 18 and τ5(3, 1) = 20. For k1 = 2,
the number of the overlapping runs of length 2 till the stopping times are given by N1(2) =
2, N2(2) = 4, N3(2) = 7 and N4(2) = 9 and N5(2) = 11.

Let us define the probability generating function of Nr(k1) as follows

ζr(s; k1) =
∞∑

n=0
P(Nr(k1) = n)sn =

∞∑
n=0

gr(n; k1)sn. (8)

Now we state our main result which we prove in Section 5.

Theorem 1: For any initial condition x ∈ Sm and k2 = k − k1 and k1 ≥ m, the probability
generating function of Nr(k1) is given by,

ζr(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

In the above and subsequently, we have used the convention that the sum is taken
to be 0 if the starting index of the sum is bigger than the ending index of the sum (which
happens in the above expression when we take k2 = 0).

Now the result of theorem 1 provides a powerful representation of Nr(k1) through the
extended geometric random variables and generalized Bernoulli type distribution.

Let us define the indicator function as follows:

I{u}(v) =
{

1 if u = v

0 otherwise.
(9)

Corollary 1: Suppose that {G
(E)
i : i = 1, . . . , r} and {B

(G)
i : i = 1, . . . , r} are independent

families of i.i.d. random variables where each G
(E)
i is having an extended geometric distribu-

tion of order k2 with parameter p2m−1 and each B
(G)
i is a generalized Bernoulli type random

variable GBer(p2m−1, l + 1). Then

Nr(k1) d=
(
1 + G

(E)
1

)
+

r∑
i=2

[
B

(G)
i +

(
1 + G

(E)
i

)(
1 − I{l+1}

(
B

(G)
i

))]
.
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Indeed, we have that the generating function of any G
(E)
i is given by the equation

(3). Also, the generating function of B
(G)
i +

(
1 + G

(E)
i

)(
1 − I{l+1}

(
B

(G)
i

))
is given by

∞∑
i=0

l+1∑
j=0

s
j+(1+i)

(
1−I{l+1}(j)

)
P(G(E)

i = i)P(B(G)
i = j)

=
∞∑

i=0

l∑
j=0

sj+(1+i)P(G(E)
i = i)P(B(G)

i = j) +
∞∑

i=0
sl+1P(G(E)

i = i)P(B(G)
i = l + 1)

= s
∞∑

i=0
siP(G(E)

i = i)
l∑

j=0
sjP(B(G)

i = j) + sl+1
(
p2m−1

)l+1 ∞∑
i=0

P(G(E)
i = i)

=
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
+

(
p2m−1s

)l+1
.

Thus using the independence of the random variables, we now conclude that the generating
functions of the random variables of both sides of the corollary 1 are same. This proves the
corollary.

If r = 1, the distribution of N1(k1) is actually an extended geometric distribution of
order k2 and parameter p2m−1 translated by 1. If k2 = 0, i.e., k = k1, we have that G

(E)
i = 0

and hence we have

Nr(k1) d= 1 +
r∑

i=2

[
B

(G)
i + 1 − I{l+1}

(
B

(G)
i

)]

= r +
r∑

i=2

[
B

(G)
i − I{l+1}

(
B

(G)
i

)]
= r +

r−1∑
i=1

D
(G)
i

where D
(G)
i = B

(G)
i+1 − I{l+1}

(
B

(G)
i+1

)
for i = 1, 2, . . . , r − 1. Now, we observe that D

(G)
i has a

geometric distribution truncated at l. Indeed, for j < l, it is easy to see that P(D(G)
i = j) =

P(B(G)
i+1 = j) = q2m−1

(
p2m−1

)j
and for j = l, we have P(D(G)

i = l) = P(B(G)
i+1 = l) + P(B(G)

i+1 =

l + 1) = q2m−1
(
p2m−1

)l
+

(
p2m−1

)l+1
=

(
p2m−1

)l
. Thus, Nr(k1) − r has generalized Binomial

type distribution with parameters p2m−1, r − 1 and l.

Under the assumption that the system has a strong tendency towards failure when
m consecutive successes are observed, i.e., p2m−1 as a function of r converges to 0 in such a
way that

rp2m−1 → λ > 0 as r → ∞, (10)
using the equation (2) and the subsequent discussion, we can easily obtain the following
corollary.

