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Abstract
In this paper, we consider the problem of estimation of R = P (X < Y ), when X

and Y are dependent. The maximum likelihood estimates and Bayes estimates of R are
obtained based on record values when (X, Y ) follows Morgenstern type bivariate exponential
distribution. The percentile bootstrap and HPD confidence intervals for R are also obtained.
Monte Carlo simulations are carried out to study the accuracy of the proposed estimators.
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1. Introduction

Record value data arise in a wide variety of practical situations. Examples include
destructive stress testing, mateorological analysis, hydrology, seismology, sporting and ath-
letic events and oil and mining surveys. Interest in records has increased steadily over the
years since Chandler (1952) formulation. Let {Xi, i ≥ 1} be a sequence of independent and
identically distributed (iid) random variables having an absolutely continuous cumulative
distribution function (cdf) F (x) and probability density function (pdf) f(x). An observa-
tion Xj is called an upper record if Xj > Xi, for every i < j (see Arnold et al. 1998, p.8). An
analogous definition deals with lower record values. Let (X1, Y1), (X2, Y2),. . . be a sequence
of iid random variables with common continuous joint cdf F (x, y), (x, y) ∈ R×R. Let FX(x)
and FY (y) be the marginal cdfs of X and Y respectively. Let Rn, n ≥ 1 be the sequence of
upper record values arising from the sequence of X’s. Then the Y-variate associated with the
X-value, which qualified as the nth record will be called the concomitant of the nth record
and will be denoted by R[n]. Suppose in an experiment, individuals are measured based
on an inexpensive test, and only those individuals whose measurement breaks the previous
records are retained for the measurement based on an expensive test; then the resulting data
involves record values and concomitants of record values. For a detailed discussion on the
distribution theory of concomitants of record values see, Arnold et al. (1998), Ahsanullah
and Nevzorov (2000), Barakat et al. (2013) and Ahsanullah and Shakil (2013). Chacko and
Thomas (2006,2008) considered the problem of estimation of parameters of Morgenstern
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type bivariate logistic distribution and bivariate normal distribution based on concomitants
of record values.

The joint pdf of first n upper record values and its concomitants
(R(n),R[n]) = ((R(1), R[1]), (R(2), R[2]), . . . , (R(n), R[n])) is given by

f(R(n),R[n])(r(n), r[n]) =
n∏
i=1

f(r[i]|r(i))f1,2,...,n(r(1), r(2), . . . , r(n)), (1)

where f1,2,...,n(r(1), r(2), . . . , r(n)) is the joint pdf of first n upper record values and is given by

f1,2,...,n(r(1), r(2), . . . , r(n)) = f(r(n))
n−1∏
i=1

f(r(i))
1− F (r(i))

. (2)

Now a days the inference on R = P (X < Y ) is studied in many branches of sciences
and social sciences such as psychology, medicine, pedagogy, pharmaceutics and engineering.
In the context of reliability the stress-strength model describes the life of a component which
has a random strength Y and is subjected to a random stress X. The component fails at the
instant that the stress applied to it exceeds the strength and the component will function
satisfactorily whenever X < Y . Thus R = P (X < Y ) is a measure of component reliability.
It has found applications in many life testing problems and engineering. The application of R
in engineering includes deterioration of rocket motors, static fatigue of ceramic components,
fatigue failure of aircraft structures etc. For example, if X and Y are future observations
on the stability of an engineering design, then R would be predictive probability that X is
less than Y . Similarly, if X and Y represents life times of two electronic devices, then R
is the probability that one fails before the other. For more details on applications of R in
engineering see, Nadarajah and Kotz (2006).

