
 

Corresponding Author: Manisha Pal  
E-mail: manishapal2@gmail.com 
 

Statistics and Applications (ISSN 2452-7395 (online)) 
Volume 18, No. 2, 2020 (New Series), pp 207 – 221 
 

Bayesian Mixture Designs for Hypothesis Testing 

N.K. Mandal1 and Manisha Pal2 
1Former Professor, Department of Statistics, University of Calcutta 

2Department of Statistics, University of Calcutta 
 

Received: 07 June 2020; Revised: 22 July 2020; Accepted: 28 July 2020 
___________________________________________________________________________ 
Abstract 

 
Scheffé (1958) first introduced models of different degrees to represent the response 

function in a mixture experiment. He also introduced corresponding designs for the 
estimation of the model parameters. Later, several authors studied the problem of finding 
optimum designs, especially for quadratic and cubic models. In this paper, we consider the 
problem of designing an optimal experiment for the purpose of performing one or more 
hypothesis tests in a first-degree mixture model. The Bayesian decision theoretic approach is 
used for this purpose. 

Key words: Mixture experiments; Hypothesis testing; Bayes optimality; Normal prior; 
Optimum designs. 
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0. Tribute to Professors Sinha 

 
We feel privileged to be able to contribute to this special issue of Statistics and 

Applications. We are fortunate to have come in contact with the highly acclaimed 
statisticians, the Sinha brothers, especially Professor Bikas K. Sinha, with whom we share a 
very close bond. We have been working with Professor Bikas K. Sinha, whom we fondly call 
Bikas Da, for more than a decade. His advice, support, positive attitude and, above all, his 
unbounded energy have been highly inspirational to us.  

The first author had the good fortune of being taught by Bikas Da in the Statistics post-
graduate course of Calcutta University in the mid seventy’s, and, over time, has developed a 
close brotherly bond with him. The second author feels grateful for the constant 
encouragement that she has received from him, and for her enhanced knowledge of DoE 
through her association with him.  

 
1. Introduction 

 
Literature on Bayesian optimal design is generally based on linear models and the loss 

functions are chosen so as to be appropriate for estimation of the unknown parameters, and 
also for prediction purpose. See, for example, Chaloner (1982, 1984), El-Krunz and Studden 
(1991), Chaloner and Verdinelli (1995), Dasgupta (1996). Keeping in mind that the data 
analyst may also be interested in testing hypotheses regarding the parameters, Toman (1996) 
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attempted to find optimum designs for hypotheses testing, using a suitable loss function in the 
discrete set-up. He considered both the cases of single hypothesis and multiple hypotheses 
testing. In the former case, the optimal design minimizes the Bayes risk, while in the latter 
case, where more than one decision is to be made, Toman (1996) suggested two approaches – 
one to minimize a Bayes risk while the other risks are constrained to be less than specified 
values, and the other to minimize the weighted sum of the Bayes risks, the weights being 
suitably selected by the experimenter. No further studies along this line have come to our 
notice. It is also noteworthy that the problem of determining the optimum Bayesian designs 
for hypotheses tests in the mixture set-up has not been addressed so far. 
 

In this paper, we have considered the first-degree homogeneous mixture model due to 
Scheffé (1958). With suitably defined loss function, we have determined the Bayes optimal 
designs for testing both single and multiple hypotheses. The paper has been organized as 
follows. In Section 2 we have discussed the loss function and the Bayes risk for a linear 
model. In Section 3 we have obtained Bayes optimal designs for single hypotheses regarding 
the parameters of the model. Bayes designs for multiple hypotheses are discussed in Section 
4. In Section 5, examples have been cited for multiple tests, and a discussion on the article 
has been given in Section 6. 
  
2. The Loss Function and the Bayes Risk 

 
Consider the linear model  where Y is the vector of observations,

is the design matrixof order p´q and q is the parameter vector of order q´1. Suppose the 
prior distribution of  q  is Nq(t, s2R), where R is a positive definite matrix. 
  

Then, the posterior distribution of q is Nq (µ,  V), where 
 

  

 
and	𝜽# 	is the least squared estimator of q. 
  

Suppose that one is interested to test the following  k hypotheses: 
  

H0i: ci¢q  ³ vi  versus H1i: ci¢q < vi; i = 1, 2, …, k , 
 
where ci and vi, i = 1, 2,…, k are specified. 
  

