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Abstract
For a distribution, spacing is defined as the gap between order statistics. In character-

ization of any distribution, spacings play a pivotal role. Spacing originating from uniform
distribution is called uniform spacing. Identical distribution of the first and any k-th spac-
ings for some k = 2, · · · , n of a sample of size n guarantees a uniform distribution structure
of parent population, subject to some underlying conditions. The uniqueness and tractabil-
ity of uniform spacings propelled them as the focal point of many statistical investigations.
However, for the regular statistics practitioners, the theory of spacings remain outside fron-
tiers. In an effort to fill the lacuna, this article presents a succinct and lucid review of related
results and applications of uniform spacings.
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1. Introduction

Spacing literally means gaps or distance between two successive points. In statistics,
spacings gauge the distance between two successive order statistics. Let X1, X2, · · · , Xn be
a set of independent and identical random variables from a continuous distribution function
F with support [a, b]. Let the corresponding order statistics be a < X1:n < X2:n < · · · <
Xn:n < b. By j-th spacing Yj:n, we mean

Yj:n = Xj+1:n −Xj:n ; j = 0, 1, 2, · · · , n. (1)

In particular, we assume two marginal order statistics as X0:n = a and Xn+1:n = b. Thus, in
particular, Y0:n = X1:n − a, Yn:n = b−Xn:n. So clearly, for n random variables there would
be (n+ 1) gaps or spacings. Theory of spacings gained steam in many fields of statistics —-
goodness of fit tests, statistical estimation theory, reliability analysis, survival analysis and
applications to name a few. For inciting readers’ interest, a quick flavour on applicability of
spacings may be presented from its latest advancement in estimation theory.

In estimating an unknown parameter θ ∈ Θ, under a distribution Fθ(.), Maximum
Likelihood Estimation (MLE) is a widely used technique. Moreover, MLE is asymptotically
unbiased and efficient under some regularity conditions. As an alternative to MLE some
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authors proposed estimation process based on spacings. Cheng and Amin (1983) suggested
the Maximum Product Spacing Estimator(MPSE) by maximizing

G =
(

n∏
i=0

Yi:n

) 1
n+1

where Yi:n being the i-th spacing. The estimator of θ by maximizing G is known as the
MPSE of θ and denoted by θ̂n. The MPS estimator of the underlying distribution Fθ would
be Fθ̂n

. MPSE is specially suited to the cases where one of the parameters is an unknown
shift origin. This occurs, for example, in the three parameter lognormal, gamma and Weibull
models. For such J-shaped distributions, under the condition of shape parameter less than
unity, no stationary point can yield a consistent MLE due to unboundedness of likelihood
equations. Thus not only global but also local maximum likelihood estimator breaks down.
In fact, Johnson and Kotz (1976) recommended in the three parametric gamma/Weibull
distribution that MLE should not be used if shape parameter < 2. On the contrary to MLE,
MPS estimation too ensures consistent estimators but under much more general conditions
than ML estimation. Also Cheng and Amin (1983) showed that MPSE is asymptotically
normal and asymptotically efficient as MLE when both exist.

Later Renneby (1984) proposed independently another attractive alternative method
as an approximation for the Kullback-Leibler measure of information. This spacing estimator
is called Maximum Spacing Estimator (MSE), that can be obtained by maximizing

S = 1
n− 1

n∑
j=0

ln[(n+ 1)(Fθ(Xj+1:n)− Fθ(Xj:n))]

where F (X0:n) = 0 and F (Xn+1:n) = 1. Maximizing S would furnish MSE of θ. MSE is
conducive in tracking the true distribution from the angle of empirical distribution function.
In order to address on consistency of MPSE/MSE under much weaker regularity conditions as
compared to those required in MLE, Shao and Hahn (1999) can be endorsed. The regularity
conditions proposed by them are very general in the sense that they cover most of the known
counter examples against the universal appeal of the ML method.

Regarding the robustness of spacing estimator, both MPSE and MSE are minimax
robust in Hellinger metric neighbourhoods of the given parametric model. A threadbare
discussion about the robustness on general m-th order spacing with respect to certain infor-
mation measure was accommodated in Ekstrorm (2001). He introduced a class of estimation
methods, ensuring asymptotically efficient and robust estimator. MSE/MPSE method in-
cludes as a special case.