Corollary 2: For any initial condition x ∈ Sm, if the condition (10) holds and if k2 = 0, we
have

Nr(k1) − r ⇒ Poi(λ)
where Poi(λ) is the Poisson distribution with parameter λ.
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If we set k1 = 1, Nr(k1) represents the number of successes till the rth occurrence of
the l-look-back run of length k. Thus, we have the following corollary:

Corollary 3: For the i.i.d. case or the Markov dependent case, the probability generating
function of the number of successes till the rth occurrence of the l-look-back run of length k,
i.e., Nr(1) is given by,

ζr(s; 1) =
s
(
p2m−1s

)k−1

1 − ∑k−2
j=0 q2m−1

(
p2m−1

)j
sj+1

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k−1

1 − ∑k−2
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

For r = 1, the expression reduces to

ζ1(s; 1) =

(
p2m−1

)k−1
(1 − p2m−1s)sk

1 − s + q2m−1
(
p2m−1

)k−1
sk

which is the probability generating function of the number of successes until the first occur-
rence of k consecutive successes. For the i.i.d. case, we have p2m−1 = p and for the Markov
dependent case, we have p2m−1 = p11. Putting these values, we observe that we may obtain
the results (Proposition 3.4 and Theorem 3.2) of Aki and Hirano (1994). Therefore our result
provides a generalized version of pgf for all values of r.

4. A new Markov chain

Now we outline the underlying set up which will be used in the subsequent sections
to establish the results. Let us define two functions f0, f1 : Sk1 → Sk1 by

f1(x) = 2x + 1 (mod 2k1) and f0(x) = 2x (mod 2k1).

Further define a projection θm : Sk1 → Sm by θm(x) = x (mod 2m). Now, set X−m =
X−m−1 = · · · = X−k1+1 = 0. Define a sequence of random variables {Yn : n ≥ 0} as follows:

Yn =
k1−1∑
j=0

2jXn−j.

Since Xi ∈ {0, 1} for all i, Yn assumes values in the set Sk1 . The random variables Xn’s
are stationary and forms an mth order Markov chain, hence we have that {Yn : n ≥ 0} is a
homogeneous Markov chain with transition matrix given by

P(Yn+1 = y|Yn = x) =


pθm(x) if y = f1(x)
1 − pθm(x) if y = f0(x)
0 otherwise.
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Note that Yn is even if and only if Xn = 0. This motivates us to define the function
κ : Sk1 → {0, 1} by

κ(x) =
{

1 if x is odd
0 if x is even.

Therefore, κ(Yn) = 1 if and only if Xn = 1. Hence, the definition of l-look-back run
can be described in terms of Yn’s as

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

κ(Yj).

Let us fix any initial condition x ∈ Sm. We denote the probability measure governing
the distribution of {Yn : n ≥ 1} with Y0 = x ∈ Sk by Px. Since we have set X−m = X−m−1 =
· · · = X−k+1 = 0, we have Y0 = x.

In order to obtain the recurrence relation for the probabilities, we will condition the
process after the first occurrence of the run of length k1. Therefore, we consider the stopping
time T when the first occurrence of a run of length k1 ends, i.e., when we observe k1 successes
consecutively for the first time. More precisely, define

T := inf{i ≥ k1 :
i∏

j=i−k1+1
Xj = 1}. (11)

We would like to translate the above definition to Yi’s. It must be the case that when T
occurs, last k1 trials have resulted in success, which may be described by κ(Yj) = 1 for
j = i − k1 + 1 to i. Therefore, YT must equal 2k1 − 1. Since this is the first occurrence, this
has not happened earlier. So, T can be better described as

T = inf{i ≥ k1 : Yi = 2k1 − 1},

i.e., the first visit of the chain to the state 2k1 − 1 after time k1 − 1. Now, we note that
{Yn : n ≥ 0} is a Markov chain with finite state space. Further, since 0 < pu < 1 for
u ∈ Sm, this is an irreducible chain; hence, it is positive recurrent. So we must have
Px(T < ∞) = 1. We observe that when the first occurrence of k consecutive successes
happen, we must have the occurrence of k1 successes previously since k1 ≤ k. Therefore, we
have Px(T ≤ τ1(k, l)) = 1.

5. Overlapping runs till the stopping time

In this section, we study the distribution of overlapping runs of length k1. We will
employ the method of generating functions to derive these results.We obtain a recurrence
relation between the probabilities in order to derive the generating functions.