The estimation of R has been extensively investigated in the literature when X and Y
are independent random variables belonging to the same bivariate family of distributions.
However, there is a relative little work when X and Y are dependent random variables.
The problem of estimating R when the X and Y are dependent was considered by Abu-
Salih and Shamseldin (1988), Awad et al. (1981), Jana and Roy (1994) and Cramer (2001).
Estimation of R when (X, Y ) follows bivariate normal distribution has been discussed by
Enis and Geisser (1971) and Mukherjee and Saran (1985). Jana(1994) and Hanagal (1995)
discussed the estimation of R when (X, Y ) follows Marshall-Olkin bivariate exponential
distribution. Hanagal (1997) discussed the estimation of R when (X, Y ) has a bivariate
Pareto distribution. Chacko and Mathew (2019) considered the estimation of R = P (X < Y )
for bivariate normal distribution based on ranked set sample. Chacko and Mathew (2020)
considered the estimation of R = P (X < Y ) for bivariate normal distribution based on
record values. In this paper, we focus on estimation of R = P (X < Y ) based on upper
record values and its concomitants, corresponding to a bivariate random variable (X, Y )
which follows a Morgenstern Type Bivariate Exponential distribution (MTBED) with pdf
given by (see, Kotz et al., 2000, P.353)

f(x, y) =


θ1θ2exp(−θ1x− θ2y)[1 + α(1− 2exp(−θ1x))(1− 2exp(−θ2y))],

x > 0, y > 0;−1 ≤ α ≤ 1; θ1 > 0, θ2 > 0
0, otherwise

(3)
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It may be noted that if (X, Y ) has a MTBED as defined in (3) then the marginal distributions
of both X and Y have exponential distributions. The correlation between X and Y is α/4.
As α lies between -1 and 1, MTBED accomodates correlation in the range of (-1/4,1/4).
Exponential distributions are the most popular and the most applied life time models in
many areas, including life testing and reliability studies. Let T1 and T2 be two dependent
components of a system with lifetimes X and Y respectively. Then R = P (X < Y ) is the
probability that the first component T1 fails before second component T2. If (X,Y) follows
a bivariate exponential distribution and the data available are in the form of upper record
values and its concomitants then the methods describe in this paper can easily be used to
estimate R = P (X < Y ).

The organization of the paper is as follows. In section 2, we consider maximum like-
lihood estimation of R and also obtain the bootstrap confidence interval (CI) based on the
maximum likelihood estimator (MLE). In section 3, we consider the Bayes estimation of
R using importance sampling method under both symmetric and assymetric loss functions.
Section 4 is devoted to some simulation studies and in section 5, we give concluding remarks.

2. Maximum Likelihood Estimation

Let (X,Y) follows MTBED with pdf defined in (3), then R = P (X < Y ) is given by

R = P (X < Y )

= θ1

θ1 + θ2
[1 + α

θ1(θ1 − θ2)
(2θ1 + θ2)(2θ2 + θ1) ]. (4)

If we denote θ = (θ1, θ2, α) then we can write R as

R = R(θ).

In this section, we obtain the MLE of R for MTBED using record values and its concomitants.
Let (R(i), R[i]), i = 1, 2, . . . , n be the upper record values and its concomitants arising from
MTBED. Then from (1), the likelihood function is given by

L(θ) = (θ1θ2)n
n∏
i=1

exp(−θ1r(i) − θ2r[i])[1 + α(1− 2exp(−θ1r(i)))

×(1− 2exp(−θ2r[i]))]
n−1∏
i=1

1
exp(−θ1r(i))

.

Then the log-likelihood function is given by

logL(θ) = n log θ1 + n log θ2 − θ1r(n) − θ2

n∑
i=1

r[i]

+
n∑
i=1

log[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))].

Thus we have
∂ logL
∂θ1

= n

θ1
− r(n) +

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

,
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∂ logL
∂θ2

= n

θ2
−

n∑
i=1

r[i] +
n∑
i=1

2αr[i](1− 2exp(−θ1r(i)))exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

and

∂ logL
∂α

=
n∑
i=1

(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

.

The MLEs of θ1, θ2 and α can be obtained as the solutions of the following non-linear
equations

n

θ1
− r(n) +

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0,

n

θ2
−

n∑
i=1

r[i] +
n∑
i=1

2αr[i](1− 2exp(−θ1r(i)))exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0

and
n∑
i=1

(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))]

= 0.

