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Abstract
Preprocessing of data at the initial stages before assuming any model for the data is a

necessary requirement for observational data. With preliminary data cleaning of raw data in
mind, we introduce a model-free approach based on the eigen-structure of the data matrix to
assess if a particular observation induces multicollinearity or is excessively outlying within the
data. Specifically we look at the eigenvalues and antieigenvalues obtained from the singular
value decomposition of the data matrix or a function thereof. We also study detection of the
outlier induced multicollinearity or outlier induced masking of multicollinearity present in
the data. Usefulness of our approach is illustrated via several examples describing a variety of
situations and for several classical data sets. Emphasis is on data matrix of variables rather
than model matrix, although these approaches can be later used in model based contexts as
well.

Key words: Antieigenvalue; Condition indexes; Eccentricity; Emphasis measure; Multi-
collinearity; Outlying observations.
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1. Introduction

Prof. C. R. Rao was my PhD adviser at the University of Pittsburgh. His teaching
and research both have continued to have a lasting impact on my own academic career.
Throughout his classes, there was always an implicit but very definite message that any
research in statistics should have a definite purpose of understanding and solving some
meaningful and practical problem. Reflecting on this philosophy of Prof. Rao, this article
on a very fundamental first step of data processing is written as a personal tribute to Prof.
Rao and with a purpose of honoring his legacy and place in the world of statistics and science.

Preprocessing of data and data cleaning are essential steps in observational studies
and may involve the steps of detecting freak values, identification of outlying observations,
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choosing the meaningful variables and understanding the underlying dependence among var-
ious variables. Inference can be greatly distorted due to some or all of the above issues and a
substantial body of work has been done in the past to remedy such problems. See for exam-
ple, Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982), Belsley (1991), Khattree
and Naik (1999), Seber and Lee (2003) and Khattree (2019). All of the above referenced
work, except that by Khattree (2019), deal with various model based approaches. While
these are perfectly valid approaches for diagnostics, all being model based, they however,
tend to not look into the very basic structure of the raw data. We think that in order to
gain full understanding of and more insight into data, we must also look at the anomalies
in the data at the very fundamental level, the fundamental level being the patterns and
differences at the level of X’X matrix, where X is our data matrix of all variables under
consideration. This is a fundamental issue in data science, taking a precedence over any
subsequent statistical modeling. This article is a step towards addressing this problem by
looking at the eigen-structure of the data itself.

In principle and in general, X may be either a data matrix or a model matrix (in
which case, we will use the notation X∗ to distinguish it from the raw data matrix). We
here assume all variables to be quantitative. Since the data cleaning at the preprocessing
stages must assume no specific model and no specific prespecified choice of a few selected
variables, data matrix is a more appropriate context for our work. Therefore it is meaningful
that we rely more on the mathematical structure of the data matrix X than on statistical
evaluation of the model to be fitted. This is especially relevant because for large data sets
at preprocessing stages, data cleaning is equally important for the explanatory variables as
well as response variables and our data matrix may contain both types of variables. This is
the approach adopted by Wang and Nyquist (1991) and Khattree (2019). Other approaches
not exclusively based on matrix structure or model but based on various other tentative
techniques such as aggregate queries are given by Chu et. al (2016), Chu and Ilyas (2016)
and Ilyas and Chu (2019).

As indicated, our approach here will rely on an evaluation of the eigen-structures
of the matrices which are closely related to the singular value decomposition of the whole
or parts of the data matrix. We will focus on the evaluation of multicollinearity and the
detection of outlying observations by evaluating the changes or deviations in these eigen-
structures by the use of eigenvalues and antieigenvalues. While theory of eigenvalues is well
established, recent discussions of antieigenvalues along with various applications thereof are
available in Khattree (2001, 2002, 2003, 2006, 2010, 2014, 2019) and in Tran and Khattree
(2024). Applications have also been presented in Khattree and Bahuguna (2019), Cuntoor
and Chellappa (2006) and Guo et al. (2018).

We must emphasize that data matrix consists of raw data on variables and not on
the mathematical functions thereof. To press that point, although we will not rely on it,
suppose the framework was the standard linear model, namely,

yn×1 = X∗
n×p∗β∗

p∗×1 + ϵn×1 = Xn×pβp×1 + Zn×qγq×1 + ϵn×1,

and suppose the data cleaning was confined to only data on the explanatory variables. The
matrix X may then represent the raw data matrix and Z contains columns corresponding to
other q(= p∗ − p) terms in the model such as intercept, and specific mathematical transfor-
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mations of columns of X e.g. polynomial or cross products terms. When the type of true
model (in terms of which variables, which degree of polynomial or which cross product terms)
and/or its dimension are unknown, our interest should be exclusively in the response variable
and in the matrix of raw data on explanatory variables namely, X and what specific model
will subsequently be used will be a secondary consideration for a later time. In that sense, we
are interested in measuring the multicollinearity and outlying nature of observations within
the raw data and we do not concern ourselves as to what specific model is being assumed.
The problem of model induced outlyingness due to outliers will involve the model matrix X∗

= [X : Z] and the corresponding response variable. A version of this latter problem, albeit
with a very different approach has been discussed in Mason and Gunst (1985).

Clearly, at initial stages, from data cleaning point of view only the former context is
relevant and should always take precedence over modeling and model selection. Further, in
big data context, one encounters a very large number of observations and a large number of
variables, both of which are, presumably, to be used in several different modeling problems
in the future. It is thus imperative to have a clean data where “cleanliness” of the data may
refer to general robustness of the data, with respect to specific observations and/or specific
variables. This is the situation, where we believe our approach has the most currency.

In Section 2, we motivate antieigenvalues of a positive definite matrix as a way to
look into the eigen-structure and as the measures of eccentricities of an ellipsoid for various
cross-sections which in turn provide us a way to measure the interdependences between a
set of variables or multicollinearity.

Section 3 is about identification of outlying observations via antieigenvalues. Towards
the end of this section, we also discuss the issues pertaining to collinearity − outlyingness
where one of these two may cause the other. We provide illustrations of our approaches using
several data sets. Admittedly, to make the understanding of the approach more accessible,
we must use data sets which are not excessively large and are readily available. However,
that does not disqualify our approach for bigger data sets. In fact, those are the situations
where once computationally implemented, these methods will have most utility. Thus in
Section 4, we also consider a relatively larger data set consisting of 1599 observations on the
quality of red wine. We apply our procedure on this data to make a point that procedure is
effective even when we have large data sets and that our approach is able to successfully pick
out the observations which are not easy to identify otherwise but whose presence excessively
corrupts the data and subsequently also affects the modeling steps. Section 5 provides some
concluding remarks.

2. Eccentricities and measurement of multicollinearity

Let, as earlier, Xn×p be a data matrix. Assume rank(Xn×p) = p and let A = X’X.
Consider the quadratic surface, u’A−1u = c where c is a known constant in a p− dimensional
space. Since A is positive definite, this represents an ellipsoid and with an appropriate
orthogonal rotation v = P’u where A = PΛP’ is the spectral decomposition of A, the
surface can be represented as,

v’Λ−1v = c with Λ = diagonal(λ1, λ2, ..., λp)
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or
v2

1
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+ v2
2
λ2

+ ...+
v2

p

λp

= c where λ1 ≥ λ2 ≥ ... ≥ λp > 0.

