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Abstract

Consider an m™ order Markov chain {X; : j > —m + 1} taking values in {0,1}. Fix
k> 1and r > 0. A r-look-back run of length k, is defined as a run of 1’s, provided that
there are at least r trials in between the ending point of the current run and the ending
point of the previous occurrence of the r-look-back run of length k. The r-look-back run
of length k£ encompasses the non-overlapping counting, the overlapping counting as well as
the [-overlapping counting for 0 <! < k — 1 (defined by Aki and Hirano (2000)). We show
that the waiting time for the n'* occurrence of the r-look-back run of length k converges
in distribution to an extended Poisson distribution under the assumption that the model
exhibits a strong propensity towards success. This generalizes similar results on [-overlapping
runs of length k obtained under the Markov dependent set-up. We obtain a central limit
theorem for the number of r-look-back runs of length k till the n'* trial. Further, we show
that the rate of convergence in the central limit theorem is at least a fractional power of
n with a logarithmic correction factor. We support our findings on the rate of convergence
with some simulation results.

Key words: Success runs; Waiting time; Markov chain; Extended Poisson distribution; Cen-
tral limit theorem; Rate of convergence.
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1. Introduction

Let {X; : i > 1} be a sequence of {0, 1}-valued random variables. Here X, stands
for the outcome of an experiment at the n-th trial and 1 and O imply success and failure
respectively of the experiment. A run of length k is an occurrence of k (> 1) consecutive
1’s. In the literature, there are several schemes of counting runs of length k; two of the most
commonly used ones are (a) Non-overlapping counting and (b) Overlapping counting. In the
non-overlapping counting scheme a trial can contribute to only one possible run, while in
the overlapping counting scheme a trial can contribute towards the counting of more than
one run. Another method of [-overlapping counting has been introduced by Aki and Hirano
(2000) where they allow an overlap of at most [ successes between two consecutive runs of
length k where 0 <[ < k. It is easy to observe that when [ = 0 and [ = k — 1, this definition
is equivalent to the non-overlapping counting and the overlapping counting respectively. Han
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and Aki (2000) have extended this counting scheme to the case where | assumes negative
values. For [ < 0, there is at least |{| trials difference between the two runs of length k.

In this paper, we consider a new scheme of counting runs of length k. We will refer
to this new scheme of counting as look-back counting. Let r > 0 be a fixed number. In
the r-look-back counting scheme, the starting points (hence the ending points) of the two
consecutive runs of length k should be separated by at least r trials in between, i.e., a new
run of length k& can be counted only after r trials have elapsed since the starting point of
the last counted run. Suppose that we are at the trial ¢ such that it is a starting point of
a run of length k, i.e., X; = X;4,1 = ... = X;41_1 = 1. Now, suppose that i’ is the trial
where the last enumerated r-look-back run of length k started. In order to enumerate the
run starting at the i trial as a r-look-back run, we must have i — i’ > r. The definition
of r-look-back run of length £, encompasses the above definitions of overlapping runs and
non-overlapping runs, in the sense that when r = 0 and » = k — 1, the r-look-back run of
length £ matches exactly with the overlapping counting and the non-overlapping counting
respectively. Moreover, the [-overlapping run of length £ can be identified as a r-look-back
run of length k£ with [ =k —r —1for 0 <[ < k — 1. However, when [ assumes negative
values the definitions do not match. To illustrate this, we quote the example from Han and

Aki (2000):
1111011000111111110000111.

In this example, for £ = 3 and r = 3, we see that there are four 3-look-back runs of length 3
starting at trials 1,11, 15 and 23, while there are only three (—1)-overlapping runs of length
3, starting at 1,11 and 15. This is because the number of remaining trials (0 here) after the
last run of length k starting at trial 23, is less than |{|, in the [-overlapping counting of runs
of length k (for I < 0), such a run cannot be counted (see Han and Aki (2000)). But, in
the look-back counting scheme, we do not put such a restriction. This will be clear from the
mathematical definition given in the next section.

Practical usage of this scheme of counting can be illustrated from the following ex-
amples. In many counters for detection of cosmic rays and a-particles, the counter records
a hit (detection of a particle) whenever the frequency recorded lies in a particular region
(depending on the particle under detection). We refer to the detection of the particle as a
success, while the non-detection is regarded as a failure. However, if particles are detected
for k(> 1) successive time points, the counter loses its power and is locked; hence it cannot
record anything in the next r — k + 1 (r > k — 1) time points. The number of r-look-
back runs of length k is exactly the number of times the instrument loses its power and is
locked. Another example is seen in the congestion model of computer networks, where a
network receives packets of information from other networks and sends information back to
the originating network. Each of these processes consumes certain processing resource. If
the network receives packets at k consecutive time points, all its resources are spent in pro-
cessing the information received; as a result it can not receive any information for the next
r—k+1 (r > k—1) time points. In one of the models of computer networking, the packets
are rejected for these time points and are required to be re-sent by the originating network
at a later time point. This situation is called the congestion of the network. Here also, the
number of r-look-back runs of length £ is exactly the number of times congestion occurs. In
a drug administration model, observations are taken every hour for the presence or absence
(success or failure) of a particular symptom, say, fever exceeding a specified temperature.
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If we observe the presence of the symptom for k& consecutive points (hours), a drug has to
be administered; however, as is the case with most drugs, once the drug is administered,
we have to wait for r-hours for the next administration of the drug with » < k. But the
process of the observation for the presence or absence of the symptom is continued as ever.
In such a case, the number of administrations of the drug until time point n, is the number
of r-look-back runs of length k up to time n. In the first two examples, we have r > k — 1
while in the last example 0 < r < k — 1.