If θ̂ = (θ̂1, θ̂2, α̂) is the MLE of θ obtained by solving the above nonlinear equations, then
the MLE of R is given by

R̂ML = θ̂1

θ̂1 + θ̂2

1 + α̂
θ̂1(θ̂1 − θ̂2)

(2θ̂1 + θ̂2)(2θ̂2 + θ̂1)

 . (5)

2.1. Asymptotic confidence interval

In this subsection, the asymptotic confidence interval of R is obtained. Towards this,
we consider the observed information matrix of θ. Let

I(θ) =

I11 I12 I13
I21 I22 I23
I31 I32 I33

 ,
where

I11 = ∂2 logL
∂θ2

1
= −n

θ2
1
−

n∑
i=1

2αr(i)(1− 2exp(−θ2r[i]))

×
(

1− αr(i)exp(−θ1r(i))(1− 2exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

)
,

I12 = ∂2 logL
∂θ1∂θ2

=
n∑
i=1

2αr(i)exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,
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I13 = ∂2 logL
∂θ1∂α

=
n∑
i=1

2r(i)exp(−θ1r(i))(1− 2exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I21 = ∂2 logL
∂θ2∂θ1

=
n∑
i=1

2αr[i]exp(−θ2r[i])
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I22 = ∂2 logL
∂θ2

2
= −n

θ2
2

+
n∑
i=1

2αr[i](1− 2exp(−θ1r(i))

×
(

1− αr[i]exp(−θ2r[i])(1− 2exp(−θ1r(i))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

)
,

I23 = ∂2 logL
∂θ2∂α

=
n∑
i=1

2r[i]exp(−θ2r[i])(1− 2exp(−θ1r(i)))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I31 = ∂2 logL
∂α∂θ1

=
n∑
i=1

(1− 2exp(−θ2r[i]))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

,

I32 = ∂2 logL
∂α∂θ2

=
n∑
i=1

(1− 2exp(−θ1r(i)))
[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2

and

I33 = ∂2 logL
∂α2 = −

n∑
i=1

(1− 2exp(−θ1r(i))2(1− 2exp(−θ2r[i])2

[1 + α(1− 2exp(−θ1r(i))(1− 2exp(−θ2r[i])]2
.

Let θ̂ = (θ̂1, θ̂2, α̂) be the MLE of θ. Then the observed information matrix is given by I(θ̂).
Thus by using delta method, we obtain the asymptotic distribution of R̂. For that we have

ˆV ar(R̂ML) = ˆV ar(R(θ̂))
≈ h(θ̂)[I(θ̂)]−1h(θ̂)>.

where
h(θ̂) =

(
∂R

∂θ1
,
∂R

∂θ2
,
∂R

∂α

)∣∣∣∣∣
θ=θ̂

with
∂R

∂θ1
= θ2

(θ1 + θ2)2 + α
θ1θ2(4θ3

2 + 7θ1θ
2
2 − 2θ3

1)
(2θ3

1 + 2θ3
2 + 7θ1θ2

2 + 7θ2
1θ2)2 ,

∂R

∂θ2
= −θ1

(θ1 + θ2)2 + α
θ2

1(2θ3
1 − 4θ3

2 − 7θ1θ
2
2)

(2θ3
1 + 2θ3

2 + 7θ1θ2
2 + 7θ2

1θ2)2

and
∂R

∂α
= θ2

1θ2

(2θ3
1 + 2θ3

2 + 7θ1θ2
2 + 7θ2

1θ2) .

Thus R̂−R√
ˆvar(R̂)

is aymptotically distributed as N(0, 1). Thus a (1−ν)100% confidence interval

for R based on the MLE is (R̂ − zν/2

√
ˆV ar(R̂), R̂ + zν/2

√
ˆV ar(R̂)), where zν/2 is the (1 −

ν/2)100th percentile of N(0,1).
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2.2. Bootstrap confidence interval

In this subsection, we consider percentile bootstrap CI for R based on MLEs. For that
we do the following.

1. Compute the MLEs θ̂1
(0), θ̂2

(0) and α̂(0) of θ1, θ2 and α using original record values and
its concomitants and set k=1.

2. Generate a bootstrap sample using θ̂1
(0), θ̂2

(0) and α̂(0) from MTBED and obtain the
MLEs θ̂1

(k), θ̂2
(k) and α̂(k) using the bootstrap sample.