The eccentricities of certain two dimensional elliptical cross-sections of this ellipsoid
can be quantified in decreasing order as

√
λ1
λp

≥
√

λ2
λp−1

≥
√

λ3
λp−2

≥ · · · . The quantity
e1 =

√
λ1
λp

is the eccentricity measured respectively via the two most elongated and most
compressed directions and hence measures the extreme eccentricity. The next quantity e2 =√

λ2
λp−1

represents the comparison of the next two most elongated and most compressed
directions and similar comparisons continue for r = [p/2] pairs where [p/2] is the integer
part of p/2. Clearly, with λi considerably larger than λp−i+1, i = 1, 2, · · · , r, ei will also be
large, indicating a particular cross section of the ellipsoid highly elongated thereby indicating
the high multicollinearity. A one-to-one monotonically decreasing function of ei =

√
λi

λp−i+1

is the ith antieigenvalue of the matrix X’X namely,

ηi =
2

√
λiλp−i+1

λi + λp−i+1
= 2
ei + e−1

i

, i = 1, 2, ..., r = [p/2]. (1)

It can be shown that 0 < η1 ≤ η2 ≤ ... ≤ 1 are ordered by their magnitudes. Being
a monotonic function of ei, i = 1, 2, · · · , r, these also measure the eccentricities and hence
the multicollinearity in the data. To connect this unfamiliar quantity to a familiar context,
values close to zero for at least one of the antieigenvalues indicate high multicollinearity while
higher values (close to 1) of all ηi, i = 1, 2, · · · , r indicate a lack of multicollinearity. Also,
the most ideal situation namely, η1 = 1, implies that the matrix A = X’X is orthogonal and
then there is absolutely no multicollinearity among the columns of X. Further, greater the
number of ηi that are close to zero, higher is the number of linear near-dependencies that
may exist.

Note that X’X and (X’X)−1 share the same set of antieigenvalues and hence these r
measures of multicollinearity for the two matrices are equal. It is, in some way, a reasonable
and desirable property in that, multicollinearity, being synonymous to ill-conditioning of a
given matrix, indicates a computational difficulty in obtaining an accurate inverse matrix.
Intuitively, this computational difficulty should be same for the matrix A as well as for its
true inverse A−1 because their eigen-structures are directly related (ith ordered eigenvalue
of inverse of a matrix is the reciprocal of the (p− i+ 1)th ordered eigenvalue of the original
matrix).

A single index of multicollinearity combining all antieigenvalues defined in Equation
(1) can be defined as the generalized antieigenvalue (See (Khattree, 2002, 2003)),

∆ =
r∏

i=1

2
√
λiλp−i+1

λi + λp−i+1
=

r∏
i=1

ηi,where r = [p/2], (2)

which is a function of all antieigenvalues and can be interpreted as an overall measure of
eccentricity. Clearly ∆ is also same for X’X and (X’X)−1. One may alternatively use the
rth root of ∆ which would then be the geometric mean of all antieigenvalues.
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Belsley, Kuh and Welsch (1980) and Belsley (1991) suggest to look at the condition
number ψ =

√
λ1
λp
. They also look at the condition indexes ψ2, ψ3, · · · , ψp, where ψi =√

λ1
λi
, i = 2, 3, · · · , p. Larger values are indicative of possible multicollinearity. Note that

ψ2, ψ3, .., ψp(= ψ, the condition number) are all greater than or equal to 1 with no upper
bound specified. There is apparently no way to decide what constitutes a large condition
index/number. That aside, unlike the sets of antieigenvalues, the two sets of condition
indexes, – for X’X and for (X’X)−1, – are different from each others. Specifically these
are {

√
λ1/λ2] ≤

√
λ1/λ3 ≤ ... ≤

√
λ1/λp} and {

√
λp−1/λp] ≤

√
λp−2/λp ≤ ... ≤

√
λ1/λp}

respectively.

How useful and practical are the indexes defined in Equations (1) and (2)? This
can be best explained and demonstrated by applying them on real data sets. We will thus
illustrate the utility of these indexes by first applying them to four data sets of varying sizes,
with different number of variables and of varying features. Specifically, we consider,

(i) A data set on properties of soil given by Kendall (1975) with p = 4, n = 20. The data
collected here is a set of 20 samples of soil for each of which salt content (x1) clay
content (x2), organic matter (x3) and acidity on pH scale (x4) are measured.

(ii) A data set by Daniel and Wood (1980) on clinkers with p = 5, n = 14. This data set on
clinker compounds was collected with a purpose to study their effects on amount and
rate at which heat evolves during cement hardening. The independent variables are
weight percent of SiO2(x1), Al2O3 (x2), Fe2O3 (x3), CaO (x4) and MgO(x5). The data
are compositional in that ideally their sum should add to hundred percent. However
possibly due to impurities and also due to round off errors, these variables do not
add to hundred percent (in many cases, in fact, they add to much more than hundred
percent and thus cannot be fully explained by round off errors). This data set has been
extensively analyzed by Chatterjee and Hadi (1988).

(iii) A data set due to Chatterjee, Hadi and Price (2006) with p = 6, n = 40. This data set
with six predictors (x1 through x6) is given in Chatterjee, Hadi and Price (2006) as Ta-
ble 4.8 (p. 128) and as part of Exercises 4.12-4.14. No detailed description is available.
However, data set was used to illustrate the strong presence of multicollinearity.

(iv) A data set due to Rao (1948) on cork deposits with p = 4, n = 28. This classic data,
more easily available in Khattree and Naik (1999), pertains to the cork deposits in four
directions (North, East, South and West), denoted respectively by x1 through x4 on
twenty eight trees in the Himalayan range. These latter authors have extensively stud-
ied this data set in various contexts including the detection of outlying observations.

Later in Section 4, we consider a very large dataset as well. The above four data sets,
being of manageable size to include here, are given in the appropriate columns of Tables
1-4. In each case, the question is, how well behaved, with respect to multicollinearity,
the particular data set is. Thus, we calculate the antieigenvalues ηi as well as generalized
antieigenvalue ∆ in each case. We will work with rth root of the generalized antieigenvalue
as it is essential to bring this measure on equal footing when comparing multicollinearities of
various data sets with different number of variables and this measure, as the geometric mean
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of all antieigenvalues, does so. To make results more readable, all values of antieigenvalues
and generalized antieigenvalue in various tables are multiplied by 100. Smaller values indicate
more severe presence of multicollinearity.

Table 1: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Kendall’s data, r = 2.]

Deleted x1 x2 x3 x4 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . 4.58 93.42 4.28 20.70
1 13.0 9.7 1.5 6.4 4.56 95.16 4.34 20.82
2 10.0 7.5 1.5 6.5 4.47 94.49 4.22 20.55
3 20.6 12.5 2.3 7.0 4.68 94.39 4.42 21.02
4 33.8 19.0 2.8 5.8 4.15 87.77 3.64 19.07
5 20.5 14.2 1.9 6.9 4.69 94.68 4.44 21.06
6 10.0 6.7 2.2 7.0 4.58 93.18 4.26 20.65
7 12.7 5.7 2.9 6.7 4.61 91.43 4.22 20.53
8 36.5 15.7 2.3 7.2 4.78 92.81 4.44 21.07
9 37.1 14.3 2.1 7.2 4.58 93.91 4.30 20.74
10 25.5 12.9 1.9 7.3 4.58 93.54 4.29 20.70
11 26.5 14.9 2.4 6.7 4.72 93.07 4.39 20.95
12 22.3 8.4 4.0 7.0 4.39 92.18 4.05 20.12
13 30.8 7.4 2.7 6.4 4.59 95.04 4.36 20.88
14 25.3 7.0 4.8 7.3 4.11 90.56 3.72 19.28
15 31.2 11.6 2.4 6.5 4.72 94.03 4.44 21.08
16 22.7 10.1 3.3 6.2 4.48 93.34 4.19 20.46
17 31.2 9.6 2.4 6.0 4.69 95.13 4.46 21.11
18 13.2 6.6 2.0 5.8 4.61 93.12 4.29 20.72
19 11.1 6.7 2.2 7.2 4.54 92.75 4.22 20.53
20 20.7 9.6 3.1 5.9 4.48 93.38 4.19 20.46

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.