The theory of runs plays a vital role in diverse fields of statistics, such as, non-
parametric inference, statistical quality control, reliability theory etc.. Runs and run-related
statistics have engaged researchers since the time of De Moivre (see Feller (1968)). In recent
years, this field has seen tremendous growth, with researchers contributing to the theory
as well as their practical applications to various disciplines. Systematic study of the the-
ory of distributions of non-overlapping runs was initiated by Feller (1968). Feller studied
the distribution of the number of non-overlapping runs up to the n-th trial and obtained
its asymptotic distribution using the renewal theory techniques where the underlying trials
were i.i.d. Bernoulli random variables. Aki (1985), Hirano (1986), Philippou and Makri
(1986) etc. studied various run-statistics based on the non-overlapping counting of runs.
Ling (1988) obtained the distribution of the number of overlapping runs of length k for a se-
quence of n i.i.d. Bernoulli trials. Aki and Hirano (1988), Godbole (1990, 1992) also studied
the properties of the distribution of the number of overlapping runs up to time n. Hirano
et al. (1991) obtained the probability generating function of the number of overlapping
runs and also obtained the asymptotic distribution. Several generalization of the underlying
model has also been considered (see Aki and Hirano (1995), Fu and Koutras (1994), Koutras
(1996), Uchida and Aki (1995), Uchida (1998) and references therein). The waiting time
distributions for the occurrence of runs of various types has been studied extensively by
several authors (see, for example, Koutras (1996), Aki, Balakrishnan and Mohanty (1996),
Balasubramanian, Viveros and Balakrishnan (1993) and references therein). Uchida (1998)
has also investigated the waiting time problems for patterns under m™ order Markov set
up. Makri and Psillakis (2015) also studied [-overlapping runs of successes of length & and
obtained recurrence relations for probability mass functions for the case of Bernoulli trials
ordered in line as well as in circle. For a more detailed account on the theory of runs and
its applications, we refer the reader to Balakrishnan and Koutras (2002) and Makri and
Psillakis (2015).

In this paper, we assume that the underlying trials form a m! order homogeneous
Markov chain. We study the waiting time of the n** occurrence of the r-look-back run of
length k. We show that under the assumption of the model exhibiting a strong propensity
towards success, i.e., the probability of getting success converges to 1 in a certain sense, the
waiting time for the n'* occurrence of r-look-back run of length k converges to a compound
Poisson distribution as n — oo. This result generalises the results of Inoue and Aki (2003)
where they considered that the underlying trials are from a homogeneous Markov chain
(m = 1). Also, we show that the number of r-look-back runs of length k till the n' trial,
suitably normalised, converges to a normal distribution when the underlying process is an
m™ order homogeneous Markov chain. Further, we obtain the (uniform) rate of convergence
of the central limit theorem (Berry Essen type result). This result shows that the convergence
rate is at least a fraction power of n with a logarithmic correction factor.
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In the next section we give the formal definitions and the statement of results. The third
section is devoted to showing the convergence of waiting times, while in the fourth section
we obtain the rate of convergence results. In the final section, we demonstrate simulation
results where the underlying trials are from a homogeneous Markov chain (m = 1) exhibiting
the rate of convergence.

2. Definitions and statement of theorem

Let X i1, X pugo, ..., Xo, X1, ... be a sequence of stationary m order {0, 1}-valued
Markov chain. It is assumed that the values of X _,, .1, X ,,19,..., X are known, i.e., we
are given the initial condition {Xo = 29, X 1 = 21,..., X 111 = Tm_1}, 2; € {0,1},1 =
—-m+1,...,—1,0.

Define N; := {0,1,...,2! — 1} for any [ > 0. It is clear that {0,1}! and N; can be
identified by the mapping (zo, x1,...,2-1) — Zé;lo 27;. Thus, we will represent the initial
condition by taking x € N,, = {0,1,...,2™ — 1} where = = Z}”:’Ol 2,

We define, for any n > 0,
Pz = P(Xn+1 = 1|Xn = 1'07an1 = T1y... 7anm+1 = l’mfl). (1)

Consequently, ¢, = P(X,11 = 0|X,, = 20, X1 = 21, .., Xomms1 = Tmo1) = 1 — p. We
assume that 0 < p, < 1 for all x € N,,. Define two functions f;, g, : N; — N; as

filz) :=22 4+ 1 (mod 2") and g;(z) := 2z (mod 2).

Note that, f,,(x), gm(z) can be interpreted as the two possible states which can be reached
from the state x in a single step, provided we obtain a success, failure respectively in the
next trial.

Let R;(k,r) be the indicator of the event that a r-look-back run of length k is completed
at the i trial. In order that R;(k,r) = 1, we must have R; 1(k,r) = R; o(k,7) = ... =
R;_.(k,r) = 0. Thus, the formal definition of R;(k,r) can be given inductively as follows:

Definition 1: Set R;(k,r) =0 for i < k — 1 and for any i > k, define

Rilk,r) = 110 = Roy(er) T X5 @)

When r = 0, the first product should be interpreted as 1. If R;(k,r) = 1, we say that
a r-look-back run of length k has been recorded at the i trial (i.e., ending at trial ). Define

Nn,k,r = Z Rz(k> T) - Z Rl(k7 T)
i=1 i=k
as the number of r-look-back runs of length & till the n'* trial. A sequence of stopping times
is defined as follows: set 75(k,r) = 0 and for n > 1,

To(kyr) :=1inf{i > 7,_1(k,7r) : Ny, = n}. (3)
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Note, 7,,(k,7) is the waiting time for the n'* occurrence of r-look-back run of length k.