Following the footsteps of MPSE and MSE, Ghosh et al. (2001) introduced a general
class of maximum spacing estimator.

T (θ) =
n∑
i=1

h(n(Fθ(X(i))− Fθ(X(i−1)))

where h : (0,∞)→ R is a strict convex function. For better understanding a handy example
might be referred below.
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Example 1: Let X(1), X(2), · · · , X(n) be ordered observations from U(0, θ), θ ∈ (0,∞).
The MLE of θ is θ̂ = X(n). Note that here MLE fails to be asymptotic efficient as the
regularity conditions for Cramer Rao lower bound of an estimate are not met. On the
contrary, generalized spacing estimate of θ is ˆθGSE = n

n−1X(n) which is obtained by minimis-
ing T (θ) = ∑n

i=1 h(n(Fθ(X(i)) − Fθ(X(i−1))) with h(x) = −logx. Both MLE and GSE are
consistent but their asymptotic distributions are different.

n(θ − θMLE) d−→ Exponential(0, θ)
n(θ − θGSE) d−→ Exponential(−θ, θ)

The two asymptotic distributions have the same variance, but the first has expectation θ
while the second has expectation zero and thus is centered better. Moreover,
E(n(θ − θMLE))2 → 2θ2 while E(n(θ − θMSE))2 → θ2. This yields MLE less admissible.
Eventually, generalized spacing estimate is also the UMVUE of θ.

Generalized spacing estimator, under the assumption of existence of continuous deriva-
tive of p.d.f. with respect to θ, is consistent, asymptotically normal and robust (Ghosh et al.
(2001)). These estimators are not always explicitly obtainable but can always be computed
through numerical methods. Theory of spacings evolved its journey primarily in goodness
of fit test and characterization of distributions. Characterization of distribution, through
the view point of spacing, stems from the concept of elementary uniform spacings. Due to
its comprehensiveness and computational tractability, uniform spacings are considered as
benchmarks in spacing theory.

Under the set up, mentioned in equation (1), if Fθ is considered as uniform(0, 1) then
{Yj:n,j≥1} is the sequence of uniform spacing variables. Clearly the sum Y0:n + Y1:n + Y2:n +
· · ·+Yn:n = 1. Due to this linear constraint the random vector Y = (Y0,n, Y1:n, Y2:n, · · · , Yn:n)
has a singular distribution. Moreover, Y has the joint probability density function as
fY(y0:n, y1:n, y2:n, · · · , yn:n) = n! if yi:n ≥ 0 ∀i. Also, the distribution of Y affirms that
distribution function is unaltered under any permutation of the co-ordinates. Using this
fact, p.d.f of Yi:n can be easily computed. The p.d.f. is fYi:n(x) = n(1 − x)n−1, ∀i where
0 < Yi:n < 1. Clearly, this form is a beta(1, n) distribution.

As the order statistics from any absolutely continuous distribution with distribution
function F (x) can be transformed by order preserving probability integral transformation
u = F (x) to the order statistics from a uniform distribution, spacing from any continuous
distribution can be explained through uniform spacings. This signifies the prime impor-
tance of uniform spacings in distribution free interval estimation and many nonparametric
applications.

Theory of spacings received its pioneering thrust from Greenwood’s (1946) foundational
work, although some ground works by Bortkiewicz(1915) and Morant (1920) left a stamp in
literature. In those primitive studies, hints of uniform spacings emerged as the distribution
of intervals between successive events of Poisson process given the number of events in a
specified interval. The basic methodology on the characterization through uniform spacings
was documented in the literature by Darling(1953). The most general method on limit
theorems of spacings was disseminated by Lecam(1958). A little later, R.Pyke’s classic paper
‘Spacing’ (1965) grabbed the readers’ attention wholly on the wide applicability of spacing
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theory in the context of distribution free goodness of fit tests as well as characterization
problem. Pyke’s article, much inclined to theory of uniform spacings, unfurled the idea of
construction and limiting theory of spacing at length. Further, Wichura (1968) and Bickel
(1969) generalized Le Cam’s result and thus provided a concise collection of limit theorems
in the context of uniform spacings.