Table 5 presents the values of all antieigenvalues along with rth root of general-
ized antieigenvalue. Based on first antieigenvalue as well as on the rth root of generalized
antieigenvalue, the Rao’s data largely seems to be relatively well behaved. The Chatterjee,
Hadi and Price’ data set appears to be suffering from very severe multicollinearity issues.
Other two data sets fall in between. The data set by Daniel and Wood does exhibit a certain
degree of multicollinearity and reasons for its presence are extensively discussed in Chatterjee
and Hadi (1988).

What if the data sets were standardized prior to fitting the model? Needless to say
that eigenvalues and hence the antieigenvalues will change. Does that in any way distort the
picture in terms of multicollinearity? There is no reason to expect an answer one way or the
other since standardization eliminates the differences among variables in terms of degree of
variability in relative terms. See Naik and Khattree (1996), Timm (2002) and Johnson and
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Wichern (2014) for extensive discussions on this aspect of the data. The standardization
would certainly affect the eccentricities of the ellipsoid. Thus, we suggest that one should also
analyze the standardized version of X’X matrix. Table 6 presents the antieigenvalues for the
four data sets in this case. While the conclusions are more or less same as those for original
unstandardized data, we do notice that in each case corresponding antieigenvalues are larger
except in case of cork data and for η2. Understandably, scaling makes the X’X matrix more
“spherical” compared to what it was for the unscaled data. Thus, standardization seems to
help in the sense that standardized data seem to exhibit less multicollinearity.

Note that in this case the most “well behaved” data set among the four is that by
Kendall. First and second antieigenvalues as well as the generalized antieigenvalue are all
highest for this data set. Rao’s cork data has next highest first antieigenvalue as well as the
generalized antieigenvalue. As earlier, the data set by Chatterjee, Hadi and Price exhibits a
very severe case of multicollinearity as seen by small values.

Table 2: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Daniel and Wood’s data,
r = 2.]

Deleted x1 x2 x3 x4 x5 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . . 1.95 60.77 1.18 10.88
1 27.68 3.76 1.98 64.97 2.48 2.02 61.66 1.25 11.17
2 25.96 3.48 5.06 63.15 2.32 2.02 64.30 1.30 11.40
3 21.86 5.75 2.77 65.02 5.04 0.25 61.92 0.16 3.96
4 24.60 5.85 2.80 64.18 2.40 2.02 58.48 1.18 10.86
5 25.04 3.86 2.11 66.57 2.36 1.98 55.75 1.10 10.51
6 22.32 6.17 2.85 66.47 2.43 2.01 62.00 1.24 11.16
7 20.93 4.64 5.74 66.26 2.08 1.95 56.69 1.10 10.51
8 23.54 4.83 7.21 62.03 2.24 2.01 60.36 1.22 11.03
9 21.96 4.65 6.06 64.07 2.32 2.02 60.32 1.22 11.04
10 21.44 8.81 1.19 66.64 2.48 1.64 56.22 0.92 9.60
11 22.48 5.00 7.46 62.72 2.24 2.02 60.39 1.22 11.04
12 21.34 6.07 2.93 67.03 2.56 2.01 62.79 1.26 11.25
13 21.94 5.57 2.68 67.71 2.44 1.99 60.79 1.21 11.01
14 25.72 4.12 6.06 61.05 2.08 2.02 63.92 1.29 11.35

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.

3. Detection of outlying observations

One of the major investigations during the preprocessing and data cleaning is to
identify outlying observations. In a model based approach, this problem is usually dealt
by calculating the leverage values (= xi’(X’X)−1xi where xi’ is the ith observation, i =
1, 2, · · · , n) of each of the n observations. Investigations in Wang and Nyquist (1991) and
Khattree (2019) look at the problem in terms of effect of outlyingness of the observation on
the eigen-structure of the data matrix in the sense how it affects the eigen-structure of the
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Table 3: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Chatterjee, Hadi and
Price’s data, r = 3.]

Deleted x1 x2 x3 x4 x5 x6 η1 η2 η3 ∆ ∆1/r

Obs. (j)

none . . . . . . 0.36 42.61 56.48 0.09 9.56
1 49 79 76 8 15 205 0.37 41.81 57.24 0.09 9.57
2 27 70 31 6 6 129 0.36 43.67 56.82 0.09 9.66
3 115 92 130 0 9 339 0.37 40.03 53.74 0.08 9.25
4 92 62 92 5 8 247 0.37 42.65 56.19 0.09 9.60
5 67 42 94 16 3 202 0.34 42.34 56.62 0.08 9.38
6 31 54 34 14 11 119 0.36 42.86 54.86 0.08 9.47
7 105 60 47 5 10 212 0.36 42.02 59.85 0.09 9.67
8 114 85 84 17 20 285 0.37 42.14 55.16 0.09 9.50
9 98 72 71 12 -1 242 0.37 41.34 56.88 0.09 9.53
10 15 59 99 15 11 174 0.36 42.65 62.72 0.10 9.92
11 62 62 81 9 1 207 0.36 42.31 55.97 0.08 9.46
12 25 11 7 9 9 45 0.35 42.61 54.53 0.08 9.32
13 45 65 84 19 13 195 0.37 42.37 56.33 0.09 9.56
14 92 75 63 9 20 232 0.36 40.48 56.10 0.08 9.38
15 27 26 82 4 17 134 0.35 40.93 58.02 0.08 9.37
16 111 52 93 11 13 256 0.36 43.29 57.51 0.09 9.64
17 78 102 84 5 7 266 0.36 42.65 55.44 0.09 9.50
18 106 87 82 18 7 276 0.37 41.85 56.95 0.09 9.59
19 97 98 71 12 8 266 0.36 43.00 56.86 0.09 9.59
20 67 65 62 13 12 196 0.36 42.62 55.82 0.09 9.50
21 38 26 44 10 8 110 0.35 42.72 55.83 0.08 9.44
22 56 32 99 16 8 188 0.37 43.83 56.94 0.09 9.70
23 54 100 50 11 15 205 0.37 43.93 56.16 0.09 9.67
24 53 55 60 8 0 170 0.35 42.20 56.09 0.08 9.43
25 61 53 79 6 5 193 0.36 42.80 56.23 0.09 9.56
26 60 108 104 17 8 273 0.37 42.33 58.79 0.09 9.73
27 83 78 71 11 8 233 0.37 42.65 56.59 0.09 9.61
28 74 125 66 16 4 265 0.36 44.08 56.54 0.09 9.64
29 89 121 71 8 8 283 0.37 44.22 55.92 0.09 9.67
30 64 30 81 10 10 176 0.37 43.82 56.24 0.09 9.66
31 34 44 65 7 9 143 0.36 42.56 57.09 0.09 9.59
32 71 34 56 8 9 162 0.36 42.83 56.76 0.09 9.61
33 88 30 87 13 0 207 0.36 42.86 57.01 0.09 9.56
34 112 105 123 5 12 340 0.36 41.17 55.36 0.08 9.39
35 57 69 72 5 4 200 0.36 42.60 55.92 0.08 9.47
36 61 35 55 13 0 152 0.36 41.40 56.64 0.09 9.49
37 29 45 47 13 13 123 0.35 42.61 55.07 0.08 9.40
38 82 105 81 20 9 268 0.36 42.32 56.29 0.09 9.49
39 80 55 61 11 1 197 0.37 41.95 56.90 0.09 9.56
40 82 88 54 14 7 225 0.37 42.96 56.76 0.09 9.64

Remark: Most-outlying (none for this data) observations are highlighted in bold. Top row
corresponds to entire data with no deletion. All originally calculated statistics are
multiplied by 100.
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Table 4: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [C. R. Rao’s Cork data]