Let us define the probability, for x ∈ Sm, n ∈ Z,

g(x)
r (n; k1) = Px

(
Nr(k1) = n

)
. (12)

We note that since Nr(k1) ≥ 1, Px

(
Nr(k1) = n

)
= 0 for n ≤ 0. Also, if r = 1 and

k2 = k − k1 = 0, i.e, k = k1, we have that N1(k1) = 1.
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We will show that these probabilities g(x)
r (n; k1) is actually independent of the initial

condition x. First we consider the case when r = 1. As we have already observed, if k2 = 0,

g
(x)
1 (1; k1) = I{1}(n)

where I{u}(v) is the indicator function defined in (9). Clearly we have g
(x)
1 (n; k1) is indepen-

dent of x.

Now, we concentrate on the case when r = 1 and k2 = k − k1 > 0, i.e., k > k1. We
note that N1(k1) ≥ (k2 + 1) and hence Px(N1(k1) = n) = g

(x)
1 (n; k1) = 0 for n ≤ k2.

Theorem 2: For n > k2 and k2 = k − k1 > 0, we have

g
(x)
1 (n; k1) =

k2−1∑
t=0

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n) (13)

where I{u1}(u2) is the indicator function defined in (9).

Proof: When k2 = k − k1 > 0 and r = 1, using the fact that YT = 2k1 − 1 with probability
1, we have

g
(x)
1 (n; k1) = Px(N1(k1) = n) = Px(N1(k1) = n, YT = 2k1 − 1)

=
k2−1∑
t=0

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(N1(k1) = n, YT = 2k1 − 1YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1). (14)

We look at the terms in the summation first. For any 0 ≤ t ≤ k2 − 1, we have,

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× Px(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (15)

The second term in (15) can be written as

Px(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1).

Now, T + j − 1 is also a stopping time for any 1 ≤ j ≤ t. We denote by FT +j−1,
the σ-algebra generated by the process Yn up to the stopping time T + j − 1, and by
F(T +j−1)+, the σ-algebra generated by the process after the stopping time T + j −1. Clearly,
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{YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1} ∈ FT +j−1 and {YT +j = 2k1 − 1} ∈ F(T +j−1)+. Thus,
by strong Markov property, we can write

Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)
= PYT +j−1(YT +j = 2k1 − 1) = P2k1 −1(Y1 = 2k1 − 1) = p2m−1. (16)

A similar argument shows that

Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1) = q2m−1. (17)

For the first term in (15), we note that T + t + 1 is also a stopping time and {YT +1 =
2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2} ∈ FT +t+1. Since Yτ1(k1) = 2k1 − 1, we must
have XT −k1 = 0 and XT −j = 1 for j = 0, 1, . . . , k1 − 1. Further, since Yτ1(k1)+j = 2k1 − 1 for
j = 1, . . . , t and YT +t+1 = 2k1 − 2, we also have XT +j = 1 for j = 0, 1, . . . , t and XT +t+1 = 0.
Therefore, we have a sequence of 1′s of length k1 + t with t > 0 which contributes to t + 1
overlapping runs of length k1 and since there are no runs of length k1 before T , by the very
definition of T , we have that the number of overlapping runs of length k1 up to time T + t+1
is 1 + t. Since t ≤ k2 − 1, we have that T + t + 1 < τ1(k, l). Let us define Y ′

i = Yi+T +t+1 for
i ≥ 0. Now, using the strong Markov property, we have that {Y ′

i : i ≥ 0} is a homogeneous
Markov chain with same transition matrix as that of {Yi : i ≥ 0} with Y ′

0 = 2k1 − 2. Now,
define τ ′

1(k, l) as the stopping time for the process {Y ′
i : i ≥ 0}. From the above discussion,

we have that τ1(k, l) = T + t + 1 + τ ′
1(k, l). Further, if we define, N ′

1(k1) as the number of
overlapping runs of length k1 up to time τ ′

1(k, l) for the process {Y ′
i : i ≥ 0}, we must have

that N ′
1(k1) = n − t − 1. Therefore, we have,

Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P(2m−2)(N ′

1(k1) = n − t − 1) = g
(2m−2)
1 (n − t − 1; k1). (18)

The last term in (14) can be similarly written as

Px(N1(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2 = 2k1 − 1)

=
k2∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

× Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
(
p2m−1

)k2Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1).

Note that given {YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1}, we
have τ1(k, l) = T + k2. Further, in such a case we have exactly k2 + 1 many overlapping
runs of length k1 until time T + k2. Therefore, N1(k1) = n if and only if n = k2 + 1. In
other words, Px(N1(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 =
2k1 − 1) = 1{k2+1}(n) where I is the indicator function as defined in (9).
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Thus combining the above equation with equations (14) - (18), we can express

g
(x)
1 (n; k1) =

k2−1∑
t=0

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n).