Let be the decision vector corresponding to a given q, where di 

denotes the decision for the i-th testing problem i = 1, 2, …, k.  Let us denote by ai1 the action 
favoring ci¢q  ³ vi and by ai2 that favoring ci¢q  < vi in the i-th problem. 
  

DeGroot (1970) showed the following loss function to be appropriate for the i-th 
problem in the general set-up:   
 

Li (q, ai1) = 0,           if  ci¢q  ³ vi 
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  = vi - ci¢q,  if ci¢q  < vi, 
and 
 

Li (q, ai2) = ci¢q-vi, if ci¢q  ³ vi 
  =  0,         if ci¢q  < vi,  for i = 1 (1) k. 

  
Let be the Bayes decision rule for the i-th problem. The Bayes risk is obtained by 

averaging the losses over both Y and q. 
  

Given a design with information matrix M, the Bayes risk  for the ith testing 
problem is given as (cf. DeGroot, 1970): 
 

 ri(di, M) =s( ci¢ R ci)1/2 {Y( si) – ( 1-pi)1/2Y( si/(1-pi)1/2)},  (1) 
 
where y(s) = j(s) - s[1-F(s)], j(s) and F(s) are the density and cumulative distribution 
functions respectively of a standard normal variate,  pi = ci¢(R-1+M)-1ci/(ci¢ R ci) is the ratio 
of the posterior variance to the prior variance of ci¢q, and si = (vi - ci¢t)/s(ci¢ R ci)1/2, the 
standardized difference between the constant vi and the prior mean of ci¢q. For the single 
hypothesis case, where the hypotheses are H0: c¢q ³ v against H1: c¢q < v, the optimum design 
is selected so as to minimize the Bayes risk. 
 

Now, = which is positive, whatever 

be s. Hence, for every s, the risk function r(d, M)  is increasing in p. So, minimization of r(d, 
M)  can be achieved through minimization of p, which does not involve s, and hence the prior 
mean. Again, since p = ci¢(R-1+M)-1ci/(ci¢ R ci), and the denominator is free from the design, 
the Bayes y-optimal design will be obtained by minimizing  

 
   Trace [cc¢( )-1].                    (2) 
  

We consider Scheffé’s first order mixture model and work in a continuous design 
setting.  
 

3.  Optimal Mixture Design for a Single Test  
 

Consider the mixture model given below: 

       (3) 

where Y denotes the response and x = (x1, x2, …, xq) the mixing proportions of the 

ingredients. The experimental region is  

Here, one may be interested in single tests of the following form: 
 

(I)  H0: bi  ³ 0 versus H1:  bi  < 0, for some i, 1 £i £q 
(II)  H0:bi – bj ³ 0 versus H1: bi – bj < 0, for some i, j, 1 £i<j £q 
(III)  H0: c¢b ³ 0 versus H1: c¢b < 0, where c is a q´1 real vector. 
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Before proceeding further, we note an important property of f(M), defined in (2). 
 
Property 1: f (M), given by (2), is convex in M. 
 
Proof:  Let us write   
 f (M) = Trace [cc¢( )-1] = [c¢( )-1c]. 
 
We have to show that f (lM1 + (1-l)M2 ) £ lf (M1 ) + (1-l)f (M2). 
Now, f (lM1 + (1-l)M2) = [c¢( ))-1c] 

        = [c¢( l( c].    (4) 
But it is known that 
                   [l(  

 £ l(     (5) 
(cf. Fedorov (1972)). 
 
Hence from (4) and (5), we have  
 
 f (lM1 + (1–l)M2) £ lc¢((  

= lf (M1) + (1–l) f (M2), 
 
 which establishes the convexity of f (M).      � 
  

 For the problem of minimizing f(M), given by (2), a necessary and sufficient 
condition for a design to be Bayes optimal is obtained by applying the generalized 
equivalence theorem (cf. Whittle (1973); Silvey (1980)), which gives: 
 
Theorem1: Any one of the following 3 conditions is necessary and sufficient for a design 
with information matrix M0, to be optimal: 
 

(i) Fj(R-1+M0, R-1+M) ³ 0 for all R-1 + M, for all M Î M 
(ii) Fj(R-1+M0, R-1+xx¢ ³ 0 for all xÎX 
(iii) [Fj(R-1 +M0, R-1 +xx¢)] = [Fj(R-1 +M, R-1 +xx¢ )], 

 
where Fj(M1, M2) is the Fréchet derivative of M1 in the direction M2, M is the class of all 
information matrices, X is the domain of x and S is the class of all non-singular matrices. 
Further, if M0 = åvi xixi¢, where xi Î X is the i-th design point of M0, with mass vi > 0, i = 
1,...,m, such that åvi = 1, then for each i, 
 
  Fj(R-1+M0, R-1+xixi¢) = 0. 
 