Deleted x1 x2 x3 x4 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . 8.83 90.24 7.97 28.23
1 72 66 76 77 8.69 90.68 7.88 28.08
2 60 53 66 63 8.94 91.05 8.14 28.53
3 56 57 64 58 8.76 90.05 7.89 28.09
4 41 29 36 38 8.89 89.38 7.94 28.18
5 32 32 35 36 8.70 90.30 7.86 28.03
6 30 35 34 26 8.85 89.65 7.94 28.17
7 39 39 31 27 8.89 91.35 8.12 28.49
8 42 43 31 25 8.82 92.63 8.17 28.58
9 37 40 31 25 8.89 91.62 8.15 28.54
10 33 29 27 36 8.60 88.95 7.65 27.66
11 32 30 34 28 8.89 90.11 8.01 28.30
12 63 45 74 63 8.95 93.76 8.39 28.96
13 54 46 60 52 9.01 90.69 8.17 28.58
14 47 51 52 43 8.88 89.60 7.96 28.21
15 91 79 100 75 8.53 88.95 7.59 27.55
16 56 68 47 50 8.09 93.28 7.54 27.47
17 79 65 70 61 8.76 90.17 7.90 28.10
18 81 80 68 58 9.06 93.89 8.51 29.17
19 78 55 67 60 8.05 89.64 7.21 26.86
20 46 38 37 38 8.91 89.41 7.96 28.22
21 39 35 34 37 8.87 89.67 7.95 28.20
22 32 30 30 32 8.82 90.04 7.94 28.18
23 60 50 67 54 8.96 90.37 8.09 28.45
24 35 37 48 39 8.73 89.43 7.81 27.94
25 39 36 39 31 8.88 90.15 8.01 28.30
26 50 34 37 40 8.55 88.24 7.54 27.46
27 43 37 39 50 8.26 89.09 7.36 27.14
28 48 54 57 43 8.85 88.07 7.79 27.92

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.
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Table 5: Antieigenvalues ηi values, generalized antieigenvalue ∆ and ∆1/r :
Unstandardized (complete) data. All originally calculated statistics are
multiplied by 100.

Data Set η1 η2 η3 ∆ ∆1/r

Kendall 4.58 93.42 . 4.28 20.70
Daniel and Wood 1.95 60.77 . 1.18 10.88
Chatterjee, Hadi, Price 0.36 42.61 56.48 0.09 9.56
Rao 8.83 90.24 . 7.97 28.23

Table 6: Antieigenvalues ηi values, generalized antieigenvalue ∆ and ∆1/r :
Standardized (complete) data. All originally calculated statistics are multiplied
by 100.

Data Set η1 η2 η3 ∆ ∆1/r

Kendall 63.84 99.61 . 63.59 79.74
Daniel and Wood 11.27 90.58 . 10.21 31.96
Chatterjee, Hadi, Price 0.00 59.36 93.36 0.00 0.13
Rao 27.25 85.42 . 23.28 48.25

data matrix. We here consider the problem in terms of the sensitivities of the antieigenvalues
of X’X matrix to a particular observation. The premise is that when an observation is
outlying, it may be due to considerable changes in the values of one or more variables (or
combinations thereof) that will affect the usual pattern among the variables. This will in
turn show up in the diagonal and non-diagonal elements of the X’X matrix. Such changes
will then have an effect on the eccentricities of the corresponding ellipsoid. Accordingly,
by reverse logic, if the ith observation is not outlying then if X(−i) is the corresponding
(n − 1) × p data matrix obtained by discarding the ith observation from X matrix, the
p × p matrices X’X and X(−i)’X(−i) must not be too different from each other in terms
of their eccentricities. Therefore we compare the antieigenvalues of these two matrices for
every i and identify the observations to which these eccentricities are very sensitive. It must
be emphasized that depending on the situation, the effect of an outlying observation may
manifest on different antieigenvalues and hence one must ideally consider all antieigenvalues
as well as the generalized antieigenvalue.

To illustrate the procedure, we return to our four data sets discussed earlier. Raw
unscaled data are used in each case. For the sake of easy comparison, Tables 1-4 each
present the original data along with the antieigenvalues when the particular observation has
been deleted. As earlier, all antieigenvalues and the appropriate root of the generalized
antieigenvalue have been multiplied by 100.

For the Kendall’s data (Table 1), we observe that deleting the observation number
4 results in both antieigenvalues becoming unusually small. A closer look at the particular
observation shows that corresponding (x1, x2) values are both unusually large for this data
point. Another observation which stands out is the observation number 14 for which the
first antieigenvalue is the smallest and the second antieigenvalue is second smallest. For this
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data point x3 is unusually large while x4 is among the several larger values. Clearly, both
of these observations have substantial effects on the eigen-structure and eccentricities of the
corresponding X’X matrix.

Daniel and Wood’s data set is relatively smaller in size. Yet, it still has two obser-
vations which are deemed outlying. These are observations 3 and 10 respectively and they
stand out essentially due to relatively large x5 value (for 3rd observation) and very large x2
value (for 10th observation) respectively. See Table 2.

In case of Rao’s cork data, the first antieigenvalues are somewhat different when the
19th or 16th observations are discarded. When the 18th or 16th observations are removed, the
second antieigenvalue shows a considerable change. See Table 4. These observations were
identified by Khattree and Naik (1999) as outlying using other techniques. The reasons for
them being outlying are also explained there. However the effect is rather mild.

The data set of Chatterjee, Hadi and Price does not seem to contain any outlying
observation because for all the antieigenvalues in Table 3, corresponding values are not very
different when an observation has been deleted.

To explore further and perhaps in a more definite way than the previous approach
where the relative closeness of antieigenvalues was visually assessed in a table, we may yet
adopt another criterion (Also, see Khattree, 2019) and directly look at the eigen or antieigen-
structures of the matrix

Gi = Ui(X’X)−1Ui’

where Ui is the upper triangular square root matrix of X(−i)’X(−i), defined by X(−i)’X(−i) =
Ui’Ui.

Ideally, if an observation was not outlying then we must expect X’X and X(−i)’X(−i),
to be nearly the same. Thus, Gi in above equation must be “close” to an identity matrix,
for which all eigenvalues and hence all antieigenvalues are 1. Therefore, we may argue that
an observation is outlying if there is considerable departure of these quantities from unity. It
turns out (See Theorem 1 in Appendix) that except possibly for the smallest eigenvalue, all
other eigenvalues of Gi must always be equal to 1. Thus it suffices to look at the departure of
the smallest eigenvalue δi,p or equivalently the smallest antieigenvalue ηi,1 of Gi from unity.

All four data sets are subjected to this criterion as well. This criterion results in
the identification of all outlying observations found previously by our earlier method. As
it turns out, this is a more sensitive criterion in the sense it may also identify many more
mildly outlying observations whose presence was perhaps obscured in our earlier approach
when two antieigenvalues were compared for similar magnitudes. The results are given in
Tables 7-10. Observations have been rearranged by the decreasing magnitudes of the ηi,1
values.

To be specific, Kendall’s data shows observations 4 and 14 with significantly smaller
values of δi,p and ηi,1 compared to other values. This is consistent with our previous evalua-
tion. For Daniel-Wood data, observation numbers 3, 10 and 1 are found to be outlying (due
to relatively larger x5, x2 and x1 values). In case of Cork data of Rao, although none of the



182
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

RAVINDRA KHATTREE [Vol. 22, No. 3

observations was determined to be severely outlying in our earlier analysis, a few more mildly
outlying observations are now found by this approach (Observation numbers 12, 15, 16, 18,
19). This identification is consistent with what was observed by Khattree and Naik (1999)
using various graphical methods such as biplots. Also, in case of Chatterjee, Hadi and Price’s
data, the observation number 3 (due to x3 being relatively larger) and observation number
15 (due to x1 and x2 being relatively smaller) are also identified although their departures
still appear to be subdued. These facts are graphically and more effectively illustrated using
the scree plots given in Figure 1, where a sudden vertical drop, or lack of it, indicates the
presence or absence of outlyingness.