In the sequel, we say that a random variable £ is of Poisson type with multiplicity p

and parameter «, denoted by & ~ Poi(p, a), if

exp(—a)at

B(e = pt) = ZPC

Note that, when p = 1 it is the usual Poisson distribution. Following Aki (1985), we say that

a random variable ¢ follows an extended Poisson distribution of order k& with parameters
(o, g, ... ), if its p. g. f. is given by,

fort=0,1,.... (4)

d(z;aq, 00, ..., Qg —exp( Zoz]JrZoz]z])

It should be noted that if £ follows an extended Poisson distribution of order k& with param-
eters (aq,am,...,ax), then it can be represented as

where {¢; : 1 < j < k} are independent and fj ~ Poi(j, ;).

The assumption, we impose on our model, is that the system has a strong tendency
towards success. We formalize this by stating that, for z € N,,, p, (as a function of n)
converges to 1 in such a way that

n(l —p,) = Az as n — oo where A, > 0 is a positive constant. (5)

Our first theorem is:

Theorem 1: For any initial condition € N,,, if the condition (5) holds, we have

(i) Tulk,r)—(k—7r—1)—n(r+1) 25 when k& >r+1
(i) Ta(k,r)—k—(n—=1)(r+1) = Zg§2> when k <r+1

where {&(1) 1 =0,1,... ,r} are independent random variables with 52'(1) ~ Poi(k + i —
Ty Agm_q) fori =0,1,... 7 while {SZ@) i=0,1,..., k— 1} are independent random variables
with €2 ~ Poi(i + 1, Agm_y) for i = 0,1,... k— 1.

From the above, when 0 < r < k —1, the limiting distribution, ;. 05 , follows an ex-
k—r—1 T+1

tended Poisson distribution of order k& with parameters (0,0,...,0, Agm_1, Aom_1,..., Aom_1)
and when r > k, ¢ Z-(2) follows an extended Poisson distribution of order £ with pa-
k

rameters (Agm_1, Agm_1,..., Agm_1). Inoue and Aki (2003) have obtained a similar result for
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l-overlapping counting under the Markov chain (m = 1) set-up. It should be noted that,
Inoue and Aki (2003) have counted the run of length k as a [-overlapping run (for [ < 0) even
when the remaining number of trials after the run is completed, is less than |{|. Therefore,
it matches with our counting scheme with r = k — 1 4+ (—[) and hence their results can be
deduced as a special case from our result. However, even if we follow the definition of Han
and Aki (2000), a similar result can be established following our method.

Further, we establish a central limit theorem for IV, ;. , and study the rate of convergence
in the central limit theorem under the m™ order Markov chain set-up. Let 02 = Var(N,, 1)
We show that

Theorem 2: For any » > 0 and k£ > 1, we have
sup
teR

where O(f(n)) is a function g(n) such that |g(n)/f(n)| remains bounded as n — oo and ®(-)
is the distribution function of the standard normal distribution.

POWAWJMMMHSt%>—¢@ﬂ=0m4ﬂH%n)

Since n=%™ logn — 0 as n — 0o, we obtain the standard central limit theorem from
Theorem 2. Further, this result gives the uniform rate at which the normalised variable
Ny i, converges to normality. Since the number of [-overlapping runs of length k& up to the
n' trial is at most one less than Ny, where r = k — [ — 1, exactly same results will hold
for the number of l-overlapping runs of length k up to the n' trial.

3. Convergence of waiting time

In this section, we prove Theorem 1. We require the following lemmas on weak con-
vergence of discrete random variables. The first lemma is an easy consequence of the Port-
manteau Theorem (Billingsley (1968) p.p. 11) and the fact that all the random variables
involved are discrete in nature; hence we omit its proof.

Lemma 1: If {¢, : n > 1} and £ are random variables taking values in N = {0, 1,... } such
that for each ¢ > 0
liminfP(¢, =t) > P({ = 1),

n—oo

then &, = €.

Lemma 2: Suppose that {&, : n > 0} and {§Z-(1) 1 < i < p} and {51-(2) 1< <
po} are random variables taking values in N and {¢", &V, ... ,51(,}),5%2),552), €D} are
independent. Suppose that, for each n > 1 and ¢t > 0, {Ag(ul,u% e Upy, V1,V Upy)
u; >0for1 <i<ppv;>0forl<i<pyand 3 u; = t} is a collection of disjoint events,
such that

p1 p2
limianP’(fn =t, A (u1,ug, ..., Uy, V1,02, . .. ,vpz)) > H IP’(SZQ) = u;) HP(@@) = ;).
i=1 i=1

n—oo
Then
p1 1)
£, =Y el
i=1
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Note that, we require p; > 1 but p, > 0. In one of our applications, we will take ps = 0.