3. Obtain the MLE R̂k = R(θ̂1
(k)
, θ̂2

(k)
, α̂(k)).

4. Set k = k + 1.

5. Repeat steps (2)to(4) B times to obtain the MLEs R̂1, R̂2, · · · , R̂B, for sufficiently large
B .

6. Arrange R̂1, R̂2, · · · , R̂B in ascending order as R̂(1) ≤ R̂(2), . . . ,≤ R̂(B). Then the
100(1 − ν) percentile bootstrap CI for R is given by

(
R̂([B(ν/2)]), R̂([B(1−ν/2)])

)
, [.] is

the greatest integer function.

3. Bayesian Estimation

In this section, we consider Bayesian estimation of R for MTBED under symmetric as
well as asymmetric loss functions. For symmetric loss function we consider squared error
loss (SEL) function and for asymmetric loss function we consider both LINEX loss (LL) and
the general entropy loss (EL) function. The Bayes estimate of any parameter µ under SEL
function is the posterior mean of µ. The Bayes estimate of any parameter µ under LL is
given by

d̂LB(µ) = −1
h

log{Eµ(e−hµ|x)}, h 6= 0, (6)

provided Eµ exists. The Bayes estimate of any parameter µ under EL function is given by

d̂EB(µ) = (Eµ(µ−q|x))
−1
q , q 6= 0, (7)

provided Eµ exists.
Let (R(i), R[i]), i = 1, 2, . . . , n be the vector of record value and its concomitants arising from
MTBED (θ1, θ2, α). Then from (1) the likelihood function is given by

L(θ) = (θ1θ2)n
n∏
i=1

exp(−θ1r(i) − θ2r[i])[1 + α(1− 2exp(−θ1r(i)))

×(1− 2exp(−θ2r[i]))]
n−1∏
i=1

1
exp(−θ1r(i))

.

Assume that the prior distributions of θ1 ∼ Gamma(a, b), θ2 ∼ Gamma(c, d) and α ∼
U [−1, 1]. Thus the prior density functions of θ1, θ2 and α are respectively given by

π1(θ1|a, b) = ba

Γ(a)θ
a−1
1 e−bθ1 ; a > 0, b > 0, (8)
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π2(θ2|c, d) = dc

Γ(c)θ
c−1
2 e−dθ2 ; c > 0, d > 0 (9)

and
π3(α) = 1

2 ,−1 ≤ α ≤ 1. (10)

Then the joint prior distribution of θ is given by

π(θ) = 1
2
ba

Γ(a)
dc

Γ(c)θ
a−1
1 θc−1

2 e−bθ1e−dθ2 (11)

Then the joint posterior density of θ is given by

π∗(θ) = L(θ)π(θ)´
L(θ)π(θ)dθ . (12)

Therefore the Bayes estimate of R(θ) under SEL, LL and EL are respectively given by

R̂S =
´
R(θ)L(θ)π(θ)dθ´
L(θ)π(θ)dθ , (13)

R̂L = −1
h

log
´
e−hR(θ)L(θ)π(θ)dθ´

L(θ)π(θ)dθ (14)

and

R̂E =
[´

R(θ)−qL(θ)π(θ)dθ´
L(θ)π(θ)dθ

]−1
q

. (15)

It is not possible to compute (13)-(15) explicitly. The popular approach to perform the
integrals (13) to (15) is the Markov Chain Monte Carlo (MCMC) method which replace the
expectation values of the parameters with the average values over Monte Carlo (posterior)
samples obtained through the Markov Chain. A drawback of the MCMC method is that
the time series of the Monte Carlo samples obtained through the Markov Chain are usually
correlated. The importance sampling method introduces an importance sampling density
which should be handled easily and can generate Monte Carlo data randomly. The Monte
Carlo data generated randomly by the importance sampling method can be autocorrelation-
free. The autocorrelation-free nature of the importance sampling could be considered to be
an advantage over the MCMC method. Thus we consider importance sampling method to
find the Bayes estimates for R.