This completes the proof.

We note that the right hand side of (13) does not involve the initial condition x ∈ Sm.
Therefore g

(x)
1 (n; k1) must be independent of x. So, we will drop x and denote the above

probability by g1(n; k1). Thus, we have the following corollary from theorem 2.

Corollary 4: For n ≥ k2 + 1 and k2 > 0, we have

g1(n; k1) =
k2−1∑
t=0

q2m−1
(
p2m−1

)t
g1(n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n). (19)

Let us recall that

ζr(s; k1) =
∞∑

n=0
P(Nr(k1) = n)sn =

∞∑
n=0

gr(n; k1)sn.

When k2 = 0, we have
ζ1(s; k1) = s.

For k2 > 0, we may use the equation (19) to derive its generating function. We have

ζ1(s; k1) =
∞∑

n=k2+1
gr(n; k1)sn

=
∞∑

n=k2+1

[k2−1∑
t=0

q2m−1
(
p2m−1

)t
g1(n − t − 1; k1) +

(
p2m−1

)k2I{k2+1}(n)
]
sn

=
(
p2m−1

)k2
sk2+1 +

k2−1∑
t=0

q2m−1
(
p2m−1

)t
st+1

∞∑
n=k2+1

g1(n − t − 1; k1)sn−t−1

=
(
p2m−1

)k2
sk2+1 + ζ1(s; k1)

k2−1∑
t=0

q2m−1
(
p2m−1

)t
st+1.

This linear equation can now be solved to yield the following corollary.

Corollary 5: For r = 1, we have

ζ1(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

. (20)

Now we consider the case when r > 1. In this case also, we note that Nr(k1) ≥
(k2 + 1) + (r − 1)(l + 1). Hence g(x)

r (n; k1) = Px(Nr(k1) = n) = 0 for n ≤ (r − 1)(l + 1) + k2.
Now, we derive the recurrence relation.
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Theorem 3: For n ≥ (k2 + 1) + (r − 1)(l + 1) and x ∈ Sm, we have

g(x)
r (n; k1) =

(
p2m−1

)k2+(r−1)(l+1)
I{n}(k2 + (r − 1)(l + 1) + 1)

+
k2−1∑
j=0

q2m−1
(
p2m−1

)j
g(2m−2)

r (n − j − 1; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (21)

where Iv1(v2) is the indicator function, as defined in the previous theorem.

Proof: We proceed in the same way as in the previous theorem. Conditioning on the first
occurrence of k1 many successes, i.e., T , we have, for any n ≥ (k2 + 1) + (r − 1)(l + 1),

g(x)
r (n; k1) =

k2+(r−1)(l+1)−1∑
t=0

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +(r−1)(l+1)−1 = 2k1 − 1, YT +(r−1)(l+1) = 2k1 − 1). (22)

The last term in (22) is similar to the last term in equation (14) in the previous
theorem. Thus this term can be simplified in the similar way. Indeed using the same
arguments, as done after equation (18), we get

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +(r−1)(l+1)−1 = 2k1 − 1, YT +(r−1)(l+1) = 2k1 − 1)

=
(
p2m−1

)k2+(r−1)(l+1)
I{n}(k2 + (r − 1)(l + 1) + 1). (23)

The terms in the summation in (22) can also be handled in the similar way as done
in the previous theorem. Fix any j with 0 ≤ t ≤ k2 + (r − 1)(l + 1) − 1 and we obtain that

Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× P(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (24)

The last term in the product above is again simplified using the product of conditional
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terms and the strong Markov property. Since YT = 2k1 − 1 with probability 1, we have

P(YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

= Px(YT +t+1 = 2k1 − 2 | YT +t = 2k1 − 1) ×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT +j−1 = 2k1 − 1)

= q2m−1
(
p2m−1

)t
. (25)

For the first term, we note that the event {YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t =
2k1 − 1, YT +t+1 = 2k1 − 2} implies that at time T + t + 1, we have just observed k1 + t many
successes followed by a failure. This string of k1 + t many successes, will contribute t + 1
many overlapping runs of successes. Since T is the first time when we observe first k1 many
consecutive successes, we have t + 1 overlapping success runs completed at time T + t + 1.
Thus, we are left with n − t − 1 many runs for the remaining part, i.e., after time T + t + 1.

At time T + t + 1, we have the information that k1 + t many successes followed by
a failure has just been observed. Using the strong Markov property, we can think that the
process restarts with this information. In other words, considering the converted Y process,
we are restarting the process with the initial condition YT +t+1 = 2k1 − 2.