The proof of Theorem 1 follows along the lines of the proof in Silvey (1980), pages 19- 23. 
Condition (ii) of Theorem 1 reduces to condition (ii)¢ given below: 

(ii)¢ If be the optimal design with information matrix M0 = xixi¢, where xiÎX is the i-th 

support point of with mass vi ³ 0, i =1, ... ,m,  and åvi=1, then, for any xÎX, 
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x¢(R-1+M0)-1y(R-1+M0)-1 x  £ xi¢(R-1+M0 )-1 y (R-1+M0)-1xi ,               (6) 
 

wherey = cc¢. It is obvious that equality in (6) holds at the support points of . 
 

Inequality (6) helps to identify the nature of the support points of the optimum design. 
For single hypothesis testing, the left-hand side of (6) is pseudo-convex in x, that is, it 
behaves like a convex function with respect to finding its local minima, but may not actually 
be convex. As such, the maximum may be attained at the boundary points of X and also at 
some non-boundary points. This is true irrespective of the form of R. 
 
3.1. Consider problem I 
 

For simplicity sake, let us take i = 1 in the above hypothesis testing, so that c¢ = (1, 0, 
0,…,0). Then a Bayes optimal design minimizes f(M) = c¢ (R-1 +M)-1c, for the given c. 
 

To find a closed form solution, let us assume that the prior matrix R is invariant with 
respect tob2, b3, …,bq, so that R-1 can be written  

 

  

 
where R22 =  u1 Iq-1+ u2 Jq-1, for some scalars u1 and u2, is a (q-1)-vector with all elements 
1, and Then, from Property 2 below, the criterion function f will be invariant 
with respect to . 
 
Property2: If M be invariant with respect to the components of x(1) = and x(2) =

and R be invariant with respect to the components of b(1) =  and b(2) 

= , then f is invariant with respect to the components of x(1) and x(2). 
 

Proof: Consider P1 and P2 to be two permutation matrices of orders q1 and q2, respectively 
(q1 + q2 = q). Let, 

  .     

Then, P is a permutation matrix of order q. 

Now, if we take the same permutations of the components of both x(1) and b(1) and 
similarly of the components of x(2) and b(2), then it is clear that, for the new set, the M and R 
matrices will reduce to PMP¢ and PRP¢. Therefore, the criterion function will reduce to 
c¢P¢P(R-1+M)-1P¢Pc, which is same as c¢(R-1+M)-1c. This establishes Property 2. 

Using properties 1 and 2, we get the following theorem: 
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Theorem 2: A Bayes-optimal design is invariant with respect to . 
 
 Let us denote the class of all designs invariant with respect to ( ) by D1.  

For a design xÎD1, M(x) is of the form 
 

        (7) 

 
where M22 = g Iq-1 + h Jq-1, for some scalars g and h.  Then,  
   

 [c¢ (R-1 + M)-1c]-1= (m11 + r11) – (m12 +r12 )2{1¢(M22 + R22)-11}.                    (8)  
 

From the structure of R22, it is clear that will also be of the form  
where  
  

The following theorem indicates the Bayes optimal design under certain restriction. 
 
Theorem 3: The Bayes optimal design is a singular design with only one support point at 
(1,0,0,…,0) for 0 ≤ |r12|  
 
Proof: Let be the singular design with one support point at (1,0,0,…,0). Then, 

 [c¢ (R-1 +M( ))-1c]-1 = ( 1+ r11) - (r12 )2[1¢( R22)-11], 

 1], 
where A = [(1 + r11) – (r12 )2{1¢( R22)-11}]-1, x = X. 
 

For  to be Bayes optimal design, it must satisfy (3.2) for all xÎX, with equality 
holding at the support point of . This is equivalent to satisfying  

 
 1]2 ≤ 1, for all xÎX,                                                  (9) 

 
with equality holding at (1,0,0,…,0). 
 