3.1. Importance sampling method

In this subsection, we consider the importance sampling method to generate samples
from the posterior distributions and then find the Bayes estimate of R. The numerator in
the posterior distribution given in (12) can be written as

L(θ)π(θ) ∝ Q(θ)f1(θ1)f2(θ2)f3(α),

where
Q(θ) =

n∏
i=1

[1 + α(1− 2exp(−θ1r(i)))(1− 2exp(−θ2r[i]))], (16)
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f1(θ1) ∝ θn+a−1
1 exp[−θ1(r(n) + b)] (17)

f2(θ2) ∝ θm+c−1
2 exp

[
−θ2

(
n∑
i=1

r[i] + d

)]
(18)

and
f3(α) = 1

2 . (19)

Thus from (17) we can see that distribution of θ1 follows Gamma distribution with parameters
(n + a) and (r(n) + b). Again from (18) one can see that distribution of θ2 follows gamma
distribution with parameters (m+c) and (

n∑
i=1

r[i]+d). From (19) we can see that α ∼ U(−1, 1).

Let θ(t) = (θ(t)
1 , θ

(t)
2 , α(t)), t = 1, 2, . . . , N be the observations generated from (17),(18) and

(19) respectively. Then by importance sampling method the Bayes estimators under SEL,
LL and EL given by (13)-(15) can be respectively written as

R̂S =

N∑
t=1

R(θ(t))Q(θ(t))
N∑
t=1

Q(θ(t))
, (20)

R̂L = −1
h

log


N∑
t=1

exp(−hR(θ(t))Q(θ(t))
N∑
t=1

Q(θ(t))

 (21)

and

R̂E =


N∑
t=1

(R(θ(t)))−qQ(θ(t))
N∑
t=1

Q(θ(t))


−1/q

. (22)

3.2. HPD interval

In this subsection, we construct HPD intervals for R as described in Chen and Shao
(1999). In this method a Monte Carlo approach is used to approximate the pth quantile of
R and then obtain an estimate of Bayesian credible or HPD interval. Define Rt = R(θ(t)),
where θ(t) = (θ(t)

1 , θ
(t)
2 , α(t)) for t = 1, 2, . . . ,M are posterior samples generated respectively

from (17), (18) and (19) for θ1, θ2 and α. Let R(t) be the ordered values of Rt. Define

wt = Q(θ(t))
M∑
t=1

Q(θ(t))
.

Then the pth quantile of R can be estimated as

R̂(p) =


R1 if p = 0

R(i) if
i−1∑
j=1

w(j) < p <
i∑

j=1
w(j),
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where w(j) is the weight associated with jth ordered value R(j). Then the 100(1 − ν)%,
0 < ν < 1, confidence interval for R is given by (R̂(j/M), R̂(j+[(1−ν)M ])/M)), j = 1, 2, . . . ,M ,
where [.] is the greatest integer function. Then the required HPD interval for R is the
interval with smallest width.

4. Simulation Study

In this section, we carry out a simulation study for illustrating the estimation proce-
dures developed in the previous sections. First we obtain the MLE of R using (5). We have
obtained the bias and MSE of MLEs for different combinations of θ1, θ2 and α and are given
in Table 1. The bootstrap CI for R are also obtained. The average interval length (AIL) and
coverage probability (CP) are also obtained and are included in Table 1. We consider four
sets of true parameter values, (θ1, θ2)= (5,1), (3,2), (2,4) and (0.5,5). Since prior distribution
of θ1 follows gamma distribution with mean a

b
, we take the hyperparameters for θ1 =5, 3,

2, and 0.5 as (a, b)=(5,1), (3,1), (2,1) and (0.5,1) respectively. Similarly we take the hyper-
paramerters of θ2=1,2,4, and 5 as (c, d) = (1,1), (2,1), (4,1) and (5,1). We have obtained
the Bayes estimators for R of MTBED under SEL, LL and EL functions using importance
sampling method and are given in Table 2. For importance sampling method we use the
following algorithm.

1. Generate n upper record values and its concomiants from MTBED distribution with
parameters θ1, θ2 and α.

2. Calculate the Bayes estimators of R as described below.

(a) Set t=1
(b) Generate θ(t)

1 from Gamma distribution with parameters n+ a and r(n) + b.