More recently, Ali and Mead (1969), Ahsanullah (1989), Gather et al. (1968) and
Hamedani and Volkmer (2005) did a good deal of work on spacings. Specifically, Huang
et al. (1979) established that under the assumptions of continuity and super-additivity the
identical distribution of the first and the k-th (k = 2, · · · , n) spacing characterizes uniform
distribution.

The current article surveys the theoretical developments in the context of uniform
spacings that exist in literature so far. This review, mostly, presents a bunch of useful results
without delving into the intricate mathematical exposition. Of most interest of this review
is results on uniform spacing as they arise in characterization of distributions. Authors’
objective is to popularize the results of uniform spacing in characterization of distribution,
crafted under a milder tone of discussion. The rest of the article is outlined as follows.
Section 2 contains main results related to characterization, based on uniform spacing. Some
preliminary ideas on uniform characterization are also included. Additionally, results on
ordered uniform spacings are mentioned. In third section, results on asymptotic properties
on uniform spacing are documented. Finally, a short conclusion ends the article.

2. Main Results

2.1. Genesis of uniform spacings

This subsection discusses some preliminaries that explore a few basic construction
techniques of uniform spacings. Recalling the setting, already mentioned in Introduction,
Y1:n, Y2:n, · · · , Yn:n being the spacings formed from uniform(0, 1), the following results are
presented.

Result 1: As fYi:n(x) = n(1−x)n−1 for 0 < Yi:n < 1 and fYi:n,Yj:n(x, y) = n(n−1)(1−x−y)n−1

standard technique nails down to deduce

E(Yi:n) = 1
n+ 1 , V (Yi:n) = n

(n+ 1)2(n+ 2) , Cov(Yi:n, Yj:n) = − 1
(n+ 1)2(n+ 2)

Higher order moments of uniform spacings were derived by Greenwood (1946); Renyi(1953).

Result 2: For positive constants vi ; i = 1, 2, . . . , r with r ≤ n and ∑r
i=1 vi ≤ 1 the joint

survival function of Y1:n, Y2:n, · · · , Yn:n is given by

Prob(Y1:n > v1 · · ·Yr:n > vr) = (1−
r∑
i=1

vi)n−1.

This leads that under n→∞,

Prob(nY1:n > v1 · · · , nYr:n > vr) =
r∏
i=1
{exp(−vi)}, v1, · · · , vr > 0.



2021] UNIFORM SPACING 221

So the limiting distribution of nYi:n is Exponential(1).

The following theorem exudes a connective relation for the characterization of uniform
spacings variables through exponential distribution.

Theorem 1: Let E1, E2, · · · , En, En+1 be a sequence of iid exponential variables. Y1:n, · · · , Yn+1:n
is distributed as E1∑n+1

i=1 Ei
, · · · , En=1∑n+1

i=1 Ei
. Furthermore, let Gn+1 be a gamma variable with pa-

rameter (n+ 1). Then Y1:nGn+1, · · · , Yn+1:nGn+1 is distributed as E1, E2, · · · , En+1.

As we know that sum of i.i.d. exponentials follow Gamma distribution. Ratio of an
exponential random variable and Gamma variable (of which numerator is a member) lies
between 0 to 1, Tacitly, from basic sampling distribution theory each ratio Ei∑n+1

i=1 Ei
follows a

beta(1, n) distribution. Theorem 1 is an important theorem as a lot of results follow from it.
Any standard, degree course text book would be a sufficient resource of those basic results.

Further, Theorem 1 could be applied in order to generate spacing variables from Uni-
form(0,1) directly. By this we mean that it is not necessary to generate U1, U2, · · · , Un first
and then apply some sorting method, rather generating a bunch of uniform spacing variables
at first hand. First we generate iid exponential random variables E1, E2, · · · , En. Next we
would compute the sum of all these random variables G. Then using Theorem 1 we could
run a loop of continuation as U(j−1) + Ej

G
= U(j).