Now, we examine the two cases namely k2 = k − k1 = 0, i.e., k = k1 and k2 > 0,
i.e., k > k1 separately. When k2 = 0 and k1 + t many successes followed by a failure has
just been observed, then we have already completed 1 + ⌊t/(l + 1)⌋ many l-look-back runs
of length k where ⌊a⌋ is the largest integer smaller or equal to a. Thus, we are left with
r −⌊t/(l+1)⌋−1 many l-look-back runs of length k, which is to be completed by the process
after the time T + t + 1. Hence, we obtain,

Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P2m−2(Nr−⌊t/(l+1)⌋−1(k1) = (n − t − 1)) = g

(2m−2)
r−⌊t/(l+1)⌋−1(n − t − 1; k1). (26)

For k2 > 0, the argument is essentially the same, except for one part. When t ≤ k2−1,
we would have k1 + t ≤ k1 + k − k1 − 1 = k − 1 many successes followed by a failure. This
will not contribute to any run of l-look-back run of length k. But for t ≥ k2, we will have
1 + ⌊(t − k2)/(l + 1)⌋ many l-look-back runs of length k which have been completed. Thus,
we have

Px(Nr(k1) = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

=

g(2m−2)
r (n − t − 1; k1) if t ≤ k2 − 1

g
(2m−2)
r−⌊(t−k2)/(l+1)⌋−1(n − t − 1; k1) if t ≥ k2.

(27)
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Therefore, combining all the terms above from equations (24), (25), (26) and (27), we have
k2+(r−1)(l+1)−1∑

t=0
Px(Nr(k1) = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

=
k2−1∑
j=0

q2m−1
(
p2m−1

)j
g(2m−2)

r (n − j − 1; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (28)

Now combining the equations (22), (23) and (28), the proof of the theorem is completed.

If r = 1, we have that g(x)
r (·; k1) is independent of x ∈ Sm (see Corollary 4). By

induction, assume that g(x)
r (·) is independent of x ∈ Sm. Clearly, from the above relation,

we have that g
(x)
r+1(·; k1) can be expressed as weighted sums of g

(x)
i (·; k1) for i = 1, 2, . . . , r.

Since the right hand side of the above relation does not involve any x ∈ Sm, g
(x)
r+1(·; k1) must

be independent of x. Therefore, from now on we will drop the superscript x from g(x)
r (·; k1).

Hence we have the following corollary.

Corollary 6: For any x ∈ Sm, the probability g(x)
r (n; k1) = Px(Nr(k1) = n) is independent

of x and satisfies the recurrence relation

gr(n; k1)

=
k2−1∑
j=0

q2m−1
(
p2m−1

)j
gr(n − j − 1; k1) +

(
p2m−1

)k2+(r−1)(l+1)
1n(k2 + (r − 1)(l + 1) + 1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
gr−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1). (29)

We now derive the generating function ζr(s; k1) of Nr(k1) using the recurrence relation.
For r = 1, we have already obtained the expression of ζ1(s; k1) (see Corollary 5). For r ≥ 2,
we can’t directly obtain the expression of ζr(s; k1). Instead, we will obtain a recurrence
relation in terms of the generating functions. Indeed, for r ≥ 2, we have

ζr(s; k1) = s
(
p2m−1s

)k2+(r−1)(l+1)
+

∞∑
n=0

k2−1∑
j=0

q2m−1
(
p2m−1

)j
gr(n − 1 − j; k1)sn

+
∞∑

n=0

r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2

× gr−1−j1(n − 1 − k2 − j1(l + 1) − j2; k1)sn

= s
(
p2m−1s

)k2+(r−1)(l+1)
+

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1ζr(s; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1s
(
p2m−1s

)k2+j1(l+1)+j2
ζr−1−j1(s; k1). (30)
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Simplifying equation (30), we obtain a recurrence relation involving ζr(s; k1). This is given
in the following lemma.

Lemma 1: For r ≥ 2, the sequence of the probability generating functions satisfies the
following recurrence relation

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζr(s; k1)

=
(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) r−2∑

j1=0

(
p2m−1s

)j1(l+1)
ζr−1−j1(s; k1)

+ s
(
p2m−1s

)k2+(r−1)(l+1)
. (31)

Now, we are ready to prove the main theorem, namely Theorem 1.