Proof: Clearly, for any fixed ¢t € N,

p1 p1 D2
P(re=t)= X IIPE” =w IIPE? = v).
i=1 U1, yupy ENG=1 =1
V1,5e50py EN
Pl ui:t

i=1

Fix any € > 0 and choose J so large that

pP1 P2 p1 P2
1 2 1 2
> HP(@():Ui)HP(fZ():Ui)— > HP(&():UJHP(@U:%)<€-
UL, supy EN =1 =1 0<uy,...,up; <J i=1 =1
V1,...,Upy EN 0<v1,.0,0py <J
Pl =t PL =t

i=1 =1

Thus, we have,
117;nglf19>(§n =t)

. . o t
Z hfggjlf E : P(&n_t7An(ulau2a"'7up17U17U27"'7vp2))
U1, Upy EN
V1,-++,Upgy EN
p1
i=1

lim inf > P& =t, AL (ug, ug, . ..y Upy, V1, V2, oo, Uy )

n—o0
0<ut,esupy <J

u;=t

v

v
(]

. . t
hrrlri%)rolf]P’(fn =1, A, (ur, ug, ..., Uy, V1, V2, ..., Up,))
0<uq,...,;upy <J
0<01,4.050py <J
P1

o1 Wist

p1 p2
> Z H P(fi(l) = u;) H P(fz@) = v;)
0<uy,...,up <J i=1 i=1
0<v1,e50py <J
P1 =t
i=1 ¢
p1
> Py e =t) -
i=1
Since € > 0 is arbitrary, by Lemma 1, the result follows. n

In the next lemma, we derive a lower bound of a particular event, defined below. This
lower bound will be used in proving Theorem 1.

Definition 2: For any K > m, define AS(K ) as the collection of all strings consisting of 0’s
and 1’s, of length v and having exactly a 0’s, such that

(a) the number of 1’s before the first occurrence of 0 is at least K,

(b) the number of 1’s after the last occurrence of 0 is at least K,
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(c) the number of 1’s between any two occurrences of 0’s is at least K.

For the initial condition x € N,,, the probability of observing any given string s €
AS(K) is given by:

y—m—a(m+1)

bn(3,0,) 1= (@) (B2 = 2)) (1= o) (1) (6)

where hy,(2) := [175! Py () Where fp,(2) := x and fi(2) := fru(f7,(2)) for = € Ny,

For a string s € AS(K), let 5y be the number of 1’s before the first occurrence of 0, 3,
be the number of 1’s after the last occurrence of 0 and 3; be the number of 1’s between the

ith and (1 + 1)th occurrences of 0 for i =1,2,...,a — 1.

e Caser <k —1: Define

Bi:=(08i—(k—r—1)) mod (r+1)fori=0,1,...,a.

)

Clearly 0 < ! < r. Set Sj(-l)(s) = #{z Bl = j} for j=0,1,...,r, then 3>7_, S](l)(s) =
a. Define the event

B, (K, up,uq,...,u,) = {S € AS(K) : S(-l)(s) =u; for j=0,1,... ,T}.

J
o r
So, we must have oo = >77_ u;.

e Case r > k: Define
By =By mod (r+1).

Having specified gy, 81, ..., 5., define

;. JBixn mod (r+1) 5 <k
Biv1 = (@,H —(r— 3{)) mod (r+1) if 5/ > k.

Set Sj(z)(s) = #{i S ]’} for j =0,1,...,7. Here also, >7_, Sj(-z)(s) = «. Define the
event

Cy(K, ug, .o U1, V0, « - - Vp) 1= {s € AJ(K) : SJ@)(S) =u;for j=0,1,...,k—1

and SJ(-Q)(S) =vj_y forj=kk+1,... ,r}.

_ k-1, r—k .
Here, we must have a = o uj + ijo ;.

The following lemma gives a lower bound of the probability of the events defined above.
When r < k—1, we choose K = K(r) = (k—r —1) +to(r+ 1) where t, > 1 is so large that
K > m. When r > k, we choose K = K(r) = to(r + 1) so that to(r +1) > m.
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Lemma 3: (a) For r < k — 1 and given non-negative integers g, u1, . . ., u, and n such that
n>to(1+ Y0y u;), define y(n) = (k—r—1)+n(r+1)+ 37 Oul(k:—kz—r) Then for any
x € N,,, we have

n — to(l + Z:ZO uz) —f- Z;ﬂzo Ul>'
Toui!(n—to(1+ Tou))!

P, (Bv(n)(K, Ug, U, - . . ,ur)) > Om (’y(n), iui, :v) ( (7)

(b) For r > k — 1 and glven non- negatlve integers ug, Uy, ..., Ug_1,V0, V1, ..., Up_g and

n such that n > to + to g u; + (1 +to) S02F vy + 1, define y(n) = k+ (n — 1)(r + 1) +

" Y (i +1). Then for any z € N,,, we have

P, (C',y(n)(K, UQ ..oy Up—1, Vg, - - - ﬂh«—k)) > Om (v(n), ’le u; + gvi, x)

(”_1_@0"‘150250“1 (1+to) iy vi) + i wi + Zfovz)
H o T Ovl (n—l—(tg—i-toz o+ (o + 1) X Ovz))

Proof: As we have noted, the probability of any string is independent of the positions
of the 0’s and is given by (6). So, by multiplying this with the number of strings in
By (K, ug, ..., uy) and Cyu) (K, ug, ..., uk—1,0, ..., V) respectively, we get the proba-
bility of the respective events. Now we describe a method for obtaining a lower bound of
the number of strings in the respective events.

(a) We define r 4+ 2 objects as follows: Oy = 011---1,0; = 1011---1,....0, =

K K

1---1011---1and O,y =1---1.
—_— —— ——

r K r+1

First, we put K 1’s in the beginning of the string. Next we distribute u; objects of type
O, fori=0,1,...,7 and (n —to(1 + X/_u;)) objects of type O,;; in any way we like. It is
evident, from the construction of the objects, that any arrangement given above will result
in a string in By, (K, u, . .., u,). Thus the number of arrangements of the above objects
will provide a lower bound of the number of strings in By, (K, uo, . .., u,). The number of

arrangements is given by (n — to(1 + Yi_u;) + Y, Ui)!/(H;":O wil(n —to(1 + Xi_gui))! )
This proves part (a).