2.2. Results on characterization of uniform spacings

Characterization of any distribution is a certain distributional property of statistic/statistics
that uniquely ascertains the probability structure of underlying distribution. Characteriza-
tion of uniform distribution can be studied via spacings. An insightful investigation was
done by Huang et al. (1979) where they asserted the identical distributions of two or more
spacings characterize an uniform parent distribution. Keeping in mind that all uniform spac-
ings are identically distributed as beta(1, n), one can characterize the parent cdf uniquely
with the aid of some distributional properties of the spacings. Naturally the question arises
if identical distributions of two or more spacings are sufficient to characterize a uniform dis-
tribution. To address this question Huang et al. (1979) assumed that under the condition of
(i) continuity, (ii) super-additivity (or, sub-additivity), and (iii) boundedness of support of
F identical distributions of Y1:n and Yk:n for k = 1, . . . , n characterize a uniform distribution.
Before unveiling the crux of the result, let us have a sneak peek on what super-additivity
(or, sub-additivity) of F is.

Definition 1: A distribution function F is super-additive for all x, y ∈ R and x, y, x+ y ∈
support(F ) if

F (x+ y) ≥ (≤) F (x) + F (y).

The final statement of the result comes as follows.

Result 3: Continuity and super-additivity of F, under which Y0;n and Yk;n for some k =
1, 2, . . . , n, have identical distribution, characterize a uniform distribution.

Instead of super-additivity, the bounded support of F too leads to the similar charac-
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terization.

Result 4: If F has bounded support and continuous density, then the identical distribution
of Y0;n and Yk;n characterizes a uniform distribution.

Next lemma is conducive in establishing some properties of F which emerge as imme-
diate consequences of the identical distribution of Y0;n and Yk;n for some k = 1, . . . , n− 1.

Lemma 1: If F is continuous and the spacings Y0;n and Yk;n for some k = 1, . . . , n have
identical distribution, then (a) F(0)=0, (b) if F (x1) = F (x2) for some 0 < x1 < x2, then
F (x1) = 1, and (c) F (x) > 0 for all positive x.

Remark 1: Using this lemma, we can conclude that for some k = 1, . . . , n − 1 when Y0;n
and Yk;n have identical distribution, the support of F is either a finite interval [0, a] or an
infinite one [0,∞).

The forthcoming results are going to be discussed upon the condition that support of
F is either finite or some other stronger conditions implying the support to be finite.

Remark 2: (1) If F is sub-additive and support(F ) is finite, then F is uniform on [0, a],
for some a > 0.

(2) Neither the identical distribution of Y0;n and Yk;n nor that of Yk;n and Yj;n for some
1 ≤ k < j ≤ n−1 solely guarantees that the parent distribution is uniform distribution
on [0, a], a > 0.

Clearly, all symmetric distribution functions F will satisfy the identical distribution
of Y0;n and Yn;n as well as the identical distribution of Yk;n and Yn−k;n, k = 1, . . . , n − 1.
This type of identical distribution of spacings has been utilized in characterization theory by
other authors as well. Some of the profound works include characterizations of exponential
and geometric distribution by Puri et al. (1970), only exponential by Ahsanullah (1976) and
the fairly recent work on general class of continuous distributions by Mirakhmedov et al.
(2013).

Another meticulous finding of Huang et al. would surely grip the researchers’ attention.

Theorem 2: Let F be a continuous distribution function of a bounded variable X. Y0;n
and Y1;n have identical distribution. Moreover, if F has a density f which is continuous on
(0, a) with finite limits f(0+) and f(a−), then F is uniform on [0, a].

Remark 3: As the byproduct of Theorem 8, one can list few remarks as mentioned below.

(1) Theorem does not state that for any arbitrary k, Y0;n and Yk;n have identical distribu-
tion.

(2) If F has bounded support [0, a] and the regularity conditions mentioned in the theorems
hold then the identical distribution of Yn;n and Yn−1;n leads to the fact that F has
uniform distribution on [0, a].

(3) However in Theorem 2 some smoothness conditions on F is required, otherwise it might
be misleading. For example, if a random sample X1, . . . , Xn is drawn from a Bernoulli
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distribution with the probability of success n/(n+ 1), then Y0;n and Y1;n have identical
distribution, even though the parent distribution is not uniform.