(c) Generate θ(t)
2 from Gamma distribution with parameters m+ c and

n∑
i=1

r[i] + d.

(d) Generate α(t) from Uniform(−1, 1) distribution.
(e) Calculate R̂(θ(t)) using (5) and Q(θ(t)) using (16).
(f) Set t=t+1.
(g) Repeat steps (b) to (f) 50,000 times.
(h) Calculate the Bayes estimators for R using (20)-(22)

3. Repeat steps 1 and 2 for 500 times to obtain the estimators R̂1, R̂2, · · · , R̂500.

4. Calculate the average bias= 1
500

∑500
i (R̂i−R) and MSE = 1

500
∑500
i (R̂i− R̄) + bias2 of

the estimators.

We repeat the simulation study for different values of α and n. From the tables we can see
that the bias and MSE of all estimators decrease when the number of records increase. We
can also see that among different estimators Bayes estimator under SEL have minimum bias
and MSE. From Table 1 we can see that the AILs of HPD intervals are smaller than that of
bootstrap CIs and the CPs of HPD intervals are higher than that of bootstrap CIs.
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Table 1: The AIL and CP for bootstrap CIs and HPD intervals

α n θ1 θ2 R Bootstrap HPD
AIL CP AIL CP

-0.75 6 5 1 0.67100 0.22830 0.85 0.11755 0.94
3 2 0.57589 0.21336 0.85 0.13603 0.92
2 4 0.34583 0.18995 0.87 0.12971 0.93

0.5 5 0.09334 0.18229 0.86 0.12178 0.92
8 5 1 0.67100 0.17457 0.87 0.14590 0.95

3 2 0.57589 0.16680 0.87 0.11195 0.94
2 4 0.34583 0.15912 0.88 0.12494 0.95

0.5 5 0.09334 0.15215 0.88 0.11086 0.94
10 5 1 0.67100 0.14993 0.88 0.11234 0.96

3 2 0.57589 0.13375 0.87 0.08454 0.96
2 4 0.34583 0.16985 0.89 0.12985 0.95

0.5 5 0.09334 0.21065 0.85 0.14707 0.95
-0.5 6 5 1 0.72511 0.23566 0.85 0.13176 0.94

3 2 0.58393 0.17582 0.84 0.11582 0.93
2 4 0.34167 0.17737 0.84 0.13245 0.93

0.5 5 0.09253 0.16639 0.86 0.11629 0.94
8 5 1 0.72511 0.18512 0.86 0.12621 0.95

3 2 0.58393 0.15397 0.86 0.13670 0.95
2 4 0.34167 0.14288 0.88 0.12190 0.94

0.5 5 0.09253 0.15278 0.87 0.13116 0.95
10 5 1 0.72511 0.14377 0.88 0.11098 0.94

3 2 0.58393 0.16415 0.87 0.18154 0.95
2 4 0.34167 0.16366 0.88 0.08478 0.96

0.5 5 0.09253 0.23831 0.85 0.12197 0.95
-0.25 6 5 1 0.77922 0.22563 0.85 0.13355 0.93

3 2 0.59196 0.14293 0.84 0.11844 0.94
2 4 0.33750 0.14189 0.85 0.12333 0.93

0.5 5 0.09172 0.16277 0.86 0.16214 0.94
8 5 1 0.77922 0.15815 0.86 0.12882 0.95

3 2 0.59196 0.14140 0.87 0.11425 0.95
2 4 0.33750 0.13703 0.85 0.12929 0.95

0.5 5 0.09172 0.14633 0.88 0.11552 0.94
10 5 1 0.77922 0.12808 0.87 0.12552 0.95

3 2 0.59196 0.13565 0.89 0.12982 0.96
2 4 0.33750 0.12893 0.88 0.11873 0.95

0.5 5 0.09172 1.12536 0.89 0.11320 0.96
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Table 1: Continued