One can also arrive at δi,p or ηi,1 as the yardsticks for outlyingness through certain
other criteria. Specifically, to measure the distance between X’X and X(−i)’X(−i), one may
consider as measures, the eigen or antieigenvalues of X(−i)’X(−i), with respect to X’X (see
Rao, 2005) or alternatively, use the determinant of matrix X(−i)’X(−i)(X’X)−1. In either
case, in view of Theorem 1, the final criterion rests on δi,p and ηi,1.

Computationally, evaluation of eigenvalues δi,p and hence of antieigenvalues ηi,1 is
rather straight forward and in fact, does not even require the explicit evaluation of eigenvalues
or of the square root matrices – issues which can be a severe computational burden if the
data set was large. To be specific, in view of Theorem 1, at most one of the eigenvalues of
Gi(= Ui(X’X)−1Ui’, where Ui is an upper triangular matrix so that X(−i)’X(−i) = Ui’Ui)
is not equal to 1 (in fact, less than 1). In view of Theorem 2, δi,p = tr(Gi) − p + 1 =
1 − xi’(X’X)−1xi. which is simply a quadratic form in the ith data-row.

When using the X matrix, unlike the leverage value calculations, our approach to
outlying observation detection as outlined here is not model based. Polynomial or cross-
product terms which may be important in the model have not been considered and columns
corresponding to these in the X∗ matrix do play an important role in the computation of
leverage values. Thus, δi,p = 1 − xi’(X’X)−1xi is in general not the model based leverage
corresponding to the ith observation (and this may be true in addition to the fact that in
any model based approach, the X matrix contains a constant column corresponding to the
intercept of the model). In view of this subtle difference, Khattree (2019) chooses to call
xi’(X’X)−1xi as Emphasis of the observation xi rather than leverage. It will be same as
leverage only if the assumed model had no intercept and no polynomial or cross product
terms. In fact, that is exactly the point being made here. There may be observations which
are simply different from the rest of the data without any consideration of assumed model
whatsoever and they should be detected and examined at the very early stages of data
cleaning prior to defining any specific model. The clean data may then be intended to be
used as a reference dataset for a number of future studies. Consideration of antieigenvalues
and emphasis measures help us do just that.

Multicollinearity and outlyingness can occasionally go hand in hand. Outlying obser-
vations can sometimes introduce or mask the multicollinearity. Fortunately, antieigenvalues
can be utilized to assess both and hence provide a useful approach to identify “collinearity
- outlying” points. We may measure the collinearity - outlyingness as the relative change in
the antieigenvalues of X(−i)’X(−i) compared to those of X’X. For j = 1, 2, · · · , r,

γi,j = ηi,j − ηj

ηj

(3)
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measures this change for i = 1, 2, · · · , n. A similar measure can be defined in terms of the
generalized antieigenvalue,

Γi = ∆i − ∆
∆ . (4)

The measures in Equations (3) and (4) are computed for all four data sets. Instead
of giving their values in several tables, it may be easier to plot and interpret γi,j and Γi

graphically. Specifically, we graphically identify the collinearity - outlyingness of individual
data points by plotting γi,j (or Γi) against theoretical (normal) quantiles in what is equivalent
to a Q-Q plot. It is so, since the values of the nonoutlying points are likely to be more or
less random (possibly approximately normally distributed). One set of such plots are given
in Figure 2 for the four data sets. The statistics used is ∆1/r.

Table 7: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Kendall’s Data]

Serial No. Deleted x1 x2 x3 x4 δj,p ηj,1
No. Obs. (j)
1 18 13.2 6.6 2.0 5.8 0.93 99.93
2 3 20.6 12.5 2.3 7.0 0.90 99.85
3 20 20.7 9.6 3.1 5.9 0.88 99.80
4 10 25.5 12.9 1.9 7.3 0.87 99.77
5 15 31.2 11.6 2.4 6.5 0.87 99.76
6 16 22.7 10.1 3.3 6.2 0.87 99.76
7 11 26.5 14.9 2.4 6.7 0.86 99.72
8 1 13.0 9.7 1.5 6.4 0.85 99.67
9 7 12.7 5.7 2.9 6.7 0.85 99.66
10 5 20.5 14.2 1.9 6.9 0.82 99.49
11 6 10.0 6.7 2.2 7.0 0.82 99.49
12 2 10.0 7.5 1.5 6.5 0.81 99.47
13 8 36.5 15.7 2.3 7.2 0.81 99.44
14 19 11.1 6.7 2.2 7.2 0.81 99.44
15 17 31.2 9.6 2.4 6.0 0.80 99.39
16 12 22.3 8.4 4.0 7.0 0.78 99.26
17 9 37.1 14.3 2.1 7.2 0.74 98.83
18 13 30.8 7.4 2.7 6.4 0.67 98.10
19 14 25.3 7.0 4.8 7.3 0.58 96.34
20 4 33.8 19.0 2.8 5.8 0.48 93.68

Remark: Most-outlying observations are highlighted in bold.

It is important to interpret these graphs in Figure 2 carefully. Larger positive values
not falling on the straight line pattern indicate an improvement in terms of multicollinearity
when the particular observation is deleted. In other words, these observations when present,
tend to introduce multicollinearity. Similarly, observations with values which are more neg-
ative and away from the overall straight line pattern will tend to mask the multicollinearity.
Thus from the graphs in Figures 2, it is easy to conclude that for Kendall’s data, inclusion
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of observations numbered 4 and 14 tend to mask the problem, if any, of multicollinearity in
the data. A more drastic instance of masking of multicollinearity is vividly seen in Daniel-
Wood data. Observation number 3 clearly stands out at the lower left end of that figure.
The 10th observation also does so and masks some multicollinearity although it is not as
excessive. For Hadi, Chatterjee and Price data, the inclusion of 10th observation somewhat
but not excessively increases the multicollinearity. As observed previously, this data set was
already found to be highly ill-conditioned. Lastly, in case of Cork data, 18th and 12th obser-
vations are towards the higher end. Their inclusion possibly increases the multicollinearity
slightly. However, as we have noted earlier, this data set is relatively well behaved in terms
of multicollinearity.

It must be emphasized that this analysis of multicollinearity-outlyingness is irrele-
vant when with or without the particular observation, various measures of multicollinearity
indicate a lack of it and is of interest only when the data exhibit a situation when the in-
clusion/exclusion of an observation drastically alters that situation and makes the data look
much better or much worse than otherwise. This scenario is well illustrated by observation
number 3 in case of Daniel-Wood data.

4. An evaluation of a large data set: red wine data

So far, we have purposely chosen data sets which could be presented in their entirety
and allowed us to see the differences made by certain observations in the eigen-structure
of the data. Would the large size of data obscure these changes since a single obser-
vation in a large dataset will supposedly have very small fraction of contribution to the
overall structure? While this query is difficult to answer theoretically, we apply our ap-
proach on a relatively large data set available from the UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/) con-
sisting of 1599 observations on the quality of red wine. The four variables considered here
are measurements on, x1 = fixed acidity, x2 = chlorides, x3 = free sulfur dioxide and x4 =
pH for various wine samples.

As a process of data cleaning for such a large data, we will attempt to identify
the observations which cause drastic changes in the eigen-structure using the techniques
described earlier. We also evaluate the multicollinearity-outlyingness. As a representative
subsample, the first ten, middle ten and last ten observations of the dataset are given in Table
11, along with a few cases that we have identified as outlying. Various statistics considered
here have been calculated. Specifically, upon deleting one observation at a time for all
1599 observations, we compute the first and second antieigenvalues, and the generalized
antieigenvalue. As a reference set to compare, we also compute these values for the entire
data without deleting any observation. In view of small magnitudes of certain quantities,
whenever needed, we have reported these quantities upto five decimal places.