Again taking cue from Huan et al. (1979) two more further explorations are mention-
worthy in characterization theory by uniform spacing.

Result 5: (Ahsanullah (1989))
Let F be absolutely continuous with density function f , F (0) = 0, F (1) = 1, and f is
monotonic on (0, 1). Then F ∼ U [0, 1] iff there exists a pair (r, n), 2 ≤ r ≤ n, such that

Xr;n −Xr−1;n ∼ Xr−1;n −Xr−2;n.

Let F be absolutely continuous, symmetric, either super-additive or sub-additive, F (0+) = 0,
F (1) = 1. Then F ∼ U [0, 1] iff Xn;n −X1;n ∼ Xn−1;n for some n ≥ 2.

Result 6: ( Madreimov, Petumin (1983))
Let F be continuous and let X1, . . . , Xn, X ∼ F be independent random variables. Then

(1) F ∼ U [0, 1] iff E(Xn,n − Xi,n) = Probability(X ∈ (Xi,n , Xn,n)) for all i ∈ N and
n ≥ i.

(2) F ∼ U [0, 1] iff there exists a pair (i, j), 1 ≤ i < j ≤ n, such that

E(Xi,n) = P (X ∈ (Xj−1,n , Xj,n)) for all n ≥ 2.

Characterization of the uniform distribution is further extended by Hamedani and
Volkmer (2005) in the probability structure of more than one step spacing variables.

Result 7: Let us imagine (s− r) th step spacing, (unlike the distance between consecutive
order statistics) Xs:n−Xr:n, s > r. If F is uniform(0, a), Xs:n−Xr:n ∼ Xs+k:n−Xr+k:n ∀1 ≤
r < s < s+ k ≤ n.

Special case of the above result appears when s = r + 1 and k = 1.

Theorem 3: Let X be a positive-valued random variable having an absolutely continuous
cdf F . If the corresponding pdf f is monotone on support(F ) which is an interval, and the
above result holds on s = r + 1, k = 1 for some r, then X has a uniform distribution on
support(F ).

Remark 4: (1) Sometimes Result 7 and the consequent theorem might hold for some
s = r + 1 and k = 1 for some r but it still does not guarantee that F is uniformly
distributed. For example, whenever f is symmetric on [a, b] (i.e. f(x) = f(b− a− x))
for all x, then Theorem 3 holds for the choices r = k = 1 and n = 3. That is, the
monotonicity of f on [a, b] is important to satisfy the condition of the theorem.

(2) If the assumption that support(F ) fails to be an interval the above theorem fails as
well. Here is a thought provoking example from Hamidani et al. Consider the following
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pdf

f(x) =


3
2 if x ∈

[
0, 1

3

] ⋃ [2
3 , 1

]
0 otherwise

Then f is monotone on support(F )=
[
0, 1

3

] ⋃ [2
3 , 1

]
. Since f is symmetric as f(1−x) =

f(x), Result 7 holds for a particular choice, say, r = k = 1 and n = 3, but clearly F is
not U(0, 1).

2.3. Results on ordered uniform spacings

Arranging the spacings Y1:n, · · · , Yn+1:n in increasing order we obtain ordered uniform
spacings. In Levy(1939); Renyi(1953); Barton and David (1956); Pyke (1965) and Devroye
(1981) distributional and asymptotic results on smallest and largest uniform spacings, are
discussed at length. Relatively little was done in the context of general ordered uniform
spacings. A concrete idea on ordered uniform spacings is developed in Bairamov (2010).

Let us denote the ordered spacings as ∆0:n < ∆1:n < · · · < ∆n+1:n where ∆i:n being the
i-th largest spacing. Tacitly, for (n+ 1) number of spacings we would have same number of
ordered spacings.

Result 8: (n − k − 1)(∆k+1:n − ∆k:n) d= ∆1:n (k = 0, · · · , n) where d= means that the
statistics are distributionally same (Pyke (1965)).