(b) Here we define the objects as follows: Op =011---1, Oy =1011---1, ..., O
——— ——

K K
—_— W—/ H,_/H,_/ —— —— ——
k—1 K r—k K k r—1—k K
1---11---1011- 1andOr+1f1 1.
k r—k K r4+1

First, we put K 1’s in the beginning of the string. Now, we distribute u; objects
of type O; for 1 = 0,1,.. k — 1 and 'UZ objects of type Ogy; for ¢ = 0,1,...,r — k and
(n — 1 — (to + to XFJus + (1 4 o) ZiZFv;)) objects of type O,,;. Again, it is evident
from the construction of the objects that any arrangement of the objects will result in a
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string in Cyn) (K, uo, . . ., Ug—1, 0, - .., Ur—k). Thus a lower bound of the number of strings
in Cyn) (K, uo, - - - Ug—1,V0, - - -, Vp k) is obtained by counting the number of such possible

arrangements, Wthh is given by (n—1-— (to + to S uy + (14 to) S0zhvy) + Sty +
s gvz)'/(nk oluzl I1;= gvz (n—1—(to+ tOZ 0 u; + (to +1) 2272 gvl))') L

Now we are in a position to prove the Theorem 1.

Proof: (a) Fix any t > 0. We consider the collection of events {Bw(n)(K, UQy Uy e ey Up)

u; > 0,t =" jui(k+i— r)} Clearly, these events are disjoint. By Lemma 2, it is enough
to show that for any = € N,,,

liminf]P)m(Tn(k, r)—(k—r—1)=n(r+1) =t,Byu (K u,ui,. .. ,ur))

n—oo

> H exp(—Agm_ 1)(/\2m—1)ui.

w;!

It is clear that if w € By (K, uo,u1,...,u,), To(k,7) = (k=7 —1) +n(r+1) +
Siouilk+i—r)=(k—r—1)+n(r+1)+tand y(n) = (k—r—1)+n(r+1)+t. Thus,

{Tn(/{},T’) —(k=r—=1)=n(r+1) =t, Bym) (K, u, u1, . .. ,ur)} = By (K, ug, us, . .., uy). So,
by part (a) of Lemma 3, we have

Py (7a(k,r) = (k=7 = 1) = n(r +1) = t, By (K, ug, ua, ..., uy))

r (n —to(1+ Xiw) + X UZ)!
> dn(o0) e 2) wil(n —to(1+ X u))!

Oor_ i) n(r+1) (i ui)
= (]_ — p2m_1> (me_l) (]_ + 0(1)) X m (]_ + 0(1))

_ ﬁexp(—)\zm_l)(kw_l)“i

as n — oQ.
1=0

This establishes part (a).

For part (b), fix any ¢ > 0. Consider the collection of events {C’y(n)(K, Ug, Uy .- .
Uk—1, V0, U1y« -+ s Up ) U, U5 > = Y o wi(l + 1)} Again these events are disjoint.

Further, we have {Tn(k, r)—k—(n—1)(r+1) = t, Cym) (K, ug, u1, . . ., Up—1, Vo, V1, - - - ,vrk)} =
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Cyomy) (K, ug, ua, . . ., Up—1, Vg, V1, - . ., Ur_i). Therefore, by part (b) of Lemma 3, we have

Py (7al(k,7) =k — (n = 1)(r + 1) = ,Cyo (K, tg, ..., U1, 00, -, Uyt )
(n—l—(to—i—toz o wi + (14 to) zovz)—i—zkouz—i—zzovz)
HfouzHfovl(n—l—(to—kttoOu, (to—i—l)Zfovl))

G (v(n Zw Z%)

=:(1—4hm1)61 °“+Zl°”l(pwm1)"“+”(1-%o<w)

n(Ziﬁol wit Yy i) (1 N 0(1))

H 0 ul H'L =0 /Ul
k—1 Cr—k ,
_A mo__ A mo__ B _A mo__ A mo__ /U’L
7 e )0 ) T (A 1)) e
i=0 u;! i=0 vil
This, by Lemma 2, completes the proof of the Theorem. m

Remark 1: Since the limiting distribution is independent of the initial condition, we can
assume any distribution on the initial conditions. Suppose that u is the probability distribu-
tion on {0, 1}™. As we have already discussed, p can be identified as a probability measure
on N, by the mapping (zg,Z1,...,Tm_1) = T = Z?:(]l 21; where each z; € {0,1}. Let
P, be the probability measure governing the Markov chain with initial distribution p. From
theorem 1, we can easily conclude that, under P,

r

@  mkn) = (k=r=)-nr+1) > & vhenr<k-1

p;-s

@)  Talkr)—k—(n—1)(r+1) = g§>whenr>k—1

1=0

by first conditioning on x € N,, and then summing over all possible values of x € N,,,. The
random variables, &(1) and 51(2) are as defined in the Theorem 1.

4. Central limit theorem

In this section, we prove the central limit theorem for N, ;. , and obtain the uniform rate
of convergence for the central limit theorem. The result can be generalized for a wider class
of processes; however we concentrate only on the m™ order Markov chain set-up described
in this paper.