For r12 = 0, (9) holds trivially. For r12 > 0, by the condition of the theorem, we have  
 
 1 = 1≤ 1, 

since 1 ≤ 1. Hence, (9) is satisfied. 
 
 For r12 < 0, we can write 
 
 l.h.s. of (9) = 1]2 

                                   = [1 1]2, 
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Now,  
 ]1 = 1- 1≤ 1,  
 
as 1 ≤ 1 and from the condition of the theorem. Hence, (9) is satisfied. 
 
Remark: For condition (9) is violated for x with 0 ≤ ≤

when r12> 0, and for all x, when r12 < 0. Hence, the singular design 

with support point (1,0,…,0) will not be optimal. 
 

It is difficult to analytically find the support points of the Bayes optimal design when 
. We, therefore, obtain the same through computation in the following 

example with q = 3: 
 
Example 1: Suppose s = 1 and the prior covariance matrix of the regression coefficients in 
Scheffé’s first order model for q= 3 is 
 

  

 
 

Consider testing of the hypothesis H0: b1 ³ 0 versus H1: b1 < 0. We have      
 

  
 
 R-1 =  
 
 
and 
 
  = 
 
 
Hence,  = 1.07 > 1. 
 

 Using MATLAB, we obtain the Bayes optimal design as having support points 
(1,0,0), (0,1,0) and (0,0,1) with masses 0.94, 0.03 and 0.03, respectively. Thus, even when 

>1, the example gives the optimum support points at (1,0,0), (0,1,0) and 
(0,0,1). 

 
Remark: It is interesting to note that the design with support points (1,0,0) and (0,½,½) 

gives minimum risk for masses 0.94 and 0.06 at (1,0,0) and (0,½,½) respectively, and the risk 
is same as that obtained for the optimum design with support points at (1,0,0), (0,1,0) and 
(0,0,1).  
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3.2.  Consider testing of hypothesis II 
 

For simplicity sake, let us take i = 1 and j = 2in the above hypothesis testing, so that c¢ 
=  
 

We assume that the prior parameter matrix R is invariant with respect tob1 andb2, and 
with respect to b3,b4, …,bq, so that R-1 can be written as  
 

 

 
where 𝑅%%=si I2+ ti J2, for some scalars si and ti, i = 1, 2, are positive definite matrices, R11and 

R22 are of orders 2´2 and (q–2)´(q–2) respectively, and R12 = where r0 is a scalar.  

 
From property 2, we have the following: 

 
Property 3:  f is invariant with respect to (x1, x2) and with respect to  

 
Using properties 1 and 3, we get the following theorem: 

 
Theorem 4: A Bayes-optimal design is invariant with respect to ( ), and with respect to 
(  
 
 Let D2 denote the class of all designs invariant with respect to ( ), and with 
respect to (  
 
 For a design x Î D2, M(x) is of the form 
 

     (10) 

 
where M11 = g1 I2 + h1 J2 and M22 =  g2 Iq-2 + h2 Jq-2, for some scalars g1, g2, h1 and h2.   
 
 Then,  

 R-1 +M =                (11)

  
Theorem 5: The Bayes optimal design is a singular design with two support points at 
(1,0,0,…,0) and (0,1,0,…,0), each with mass ½. 
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Proof: Let x0 be the singular design with two support points at (1,0,0,…,0) and (0,1,0,…,0), 
each with mass ½. Then, 
 

  

 

 
where  and A and B are 2´2 and (q-2)´2 
matrices, respectively given by 
  

 
For to be Bayes optimal design, it must satisfy (6) for all xÎ X, with equality holding 

at the support point of . Writing 0¢)¢, where c(1) = (1-1)¢, and noting that 12¢c(1) = 0, 
we have, after a little algebraic manipulation, that (6) is equivalent to  
 

 ≤ 1, for all xÎX,       (12) 
 
with equality holding at (1,0,0,…,0) and (0,1,0,…,0). 
 

Clearly, (12) holds for all xÎX, with equality at the support points of x0. Thus, x0 is the 
Bayes optimal design with  

  

 
3.3. Consider testing of hypothesis III 
 

The problem of finding optimum design for a general ‘c’ in a closed form seems 
difficult. For this, to find the optimum design, we have considered two specific choices of c, 
namely, (i) c¢ = (1, 1, …, 1),  and (ii) c¢= ( ), where ci = –1 or +1, such that 

 that is, q is even with q/2 of the ci¢s equal to +1 and the rest –1.   . 
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3.3.1. Let c¢ = (1, 1, …, 1). 
 