Proof: The generating function of the sequence {ζr(s; k1) : r ≥ 1} is denoted by Ξ(z; k1),
i.e.,

Ξ(z; k1) =
∞∑

r=1
ζr(s; k1)zr.

Now, using (31) we obtain the generating function Ξ(z; k1) as follows:

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
Ξ(z; k1)

=
∞∑

r=1

(
1 −

k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζr(s; k1)zr

=
(

1 −
k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)
ζ1(s; k1)z +

∞∑
r=2

s
(
p2m−1s

)k2+(r−1)(l+1)
zr

+
∞∑

r=2

(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) r−2∑

j1=0

(
p2m−1s

)j1(l+1)
ζr−1−j1(s; k1)zr

= sz
(
p2m−1s

)k2 + sz
(
p2m−1s

)k2
∞∑

r=1

(
p2m−1s

)r(l+1)
zr

+
(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
) ∞∑

j1=0

(
p2m−1s

)(l+1)j1
∞∑

r=j1

ζr−j1+1(s; k1)zr+2

=
sz

(
p2m−1s

)k2

1 −
(
p2m−1s

)(l+1)
z

+

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

zΞ(z; k1)

1 −
(
p2m−1s

)(l+1)
z

. (32)
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Now, from the above equation (32), we can easily solve Ξ(z; k1) to obtain

Ξ(z; k1) =
[
sz

(
p2m−1s

)k2
][(

1 −
k2−1∑
j=0

q2m−1
(
p2m−1

)j
sj+1

)

×
(

1 −
(
p2m−1s

)(l+1)
z

)
− z

(
p2m−1s

)k2
( l∑

j=0
q2m−1s

(
p2m−1s

)j
)]−1

=
zs

(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

[
1 −

(
p2m−1s

)(l+1)
z

−
z

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

]−1

=
zs

(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

×
[
1 − z

((
p2m−1s

)(l+1)
+

(
p2m−1s

)k2
(∑l

j=0 q2m−1s
(
p2m−1s

)j
)

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

)]−1

. (33)

Now, we obtain ζr(s; k1) by calculating the coefficient of zr in the equation (33). Observe
that coefficient of zr is obtained by multiplying the coefficient of zr−1 in the expression in
the last line in (33) by s

(
p2m−1s

)k2
/

(
1 − ∑k2−1

j=0 q2m−1
(
p2m−1

)j
sj+1

)
. Using the expansion

(1 − az)−1 = ∑∞
t=0 atzt, we have

ζr(s; k1) =
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1s

(
p2m−1s

)j

[(
p2m−1s

)l+1

+
s
(
p2m−1s

)k2

1 − ∑k2−1
j=0 q2m−1

(
p2m−1

)j
sj+1

l∑
j=0

q2m−1
(
p2m−1s

)j
]r−1

.

This completes the proof of theorem 1.

6. Conclusion

In this article we have defined a new discrete distribution, called generalized Binomial
type distribution. The probability generating function of the distribution has been given along
with its connections to the classical Binomial distribution as well as the negative Binomial
distribution. We have studied the number of overlapping runs of length k1 until the rth

occurrence of l-look-back run of length k (k1 ≤ k) for the mth order Markov chain and
obtained the explicit expression of its probability generating function. Further, we have
shown that our result generalizes the results of Aki and Hirano (1994) when we consider
r = 1 for both i.i.d. as well as Markov dependent case. Since our stopping time is quite
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general, our theorem will also provide similar results when we apply it to different cases such
as the rth occurrence of non-overlapping runs or rth occurrence of overlapping runs or rth

occurrence of µ-overlapping runs (for positive µ).

Our result shows that the conditional distribution, that we have considered, has a
renewal structure (see Feller (1968)) in the sense that it splits into independent sums of
random variables, which may be interpreted as arrival times in a renewal process. Further,
it is also seen that the arrival times are identical except the first arrival time. In other
words, it admits a delayed renewal structure. We are able to identify the arrival times
through the newly defined generalized Binomial type distribution and extended geometric
discrete distribution. This renewal structure, in turn, can also be used to obtain approximate
distribution of number of runs when the value of r is large. For instance, we may obtain the
strong law of large numbers for the number of overlapping runs of length k1.

We also provide a versatile method of proving the result where we convert our problem
from the mth order Markov chain into a simple Markov chain by combining the states. This
allows us to use the Markov chain machinery, namely the strong Markov property, to derive
the recurrence relation and use the method of generating functions effectively to obtain our
results. Our method is quite powerful and can be used to prove similar results for other run
statistic. We expect that, in future, there will be more applications of our method.
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