Analysis results in four observations which stand out. For the observations numbered
82, 107, 152 and 259, the changes in the first antieigenvalue and the generalized antieigenvalue
are substantial relative to entire data and compared to other cases of deletion. As can be
seen in Table 11 (Columns 6 and 7) for the subsample listed above, compared to entire
data, these quantities hardly change in the cases of one at a time deletions of the other 1595
observations.
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Columns 8, 9 and 10 of the same table also present the values of γi,1, γi,2 and Γi

which measure the collinearity- outlyingness. Clearly for the observations 82, 107, 152
and 259 these values by far stand out. The corresponding negative values indicate that
these observations tend to mask the multicollinearity present in the data. For all other
observations, the corresponding values are minuscule and practically insignificant.

Why do observations 152 and 259 stand out? It is clear that the value of x2 is sub-
stantially larger while the value x4 is substantially smaller compared to other observations.
For observations 82 and 107, it is their large (but not as large as that for observations 152
and 259) x2 values which make them outlying.

One may ask, “Why not just use the leverage function as specified in standard text-
books instead of the approach that we suggest?” If the usual leverage measure is used to
identify outlying observations and if we use the recommended rule to identify outlying ob-
servations as those which have their leverage values higher than twice the mean leverage
(= 2p

n
= 2×4

1599 = 0.005), then that procedure ends up identifying a total of 189 observa-
tions as outlying! As an alternative recommendation, if we just choose those observations
whose leverage values clearly stand out (with an existence of gap between them and rest of
the leverage values) then it will identify observations 152 and 259 (leverages = 0.0806 and
0.0801 respectively) but not the observations 82 and 107 whose leverage values ( = 0.0420
and 0.0416 respectively) are not as prominent compared to others. To keep these tables
manageable, we have not printed all leverage values in Tables 11 and 12. Our approach, al-
though more computer intensive, appears to be much more effective. Automating the above
calculations can make such identifications quick and efficient, especially when the data may
also contain other nonrandom noises such as freak values due to transcription errors.

Table 12 presents the analysis of the same data minus the observations numbered
82, 107 152 and 259. A comparison of corresponding entries in row 0 (i.e., when “Deleted
Obs.=none”) in Tables 11 and 12 shows that the removal of above four observations changes
the statistics in Columns 6 and 7 of Table 11 substantially. Substantially smaller values
in Table 12 suggest that this data set has much more multicolinearity than it originally
showed, which was earlier masked by these four observations. Further, deletion of any of
the remaining 1595 observations causes little change in the values of ηi,1,∆i, γi,1, γi,2 and
Γi, leading to the conclusion that there are no more outlying observations in the data set
(However, an approach based on leverage values still declares 189 outlying observations!).
Also the data set now has no outlying observation induced multicollinearity.

5. Concluding remarks

The work presented here introduces the use of eigen-structure and antieigenvalues for
data cleaning early on after data collection but prior to modeling. This helps us identify and
evaluate the quality of data and identify the possible anomalies within the data. Our work
also supplements existing useful diagnostics techniques and are beneficial in providing the
valuable insights into the data. One possibility to calibrate our proposed metrics may be
via the probability distribution of the antieigenvalues. Some related work by Martin Singull
can be found at https://users.mai.liu.se/maroh70/pres/iclaa2017.pdf .

One important recurring question is whether or not to center and/or standardize the
data before subjecting them to these tools of analysis of antieigen-structure. It is obvious that
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Table 8: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Daniel and Wood’s Data]

Serial Deleted x1 x2 x3 x4 x5 δj,p ηj,1
No. Obs. (j)
1 6 22.32 6.17 2.85 66.47 2.43 0.86 99.72
2 9 21.96 4.65 6.06 64.07 2.32 0.81 99.47
3 12 21.34 6.07 2.93 67.03 2.56 0.81 99.45
4 4 24.60 5.85 2.80 64.18 2.40 0.79 99.30
5 2 25.96 3.48 5.06 63.15 2.32 0.78 99.23
6 13 21.94 5.57 2.68 67.71 2.44 0.77 99.12
7 8 23.54 4.83 7.21 62.03 2.24 0.71 98.50
8 11 22.48 5.00 7.46 62.72 2.24 0.70 98.40
9 14 25.72 4.12 6.06 61.05 2.08 0.68 98.23
10 5 25.04 3.86 2.11 66.57 2.36 0.64 97.55
11 7 20.93 4.64 5.74 66.26 2.08 0.60 96.80
12 1 27.68 3.76 1.98 64.97 2.48 0.54 95.55
13 10 21.44 8.81 1.19 66.64 2.48 0.30 83.89
14 3 21.86 5.75 2.77 65.02 5.04 0.01 23.22

Remark: Most-outlying observations are highlighted in bold.

Figure 1: Scree plots for smallest antieigenvalues of Gi upon deleting an
observation
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Table 9: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Chatterjee, Hadi and Price’s
data]

Serial Deleted x1 x2 x3 x4 x5 x6 δj,p ηj,1
No. Obs. (j)
1 27 83 78 71 11 8 233 0.96 99.98
2 31 34 44 65 7 9 143 0.94 99.95
3 25 61 53 79 6 5 193 0.94 99.95
4 32 71 34 56 8 9 162 0.93 99.94
5 39 80 55 61 11 1 197 0.92 99.91
6 20 67 65 62 13 12 196 0.92 99.91
7 2 27 70 31 6 6 129 0.92 99.91
8 40 82 88 54 14 7 225 0.91 99.89
9 30 64 30 81 10 10 176 0.91 99.89
10 4 92 62 92 5 8 247 0.91 99.89
11 21 38 26 44 10 8 110 0.90 99.86
12 36 61 35 55 13 0 152 0.90 99.85
13 18 106 87 82 18 7 276 0.89 99.84
14 1 49 79 76 8 15 205 0.89 99.84
15 24 53 55 60 8 0 170 0.89 99.83
16 35 57 69 72 5 4 200 0.89 99.83
17 6 31 54 34 14 11 119 0.88 99.80
18 19 97 98 71 12 8 266 0.88 99.80
19 11 62 62 81 9 1 207 0.87 99.78
20 13 45 65 84 19 13 195 0.86 99.73
21 9 98 72 71 12 -1 242 0.86 99.71
22 37 29 45 47 13 13 123 0.86 99.70
23 17 78 102 84 5 7 266 0.85 99.66
24 23 54 100 50 11 15 205 0.84 99.64
25 26 60 108 104 17 8 273 0.84 99.61
26 38 82 105 81 20 9 268 0.84 99.60
27 22 56 32 99 16 8 188 0.83 99.59
28 29 89 121 71 8 8 283 0.83 99.56
29 12 25 11 7 9 9 45 0.83 99.55
30 16 111 52 93 11 13 256 0.81 99.44
31 8 114 85 84 17 20 285 0.81 99.43
32 7 105 60 47 5 10 212 0.78 99.27
33 14 92 75 63 9 20 232 0.78 99.26
34 34 112 105 123 5 12 340 0.78 99.19
35 33 88 30 87 13 0 207 0.77 99.11
36 5 67 42 94 16 3 202 0.75 98.98
37 28 74 125 66 16 4 265 0.75 98.95
38 10 15 59 99 15 11 174 0.73 98.79
39 15 27 26 82 4 17 134 0.68 98.20
40 3 115 92 130 0 9 339 0.67 97.96

Remark: Most-outlying observations are highlighted in bold.
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Table 10: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [C. R. Rao’s Cork data]