Since the hypothesis is invariant with respect to the q components, to start with, let us 
assume that R also has the same invariance property, that is, R = a I + b J, for some scalars a, 
b, where I and J stand for an identity matrix and a matrix of 1’s of appropriate order, 
respectively. This means that the prior dispersion matrix of b is invariant with respect to the 
coefficients ¢s. Then it is easy to check the following invariance property of the criterion 
function f{M(x)}.  
 
Property 4: f{M(x)} is invariant with respect to the permutation of the components of the 
mixture. 
 
 Because of the properties (1) and (4), we get the following Theorem: 
 
Theorem 6: A Bayes-optimal design is necessarily invariant. 
 

Thus, in view of Theorem 6, we can confine our search for the Bayes-optimal design 
within the class of invariant designs.  
 

There are three ways out to find the desired design: 
 

(i)  Express M in terms of the two moments = E( ) and = E( ) of the 
design, and then show that f is decreasing in . 

(ii)  Use Lowener Order dominance to find such that for every 
invariant designx  [cf. Draper and Pukelsheim (1999)]. 

(iii)  Use Equivalence Theorem to find the optimal design. 
 

Approaches (i) and (ii) fail as soon as the complete symmetry property of the matrix R 
is violated. In general, it is difficult to find a closed form solution to the problem. However, it 
may be possible to indicate the nature of the support points of the optimal design using (iii). 
The following theorem identifies an optimal design satisfying the Equivalence Theorem. 
 
Theorem 7: The Bayes optimal design is a saturated design with support points at 
(1,0,0,…,0) and its permutations, each with mass 1/q. 
 
Proof: Let x0 be the saturated design with support points at (1,0,0,…,0), (0,1,0,…,0), …, 

(0,0,…,1), each with mass 1/q. Then,  

Since both R and M have the complete symmetry property, is also 
completely symmetric and is of the form , with e + q f   > 0. Then, 

 

1q =      

since Jq = 1q1q¢ and x¢1q = 1. 
 

Thus,  is a constant, independent of x, and therefore (6) is satisfied 
for all x Î X .  
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Hence,  satisfies the Equivalence Theorem, and is, therefore, a Bayes optimal design. 
 

3.1.2. Consider q = 2k, k a positive integer, and c = ( )¢, with k of the ci = –1 and 

remaining 1, so that  

Let R be complete symmetric. Intuitionally, we feel that M will also be complete 
symmetric. 
 
 We start with a saturated design x0 which has support points at the extreme points of 

X, each having mass 1/q. Then, as before,  

As R–1is a complete symmetric and positive definite matrix, will have 
the form , with e > 0, e + q f   > 0. Then, 
 

 

c =      
 
since x¢1q = 1 and 1q¢c = 0. 
 

Hence, for each support point of x0, r.h.s. of (6)  The l.h.s. of (6) is for all x 
Î Ξ, which is clearly  and equality holds at the support points of x0. 
 

Hence, x0 is Bayes optimal. 
 
4.  Optimal Mixture Design for Multiple Tests 
 

For the first-degree mixture model (3), one may be interested in multiple tests of the 
form  
 H0i: bi ³ 0 versus H1i: bi < 0; i = 1,2, …,k,  k ≤  q. 
  

For a given design x or the corresponding moment matrix M(x), let denote 
the Bayes risk for the i-th hypothesis, i = 1, 2,…, k. So, now we have a vector of Bayes risks. 
In order to define a partial ordering of the designs in terms of the moment matrices (cf. 
Kiefer, 1959), we proceed as in Toman (1996), who uses an idea analogous to the classical 
decision theoretic concept of admissibility. Admissibility is defined with respect of the risk 
function in the classical decision theory, and not the Bayes risk. In the present case, the index 
i of the Bayes risk is treated as the parameter in classical risk. 
  

The following definitions are due to Toman (1996). 
 
Definition 1: A design is said to be r-better than design if ≤  
for i = 1,2, …,k, with strict inequality for at least one i. 
 
Definition 2: A design x  is said to be r-admissible if there exists no r-better design. 
  