We define two new sequences of random variables: the first one, Y,,, captures the
sequence of 1’s observed in last k trials (going back from trial n) and the second one, Z,,
keeps track whether the end point of the last r-look-back run of length k is within r trials
(going back) from the trial n. Both these random variables assume values in finite sets.
Further, the random vector (Y,,, Z,) jointly form a homogeneous Markov chain taking values
in a finite set (for sufficiently large n). Next, we translate the description of r-look-back
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runs of length &, from the original random variables {X,,} to the new set of random vectors
{(Y,, Z,)}. Further, the newly defined Markov chain will be a irreducible chain; hence will
satisfy the properties of ¢-mixing sequence. This allows us to apply the central limit theorem
and the rate of convergence results for the ¢-mixing sequence to this case to yield Theorem
2.

Define s = max(k,m). Set X_,, = X_,,_1 = -+ = X_441 = 0 provided s > m. Define
a sequence of random variables Y,, as follows:

s—1
Yo=Y 2X,_;

Jj=0

for n > 1. Since X; € {0,1} for all 7, Y,, assumes values in the set N;. It is clear that Y,
captures the last s observations {X,,, X,,_1,..., X;,_s11}. Indeed, from the binary expansion
of Y,,, one can easily retrieve the values of X,,’s.

Since the sequence of random variables X, is stationary and form a m™ order Markov
chain, we have that the random variables {Y; : ¢ > 0} form a homogeneous Markov chain with
initial distribution ¢,, where ¢, is the Dirac measure at x € N,,, and transition probabilities
given by

D6y (o) if y1 = fs(vo)
]P)(Yn-i-l = y1|Yn = y0) =q1- Db, (o) if Uy = gs(yO)
0 otherwise

where 6, : Ny — N,, is given by 6,,(z) = x (mod 2™).

Let N/ = {0,1,2,...,2"7'}. Now, we define another sequence of random variables
{Z,} taking values in the set N/. Set Z, = 0 for n < k. For n > k, we define

2701 (mod QT) if L1 >0
Ly = .
1{Y,, (mod 2F) =2F —1}  otherwise

where 1{Y,, (mod 2F) = 2¥—1} is the indicator variable for the event {Y;, (mod 2%) = 2¢—1}.

Now, for all n > s, the joint distribution of (Y}, Z,,) is Markovian since Y,, is Markovian
and independent of {Z; : ¢ < n — 1} and the value of Z,, depends only on the values of Z,, 4
and Y,. The transition probabilities are easy to compute: for yo,y1 € Ns, 20,21 € NJ, we
have

P(<Yn+17 Znt1) = (Y1, 21) | Yo, Zn) = (90720))
= ]P)<Zn+l = Zl‘Yn—H =1, (Yn, Zn) = (yo, ZO)>]P)(Yn+1 = y1|(Yn> Zn) = (yO>ZO)>
= P(ZnJrl = 2|Yop1 =y, Zn = ZO)P(YnH = |V, = Z/O)-
Note that P(Zn+1 = 2|Y1 = 0, Zn = zo) is a deterministic function taking values in
{0,1}. We also assume that p, > 0 for all x € N,,. Therefore we can conclude that

the sequence of random variables {(Y,,, Z,) : n > s} is a homogeneous Markov chain with
transition probabilities specified by the above formula. However, not all states of Ny x N/
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are feasible for the Markov chain {(Y,,, Z,) : n > s}. For example, the state (0,1) can never
be reached. Therefore, we need to restrict our attention to a smaller set.

Let S be the collection of all the feasible states, i.e., all states of Ny x N/ which can
be reached by this Markov chain. Formally, we define S := {(y, z) : (0,0) ~ (y, 2)} where
(y1,21) ~ (Yo, 22) implies that (ys,29) can be reached from (y;,21) (in the usual Markov
chain sense). Since 1 > p, > 0 for all x € N,,, it is easy to see that if (0,0) ~ (y, 2), then
(y,z) ~ (0,0). Therefore, if we restrict our attention to the set S, we get an irreducible
Markov chain. More formally, define the following stopping time:

75 :=inf{n >1:(Y,,Z,) € S}. (9)

Now, the process after the stopping time, i.e., {(Y,,Z,) : n > 7¢ + 1}, using the
strong Markov property, is a homogeneous, irreducible Markov chain with state space S
with transition probabilities as specified. The initial distribution of this chain is given by
the distribution of the random variable (Y, Z;,) starting from = € N,, i.e., the measure
p® on & C N, x N/ where

WOy, 2}) = B((Yrg = 4, Zrg = 2)[Yo = 2) for (y,2) € &.

Further, observe that 7¢ < s almost surely. Indeed, suppose that (y, z) is any possible value of
(Y, Zs) which has been obtained through the observations X; = x1, Xo = x9,..., X = .
Now, for any n > 7¢ with ¥,, = 0 and Z, = 0, the probability of the event {X,;; =
21, Xpto2 = Toy ..., Xpyrs = xs} is positive. Clearly, in that case, YV, s = y and Z,,.5 = z.
Therefore, (y, z) € S which implies that (Y, Z;) € S.

Note that R;(k,r) = 1 if and only if Z; = 1 for any ¢ > 1. Therefore, we may define
Ri(k,r) = 1{Z; = 1} for i > 1. Now, we claim that {R;(k,r) : i > 7¢ + 1} is a ¢-mixing
sequence. Since {(Y;, Z;) : i > 1g+1} is an irreducible homogeneous Markov chain with finite
state space, it is a ¢-mixing sequence with mixing coefficients given by ¢, = Cp™ for n > 1
where C' > 0 and 0 < p < 1 are constants. Since, R;(k,r) is function of Z; only, the same
mixing coefficients will satisfy the mixing condition for the sequence {R;(k,7) : 7 > 79+ 1}.