α n θ1 θ2 R Bootstrap HPD
AIL CP AIL CP

0.25 6 5 1 0.88745 0.15200 0.84 0.09624 0.93
3 2 0.60804 0.17320 0.84 0.11650 0.93
2 4 0.32917 0.18756 0.85 0.08888 0.92

0.5 5 0.09010 0.16752 0.85 0.09039 0.92
8 5 1 0.88745 0.13493 0.85 0.09131 0.95

3 2 0.60804 0.16607 0.85 0.11750 0.94
2 4 0.32917 0.16677 0.86 0.08159 0.95

0.5 5 0.09010 0.15563 0.86 0.08744 0.95
10 5 1 0.88745 0.12890 0.86 0.08205 0.93

3 2 0.60804 0.13831 0.87 0.10826 0.95
2 4 0.32917 0.12724 0.88 0.07175 0.95

0.5 5 0.09010 0.13398 0.88 0.07624 0.96
0.5 6 5 1 0.94156 0.16974 0.85 0.11738 0.94

3 2 0.61607 0.15253 0.86 0.12961 0.93
2 4 0.32500 0.14018 0.83 0.11854 0.94

0.5 5 0.08929 0.14557 0.84 0.12974 0.95
8 5 1 0.94156 0.13592 0.85 0.11546 0.94

3 2 0.61607 0.13528 0.85 0.10860 0.95
2 4 0.32500 0.12432 0.86 0.10255 0.96

0.5 5 0.08929 0.12819 0.88 0.11897 0.95
10 5 1 0.94156 0.12177 0.88 0.12423 0.94

3 2 0.61607 0.12387 0.86 0.12557 0.96
2 4 0.32500 0.11362 0.88 0.12771 0.96

0.5 5 0.08929 0.11695 0.89 0.08317 0.95
0.75 6 5 1 0.99567 0.18762 0.84 0.11731 0.93

3 2 0.62411 0.17517 0.85 0.12341 0.92
2 4 0.32083 0.16081 0.83 0.09304 0.94

0.5 5 0.08847 0.16947 0.84 0.09253 0.94
8 5 1 0.99567 0.14872 0.85 0.12235 0.93

3 2 0.62411 0.13736 0.87 0.13994 0.95
2 4 0.32083 0.12521 0.87 0.09638 0.95

0.5 5 0.08847 0.13757 0.88 0.09070 0.96
10 5 1 0.99567 0.12422 0.86 0.10111 0.95

3 2 0.62411 0.12523 0.88 0.11063 0.96
2 4 0.32083 0.12777 0.87 0.08842 0.96

0.5 5 0.08847 0.12388 0.89 0.09357 0.96
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5. Illustration Using Simulated Data

In this section, we illustrate the estimation procedures developed in the previous sec-
tions using a simulated data. For that we have generated 10 upper record values and its
concomitants from MTBED with parameters θ1 = 2, θ2 = 1 and α = 0.5. The generated
record values and its concomitants are given below.

i 1 2 3 4 5 6 7 8 9 10
r(i) 0.201 0.383 0.868 1.433 1.589 1.7034 2.258 3.123 3.657 4.166
r[i] 0.245 0.066 0.563 3.379 0.685 0.411 1.111 3.526 2.721 5.317

Based on the simulated data we have obtained the MLE of R = P (X < Y ) and also the
bootstrap CL of R based on the MLE. For the Bayesian estimation we took hyperparameters
as a = 2, b = 1, c = 2 and d = 2. The HPD interval of R under SEL is also obtained. The
estimated values are given below.

MLE (Bootstrap CI) Bayes estimates
SEL (HPD Interval) LL EL

0.6375 (0.4124,0.7124) 0.6587 (0.4841, 0.7124) 0.6457 0.6387

6. Conclusion

In this work, we considered the problem of estimation of R = P (X < Y ) for Mor-
genstern type bivariate exponential distribution using record values and its concomitants.
The maximum likelihood and Bayesian estimators were obtained for R. For obtaining the
Bayes estimates, importance sampling method was applied. Based on the simulation study
we concluded that among different estimators, Bayes estimators under squared error loss
function perform better in terms of bias and MSE. AILs of HPD intervals are smaller and
the associated CPs are higher than that of bootstrap confidence intervals.
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