From the above it is quite clear that r-admissibility is a desired property of any design. 
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Toman (1996) indicated two methods of determining r-admissible design under 
multiple optimality criteria. In the present set-up, they are as follows: 
 

I. Minimize  subject to , i = 1, 2, …, k – 1, where the index 
k and the scalars ai, i = 1,2,.., k–1 are determined by the experimenter. 

II. Define a single risk function by combining the k Bayes risks  i = 1, 2, 
…, k as follows: 

,       (13) 

where the weights {wi} represent a discrete probability measure on the index i so that 

for i = 1, 2, …, k and  The weights represent the relative importance of the 

corresponding decision problems. A design x with moment matrix which minimizes 
(13) will be the r-admissible design (cf. Toman, 1999). 
  
Method I can be equivalently written as: 
 
 Minimize ck¢(R-1+M)-1ck, subject to ci¢(R-1+M)-1ci ≤ bi, i = 1, 2, …, k–1, 
 
where bi is some function of ai. This is because, for each i, , given in (1), is an 

increasing function of and hence of Thus, we have 

a constrained optimization problem, which yields an r-optimal design (cf. Theorem 5 in 
Toman, 1996).  
 

Lemma 1below shows the equivalence of Methods I and II for some set of weights{wi}: 
 
Lemma 1: If M0 minimizes the combined risk , given in (13), then it also minimizes 

, subject to the restrictions  for i = 1, 2, …, k–1, where

 
 

The lemma is a consequence of the following lemma of Cook and Wong (1994): 
 
Lemma 2: (Cook and Wong, 1994): For lÎ(0,1), let xl maximize the functional 

, and let cl = the primary design criterion evaluated at 
. Then maximizes  subject to the constraint  

 
The Bayes risk depends on the design only through the pis, which give the 

ratios of the posterior and prior variances. Further, for any given ci, pi® 0 as the prior 
information matrix R–1® 0, provided M is nonsingular. 
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Approximating the Bayes risks  by a first-order Taylor series 
expansion around pi = 0, we get  

   
 
where j (.) denotes the standard normal density, and  
 

  

 

Then,                         (14) 

where    

 
It seems easier to study the problem of multiple hypotheses testing using the second 

criterion. Some examples are worked out in Section 5. 
 
5.  Examples of Multiple Hypotheses Testing 
 

In this section we find Bayes optimal designs in two examples on multiple hypotheses 
testing. 
 
Example 2: Consider Scheffé’s homogeneous mixture model of first degree for a three-
component mixture: 

   

 Suppose s = 1, and the prior mean and covariance matrix of the regression 
coefficients are 

   

 
(a)  Consider testing of the hypotheses H0i:  against HAi: , for i = 1, 2, 3. 

Using Method 2, we minimize Trace B(M(x) + R-1)-1, given by (14). In the absence of 
any knowledge about the relative importance of the components, it may be assumed that 

component problems are equally important. We, therefore, take, wi = , for i = 1, 2, 3. 

 
From the given data, we obtain,  and . Hence, 

and Diag  
 

We restrict to the class of saturated designs. Within this class, we get min[Trace B(M(x) 
+ R-1)-1 ] = 0.045135, which is obtained for a design with mass 0.0874 at each of the support 
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points (1,0,0) and (0,1,0), and mass 0.8252 at (0,0,1). Comparing this design with an 
alternative one, say a design which puts equal masses at its three design points, we get the 
Bayes risk as 0.064301, which is 14.2% more than the optimum Bayes risk.  
 
(b)  Now, suppose we are interested to test the hypotheses 
 

  H01 : against HA1 :  
  H02 : against HA2 :  
 

Here,s1=s2 =-1.58977, L1=L2= 0.005934. Then, 
  

. 

 
Restricting to the class of saturated designs, the optimum design puts mass 0.272 at 

each of the points (1,0,0) and (0,1,0), and 0.456 at the point (0,0,1), and the Bayes risk is 
0.0205.  
 
6.  Discussion 
  

This paper attempts to find Bayes optimal designs for testing of single and multiple 
hypotheses in Scheffé’s homogeneous first-degree mixture model. Interestingly, under the 
hypotheses considered, the support points of the optimal designs are found to be at one or 
more of the extreme points of the experimental region. The study can be extended to other 
testing situations, and also to the cases of quadratic and cubic mixture models.  
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