Serial Deleted x1 x2 x3 x4 δj,p ηj,1
No. Obs. (j)
1 11 32 30 34 28 0.98 99.99
2 25 39 36 39 31 0.97 99.98
3 22 32 30 30 32 0.96 99.98
4 21 39 35 34 37 0.94 99.96
5 5 32 32 35 36 0.94 99.94
6 6 30 35 34 26 0.93 99.93
7 13 54 46 60 52 0.93 99.93
8 20 46 38 37 38 0.93 99.93
9 7 39 39 31 27 0.92 99.92
10 4 41 29 36 38 0.91 99.90
11 9 37 40 31 25 0.91 99.88
12 14 47 51 52 43 0.90 99.87
13 23 60 50 67 54 0.89 99.83
14 2 60 53 66 63 0.88 99.81
15 3 56 57 64 58 0.87 99.77
16 10 33 29 27 36 0.86 99.74
17 24 35 37 48 39 0.86 99.74
18 8 42 43 31 25 0.85 99.65
19 17 79 65 70 61 0.84 99.63
20 28 48 54 57 43 0.83 99.55
21 26 50 34 37 40 0.81 99.45
22 1 72 66 76 77 0.80 99.35
23 27 43 37 39 50 0.76 99.10
24 12 63 45 74 63 0.75 98.96
25 18 81 80 68 58 0.74 98.86
26 19 78 55 67 60 0.71 98.51
27 15 91 79 100 75 0.69 98.26
28 16 56 68 47 50 0.65 97.65

Remark: Most-outlying observations are highlighted in bold.
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Table 11: Analysis of red wine data: complete data (n = 1599)

Deleted x1 x2 x3 x4 ηj,1 ∆j γj,1 γj,2 Γj

Obs. (j) (×100) (×100)
none . . . . 0.462 0.124 0 0 0

1 7.4 0.076 11 3.51 0.462 0.124 0.01259 -0.00722 -0.00360
2 7.8 0.098 25 3.20 0.463 0.124 0.04972 0.05319 0.02659
3 7.8 0.092 15 3.26 0.462 0.124 0.02127 0.02221 0.01111
4 11.2 0.075 17 3.16 0.462 0.124 0.02282 -0.01682 -0.00841
5 7.4 0.076 11 3.51 0.462 0.124 0.01259 -0.00722 -0.00360
6 7.4 0.075 13 3.51 0.462 0.124 0.01615 -0.00458 -0.00229
7 7.9 0.069 15 3.30 0.462 0.124 0.01886 0.02010 0.01005
8 7.3 0.065 15 3.39 0.462 0.124 0.01720 0.00219 0.00110
9 7.8 0.073 9 3.36 0.462 0.124 0.00872 0.01594 0.00797
10 7.5 0.071 17 3.35 0.462 0.124 0.02458 0.01650 0.00825
82 7.8 0.464 22 3.13 0.453 0.122 -2.00423 -2.00403 -1.00708

107 7.8 0.467 18 3.08 0.453 0.122 -2.06405 -2.06336 -1.03705
152 9.2 0.610 32 2.74 0.445 0.119 -3.83596 -3.89969 -1.96923
259 7.7 0.611 8 3.06 0.444 0.119 -4.02277 -4.00309 -2.02198
797 8.7 0.126 24 3.10 0.462 0.124 0.02903 0.01822 0.00911
798 9.3 0.038 21 3.24 0.462 0.124 0.00023 -0.00877 -0.00438
799 9.4 0.082 5 3.29 0.462 0.124 0.00489 0.06907 0.03453
800 9.4 0.082 5 3.29 0.462 0.124 0.00489 0.06907 0.03453
801 7.2 0.082 26 3.25 0.463 0.124 0.05499 0.06207 0.03103
802 8.6 0.068 8 3.23 0.462 0.124 0.00490 0.03901 0.01951
803 5.1 0.044 14 3.56 0.462 0.124 0.00432 -0.12472 -0.06238
804 7.7 0.114 14 3.24 0.462 0.124 0.00626 0.00741 0.00371
805 8.4 0.084 4 3.26 0.462 0.124 0.00423 0.05255 0.02628
806 8.2 0.052 4 3.33 0.462 0.124 -0.01058 0.02851 0.01426
1590 6.6 0.073 29 3.29 0.463 0.124 0.06490 0.08170 0.04084
1591 6.3 0.077 26 3.32 0.463 0.124 0.05366 0.05161 0.02581
1592 5.4 0.089 16 3.67 0.462 0.124 0.02095 -0.10075 -0.05038
1593 6.3 0.076 29 3.42 0.463 0.124 0.06502 0.07259 0.03630
1594 6.8 0.068 28 3.42 0.463 0.124 0.05875 0.06587 0.03293
1595 6.2 0.090 32 3.45 0.463 0.124 0.07723 0.10128 0.05063
1596 5.9 0.062 39 3.52 0.463 0.124 0.10568 0.18234 0.09113
1597 6.3 0.076 29 3.42 0.463 0.124 0.06502 0.07259 0.03630
1598 5.9 0.075 32 3.57 0.463 0.124 0.07692 0.08773 0.04386
1599 6.0 0.067 18 3.39 0.462 0.124 0.02646 -0.02163 -0.01081

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion.
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Table 12: Analysis of red wine data: after deleting obs. No. 82, 107, 152 and
259 (n = 1595)

Deleted x1 x2 x3 x4 ηj,1 ∆j γj,1 γj,2 Γj

Obs. (j) (×100) (×100)
none . . . . 0.132 0.0793 0 0 0

1 7.4 0.076 11 3.51 0.132 0.0792 -0.10861 -0.12180 -0.060853
2 7.8 0.098 25 3.20 0.132 0.0793 -0.02016 0.07747 0.038792
3 7.8 0.092 15 3.26 0.132 0.0792 -0.04344 -0.03128 -0.015577
4 11.2 0.075 17 3.16 0.132 0.0792 -0.01573 -0.03490 -0.017385
5 7.4 0.076 11 3.51 0.132 0.0792 -0.10814 -0.12132 -0.060614
6 7.4 0.075 13 3.51 0.132 0.0792 -0.10118 -0.10024 -0.050070
7 7.9 0.069 15 3.30 0.132 0.0792 -0.04437 -0.03356 -0.016718
8 7.3 0.065 15 3.39 0.132 0.0792 -0.07958 -0.06261 -0.031244
9 7.8 0.073 9 3.36 0.132 0.0792 -0.07065 -0.10248 -0.051188
10 7.5 0.071 17 3.35 0.132 0.0792 -0.05981 -0.02949 -0.014680
797 8.7 0.126 24 3.10 0.132 0.0793 0.00877 0.03356 0.016842
798 9.3 0.038 21 3.24 0.132 0.0793 0.01014 0.02349 0.011809
799 9.4 0.082 5 3.29 0.132 0.0793 0.02025 -0.00452 -0.002193
800 9.4 0.082 5 3.29 0.132 0.0793 0.02030 -0.00437 -0.002119
801 7.2 0.082 26 3.25 0.132 0.0793 0.01850 0.04528 0.022701
802 8.6 0.068 8 3.23 0.132 0.0793 0.02001 0.00788 0.004003
803 5.1 0.044 14 3.56 0.132 0.0792 -0.11208 -0.11019 -0.055043
804 7.7 0.114 14 3.24 0.132 0.0793 0.01638 0.01733 0.008728
805 8.4 0.084 4 3.26 0.132 0.0793 0.01609 0.00342 0.001776
806 8.2 0.052 4 3.33 0.132 0.0793 0.01011 -0.00048 -0.000178
1590 6.6 0.073 29 3.29 0.132 0.0793 0.08935 0.04278 0.021454
1591 6.3 0.077 26 3.32 0.132 0.0793 0.09028 0.02157 0.010850
1592 5.4 0.089 16 3.67 0.132 0.0793 0.04197 0.02997 0.015049
1593 6.3 0.076 29 3.42 0.132 0.0793 0.09004 0.03221 0.016167
1594 6.8 0.068 28 3.42 0.132 0.0793 0.08935 0.04278 0.021454
1595 6.2 0.090 32 3.45 0.132 0.0793 0.09028 0.02157 0.010850
1596 5.9 0.062 39 3.52 0.132 0.0793 0.09030 -0.00125 -0.000560
1597 6.3 0.076 29 3.42 0.132 0.0793 0.09051 0.03229 0.016210
1598 5.9 0.075 32 3.57 0.132 0.0793 0.08664 0.01229 0.006207
1599 6.0 0.067 18 3.39 0.132 0.0793 0.08434 0.06733 0.033726