However, note here that {R;(k,7) : i > 7¢ 4+ 1} need not be a stationary sequence
of random variables. Babu, Ghosh and Singh (1978) have studied the convergence rates of
central limit theorem for non-stationary ¢-mixing sequences. We state theorem 1 of Babu,
Ghosh and Singh (1978) here for the sake of completeness.

Theorem 3: (Babu, Ghosh and Singh) For a ¢-mixing sequence {X,}, let S,, = > | X,
o2 = Var(S,) and F,(t) = P(S, < to,). Suppose that

E(X,) =0 foralln>1, (10)
> 6% < oo, (11)
n=1

inf n*1/2an > 0, (12)
n>1

and for some ¢ > 0 and M > 1

E(|X,|*™) < M, foralln > 1. (13)
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Then,

sup | Fy(t) — ®(t) |= O(n" log )
teR

where v(c) = 2¢*/(6 + 5¢*) and ¢ = min(1, ¢).

We will use the above result to prove the Theorem 2. Let us define, for i > 79 + 1,
Ri(k,7) = R;(k,7) — E(R;(k, 7))

as the centred sequence of random variables. It is clear that the conditions (10), (11) and
(13) of above result holds with ¢ = 1. Since ¢ = 1, we have that v(c) = 2/11. To prove (12)
we proceed as follows:

Define a sequence of stopping times in the following way: (o := inf{n > 75 : (Y}, Z,) =
0} and for i > 1, set ¢; := inf{n > ¢;_1 : (Y, Z,) = 0}. Further define a sequence of random
variables, Uy := Zg‘):TSH Ri(k,r) and for i > 1, U; := Zg":@flﬂ Rj(k,7). In the following
lemma, we prove independence of the collection of random variables {U; : ¢ > 0}.

Lemma 4: The collection of random variables {U; : t > 0} are independent. Further,
{U; : t > 1} are identically distributed.

We will proceed to prove theorem 2 assuming the result of Lemma 4 and prove this
lemma in the end. Define, N(n) := inf{t : {; > n}. Next we need the following result

Lemma 5: )
Var(3h_, . R(k, 7))

Jj=7s+
n

—(Ciasn— o

where C] > 0 is a constant.

Proof: Let us define N , = S5V Ri(k,r) = Uy + Z;-V:(?) U;. Thus, we have,

n,k,r J=Ts+1
N(n)
E(Nxe) = EUo) +E(D_ Uj) =E(Uo) +E(N (n))E(U7)
=1
N(n)
Var(N;,.,.) = Var(Up+ > Uj)
=1

= Var(Up) + E(N(n))Var(Uy) + Var(N(n))E(U?).

The stop times {(; : t > 0} represent the visits of the Markov chain to the state (0,0).
Thus it is a renewal event. So, N(n) represents the number of renewals till time n — 7g.
Since 7 < s, we have

ENM) |, ¢ g Var¥(m)

n n
where Cy, C3 > 0 (see Feller (1968)). Thus, we have that

Var(Nr/L,k,T)

n

— C3asn— o0

— (y for some constant C; > 0. (14)
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Now, we have,

Var( Zn: Ri(k,r)) — Var(N,, )

j=1s+1

CN(n)
< Var( > R;(k;,ﬂ) +2

j=n+1

CN(n)
COV(Z Ri(k,7), n,“,)‘

j=n+1

Cnm 1/2
< AE(G) +2 (Var( > RQ-UW")) Var (Nékr)>

j=n+1
for some constant C5 > 0. This coupled with (14) proves the Lemma. O

Now, we are in a position to prove the Theorem 2.

Proof: For n > s, we have that
Nn,k,'r - E(Nn,k,r)
Var(Nn k 7‘)
it Bk r) Yt Rilk,r) SN Rk, )

\/ Var(N, k 7n) Var(Ny k.r) Var(Ny, k.r)
OSBRIk SERGRkr)  VarEE Rikn) SE Rk
\/Var (Npjer) \/Var (ot R;(k,r)) Var(N,, i) Var(N, ;)

Y e Ri(k, r)
VVar(SE Rik, )

= Ey+Ey+ B3+

where

ity Bi(k,r)

E1 —
Var(Nn7k7,«)
E2 — _Z;rij:lfl R;(k;7r)
Var(Nn,k,r)
TS+n
E3 _ (i 1 Zzsrs—l—l R;(k,’f‘)

VVar(SiEE | Rl(k, 7))

with 02 = Var(N,, ) and (0/,)? = Var(zzijsnﬂ Ri(k,r)).
First, using Lemma 5, we show that

n"Y2%¢" — Cs as n — oo
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where Cg > 0 is a constant. Indeed, we have

‘( ) Var(Nnkr)

Ts+n TS+n
< Var( ) Ri(k,r))+2|Cov( > Ri(k,r),Ny;,)
j=n+1 j=n+1

using Lemma 5 and the fact that 7¢ < s. This implies the condition (12) of Babu, Ghosh
and Singh (1978) is satisfied. Hence, using their result, we have

sup = O(n"Y"logn). (15)

teR

P ( N R < ta;) o)

1=75+1

To conclude the result of the Theorem 2, we need to show that for some K > 0,
P(|Ey + Ey + Es| > Kn~Y"logn) = O(n %" logn).