Remark: Upon deletion of observation numbers 82, 107, 152 and 259, there are no more
outlying observations. Top row corresponds to entire data (1599 - 4 = 1595 obs.) with no
further deletions.
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Figure 2: Scree plots for smallest antieigenvalues of Gi upon deleting an
observation

the two sets of antieigenvalues will differ for standardized and unstandardized data. Shifting
and scaling have substantial effects on eccentricities of the corresponding p− dimensional
ellipsoids. This is especially so since both the means as well as standard deviations can
be very sensitive to outliers. Naik and Khattree (1996) provide a detailed discussion of
pitfalls of blindly standardizing the data. Our (obvious) suggestion, thus, is to look into
both possibilities since the use of unstandardized and standardized data for the subsequent
modeling purposes are both acceptable practices.

Another natural question one may pose is, how about identification of a subset of s
most outlying observations? How can we assess whether or not a particular subset of obser-
vations as a whole, is outlying? Khattree (2019) has extensively dealt with this issue with
Emphasis as a measure. As it turns out, under that criterion, this problem is equivalent to
sequential identification and deletion of observations, one by one, based on the maximum
outlyingness using the matrices Gi and the method described in the present work. Thus, our
approach here, at least partially eliminates the problem of first determining an appropriate
choice of s and then looking at the computationally intensive task of evaluating the outly-
ingness of all possible nCs subsets of s observations. When antieigenvalues are used as the
criteria, whether or not such a sequential deletion is possible, is an issue that is still needed
to be explored.

The numbers of observations as well as number of variables play important roles and
an observation may have substantially less outlying effect on eigen-structure if it was only
one of the several thousand observations. We see this in case of red wine data when out of a
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total of 1599 observations only four stand out. Thus it is difficult to give a firm and universal
threshold value for the determination of an observation’s outlyingness. For large data sets,
graphical methods and plots such as those given in this work provide a useful approach to
identify such patterns.

The approach is admittedly computer intensive and thus there is a genuine need
for developing an efficient and effective algorithm based on the methodology presented here.
This is an important direction for future work as contemporary data sets are often very large
in terms of number of variables as well as number of data points. We have not addressed
these algorithmic-efficiency issues in this paper. Further research is needed in this direction.

We must also realize that the context here is that of data cleaning for a large dataset
without any assumed model. Such data will often have missing values. With a model-free
approach, it will be difficult to incorporate various types of missingness in our approach.
However, assuming that the missingness is completely at random, our suggestion is to first
impute the missing values appropriately and then perform the data cleaning. Since we intend
to not assume any model on data, an approach to imputation based on empirical copula has
been suggested by Lun and Khattree (2019, 2020, 2024). To what extent the performance
may be affected by imputation is yet another aspect which can be explored via simulation
studies.

What happens if the number of variables is greater than the number of observations?
The genomics data, which very often are inevitably quite noisy, typically have this situation.
How to clean data in such a case is admittedly a difficult problem. However, this situation
allows us to address a very different problem still relevant in the context. Since our approach
is based entirely on eigen-structure and since the nonzero eigenvalues of X’X and XX’ are
same, for “p > n” situation, our approach can perhaps be adopted to evaluate the quality
of variables. Since the interpretations entirely change, this problem needs a further careful
consideration.
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APPENDIX

Appendix 1

Two theorems referred in main text are stated here. These are the special cases of
results given in Khattree (2019) Proofs have been omitted.

Theorem 1. Let X be an n × p matrix with n > p and rank p. Define A =
X’X and Bi = X(−i)’X(−i) and suppose Bi = Ui’Ui where Ui is upper triangular. Then, for
the ordered eigenvalues δ1 ≥ δ2 ≥ ... ≥ δp of Gi = UiA−1Ui’, δj = 1 for j = 1, 2, ..., (p− 1).

Theorem 2. The smallest eigenvalue of Gi = Ui(X’X)−1Ui’ where Ui is the upper
triangular square root matrix of X(−i)’X(−i), defined by X(−i)’X(−i) = Ui’Ui is δi,p = 1 −
xi’(X’X)−1xi.

Appendix 2

SAS code which generated Table 11

/*
data on red wine from :
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Attribute information:

For more information, read [Cortez et al., 2009].

Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)

*/

data wine; *Red wine data;
infile "C:\Users\Desktop\winequality.txt" ;
input y1-y12;
run;
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data wine; set wine;
x1 = y1; *x1 = fixed acidity;
x2 = y5; *x2 = chlorides;
x3 = y6; *x3 = free sulfur dioxide;
x4 = y9; *x4 = pH;
keep x1-x4;
run;
proc standard data=wine mean=0 std=1

out=stndtest;
var x1-x4;

run;
%let mydataset = wine; ***use this to analyze original raw data;
*%let mydataset = stndtest; ***use this to analyze standardized data;

*options nolog; ***suppresses log file**;

%macro multicol(count = );

%do del_row = 0 %to &count;
data uci; set &mydataset;run;
proc iml; use uci; read all into x;
xpx = x‘*x;
if &del_row = 0 then do; smallxpx = xpx; end;
if &del_row > 0 then do;
t&del_row =x[ {&del_row}, ];

smallxpx = xpx - t&del_row‘*t&del_row;end;
call eigen(lambda, p, smallxpx);
create evalues from lambda;
append from lambda;close evalues;
quit;
proc transpose data = evalues out = evaluesvar; run;
data evaluesvar&del_row; set evaluesvar;
anti1 =100*2*sqrt(col1*col4)/(col1+col4);
anti2 = 100*2*sqrt(col2*col3)/(col2+col3);
gen_anti = anti1*anti2/100;
rt_gen_anti = (anti1*anti2)**(1/2) ;
obser = &del_row;
run;
proc datasets library=work nolist;

append base=work.antieig data=work.evaluesvar&del_row force;
run;
proc delete library = work data = evaluesvar&del_row;run;
%end;
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%mend multicol ;
%multicol(count = 1599); ***no. of complete obs = count = 1599;
title;
footnote "Actual values are multiplied by 100";
data wine; set wine; obser = _n_;run;
proc sort data = wine; by obser;run;
proc sort data = antieig; by obser;run;
data combine; merge wine antieig; by obser;run;
******************Calculation of gamma values of Section 3*********;
data gamma; set antieig;

***The numbers below are obtained from the output
when no observations were deleted.;

anti1all = .46228;;
gamma1 = 100*(anti1-anti1all)/anti1all;
gen_antiall = .12419;
gamma2 = 100*(gen_anti -gen_antiall)/gen_antiall;
rt_gen_antiall = 3.52406;
gamma3 = 100*(rt_gen_anti -rt_gen_antiall)/rt_gen_antiall;
run;
proc sort data = wine; by obser;run;
proc sort data = gamma; by obser;run;
data combine2; merge wine gamma;
by obser;run;
data antieigsmall2; set combine2;
if (obser in (0 82 107 152 259) or obser < 11 or obser gt 1589
or (obser > 796 and obser < 807));
run;
data Table11; set antieigsmall2;
keep obser x1 x2 x3 x4 anti1 gen_anti gamma1 gamma2 gamma3 ;
run;
proc export data = table11
outfile =
’C:\Users\khattree\Desktop\DataCleaningTable11OfPaper.txt’
replace; ***Output is stored in the .txt file;
run;
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