Note that, using a similar argument as above, we get
o
2 5 (Cgasn— o0
n

where Cg > 0. Thus, we have, for constants Cy and Cg, |E1| < Con™'/2 and |Ey| < Cion~Y/2.
Finally, again using similar arguments, |0’ /o,, — 1| < C;yn~/2. Thus, for n sufficiently large,
we have,
P(|Ey 4+ Ey + Es| > Kn~?*logn)
< P(|Fs] > K'n"?"logn)

< ( ZITS:S”_FI R;(k, T) ‘ = K"n1/2_2/11 log n)

\/Var :Sjsn+1 Ri(k,r))
TS+n /
< ®(K"'nM* 2" ogn) + 2sup |® iz Ak, 1) <t
teR \/Val" Zsisn“ Ri(k,r))

= O(n’Q/11 logn)

using (15) and property of the normal distribution function, where K’, K are positive con-
stants. This proves the theorem. O

Now, we prove the Lemma 4.

Proof: It is clear, from the definition of Uy, that Uy is determined by the process {(Y}, Z;) :
Ts+1 <35 < (b, de, Upisa Fy, =0(Y;,Z;) : 79+ 1 < j < () measurable random
variable. Further, for ¢ > 1, the random variable U; is determined by the process {(Y}, Z;) :
J > -1+ 1}. Therefore, the sequence of random variables {U; : i > 1} are measurable
with respect to the sigma algebra generated by {(Y;,Z;) : 7 > (o + 1} = F+. Now, the
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conditional distribution of the process {(Y;, Z;) : 7 > (o + 1}, given the process up to time
Co(F¢,), using the strong Markov property, is same as that of {(Y;,Z;) : 7 > 0} with the
initial condition that (Yy, Zo) = (0,0). Therefore, it is independent of the process up to time
(o. Hence, it is independent of the random variables which are measurable with respect to
the process {(Y}, Z;) : j < (o}. Thus, Uy is independent of {U; : i > 1}. Now this argument
can be carried out inductively to prove the result. Further, the distribution {U; : i > 1}
depends only on the initial condition (Y, Z¢,) = (0,0) and transition matrix of the Markov
chain. Since, for any ¢ > 1, the sequence {U; : j > i} will have the same initial condition
((Ye, 1, Ze,,) = (0,0)) and the same transition probabilities, we have that {U; : i > 1}

are 1dentlcally distributed. However, the initial condition of the sequence {U 24> 0} is
given by the distribution of (Y., Z; ) There is no reason to expect that, (Y., Z,,) = ( 0).
Therefore, Uy may have a different dlstribution. m

5. Simulation results

In this section, we provide some simulation results exhibiting the goodness of the
approximation in the central limit theorem. These results have been obtained for a Markov
chain, with the transition matrix P given by

0.6 0.4
P= ( 0.2 0.8 ) ‘
Simulation has been performed for n number of trials where n = 50,100,500 and 1000.
For k = 4 and r = 2, the values of IV, 4o have been computed. For each choice of n, the
experiment is repeated 10000 times and then the mean and the variance of N, 42 have been
obtained. Normalizing these 10000 observations, cumulative probability histograms have
been drawn for a grid of 0.1 using the computer package GNU PLOT. The smoothed version
of the histogram have been plotted using bezier smoothing algorithm. From the following
plots, it is indeed evident that the smoothed version of the cumulative probability histogram

is a good approximation of the normal probability distribution function (®(x)) even for value
of n as small as 50.

0.9 - o) — 4 0.9 - o) — m
0.8 = Cumulative 7 0.8 - Cumulative Il
s Pﬁobablhty B an Pﬁ'obablhty L
: istogram : istogram

0.6 - Cumulative 7 0.6 = Cumulative i

Probability ----
(smoothed

Probability ----
(smoothed

(a) n =50 (b) n =100

Further, we support the findings by illustrating the simulated values of the maximum
difference between ®(z) and P(N,, ., — E(Np k) < 0p2) for —3.0 < 2 < 3.0 and for various
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1
0.9 ) 4
0.8 - Cumulative A
07 L Probability ]
: Histogram
0.6 - Cumulative .
Probability ----
).5 - (smoothe(?) 7

choices of (k,r) and n in Table 1. Here the underlying sequence of random variables consti-
tute a Markov chain with transition probabilities pg; = 0.4 and p;; = 0.8. The table 1 shows

0.9 O(z) —
0.8 - Cumulative
07 L Probability

: Histogram

Cumulative
Probability
(smoothed)

a nice decay of the maximum difference as n grows.

Table 1

Sample | k=4 k=5 k=5 k=6 k=6 k=17 k=38

size (n) | r=2 r="7 r=20 r=>5 r=38 r=3 r=2
50 0.081278 | 0.164263 | 0.060424 | 0.132263 | 0.172504 | 0.127723 | 0.148725
75 0.064522 | 0.134955 | 0.056294 | 0.118998 | 0.140559 | 0.107202 | 0.105870
100 0.050815 | 0.117124 | 0.052313 | 0.092598 | 0.123940 | 0.091438 | 0.093857
125 0.045183 | 0.099382 | 0.041538 | 0.074459 | 0.107547 | 0.082336 | 0.085319
150 0.038893 | 0.083109 | 0.039858 | 0.069004 | 0.090610 | 0.060012 | 0.076902
200 0.036554 | 0.075693 | 0.028927 | 0.067591 | 0.088099 | 0.059561 | 0.062446
300 0.028691 | 0.061773 | 0.025912 | 0.047239 | 0.066568 | 0.047434 | 0.044028
400 0.020599 | 0.049510 | 0.019476 | 0.041114 | 0.060933 | 0.035864 | 0.035205
500 0.019384 | 0.047328 | 0.018392 | 0.039172 | 0.054056 | 0.024733 | 0.025782
1000 | 0.008500 | 0.032516 | 0.009471 | 0.022737 | 0.035285 | 0.022301 | 0.009905
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