In particular, distribution of the k-th (1 ≤ k ≤ n + 1) ordered uniform spacing ∆k:n
is deduced by Bairamov et al. (2010). Let the domain of uniform distribution (0, 1) be
presented as the sum of non overlapping intervals

(0, 1) = I1,n ∪ I2,n ∪ · · · ∪ In+1,n

where I1,n = (0, 1
n+1) and Im,n = ( 1

n+3−m ,
1

n+2−m).

Theorem 4: The distribution of the k-th (1 ≤ k ≤ n + 1) ordered uniform spacing is
presented by

P{∆k:n ≤ x} = 0 (x < 0)
P{∆k:n ≤ x} = 1 (x(n+ 2− k) ≥ 1)

and for x ∈ Im,n,m = 1, 2 · · · , k

P{∆k:n > x} = (−1)k−1(n+ 1)
(

n

k − 1

)
k∑

i=m

(−1)i−1

(n+ 2− i)

(
k − 1
i− 1

)
(1− x(n+ 2− i))n.

As a corollary of the last theorem the distribution of minimal ordered spacing and
maximal spacing can be presented.

Corollary 1: The distribution of the minimal spacing is given by

P{∆1,n > x} = (1− x(n+ 1))n, x ∈ I1,n
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Simultaneously, the distribution of maximal spacing is given by

P{∆n+1,n > x} = (−1)n(n+ 1)
n+1∑
i=m

(−1)i−1

n+ 2− i

(
n

i− 1

)
(1− x(n+ 2− i))n

.

Theorem 4 allows the readers to compute the expectation of k-th ordered uniform
spacing which is 1

n+1
∑n+1
i=n+2−k

1
i

(k = 1, · · · , n+ 1).

3. Limiting Results on Uniform Spacings

Limiting theories for spacings depicts some of the more interesting results. Here, we
present several results from the limiting theory of uniform spacings chronologically. Mostly
every case affirms on the asymptotic distribution as normal distribution.

Result 9: Levy (1939) obtained the limiting distributions of the maximal spacing ∆n+1,n =
maximum ordered spacing from the uniform distribution on [−1, 1] as

P{n∆n+1,n

log n ≤ x} → exp(−exp(−x)); x ∈ R

Result 10: Devroye (1981) established that

lim
n→∞

sup
[
n∆n+1,n

2 log log n

]
= 1 a.s.

Result 11: Let F (x) be a continuous distribution function. If X1:n, . . . , Xn:n is an ordered
sample of n values from the population whose distribution function is F (x) then the random
variable

ωn = 1
2

n∑
i=1

∣∣∣∣F (xi:n)− F (xi−1:n)− 1
n+ 1

∣∣∣∣
is asymptotically normally distributed with mean E(ωn) and variance var(ωn) (Sherman
(1947)), i.e., the standardized random variable

ωn − E(ωn)√
var(ωn)

approaches towards a Standard Normal variate as n→∞.

Result 12: Kimball (1947) proved the asymptotic normal distribution of

αn = 1
2

n∑
i=1

(
F (Xi:n)− F (Xi−1:n)− 1

n+ 1

)2

which is also a measure of deviation from uniform spacing.
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Result 13: Moran (1972) considered a similar statistic

βn =
n+1∑
i=1

(F (Xi,n)− F (Xi−1,n))2

and proved that βn is asymptotically normal.

All of these results on asymptotic theory of uniform spacings could serve as handy tools
for constructing the goodness of fit tests as the distributions are asymptotically normal. For
the exact expressions of expectation and variance, readers are recommended to go through
the respective articles. Recently, Eryilmaz and Stepanov (2008) studied runs based uniform
order statistics and developed even more complex limit results related to uniform spacings
from the results obtained for runs. One may be interested in the asymptotic behavior of
ordered uniform spacing ∆k,n. A solid and meticulous discussion is found in Bairamov et al.
(2010). In this article we restrain from mentioning all those critical results as that might
spoil the flow of simplicity of the article. Instead we can concentrate our attention on the
asymptotic behavior of the expectation of ∆k,n (k th ordered uniform spacing ) which is
relatively simpler.

Result 14: (1) For finite k ≥ 1 and n→∞ ,

E(∆k:n) = O
( 1
n2

)
→ 0.

(2) For finite k ≥ 1 and n→∞ we have

E(∆n+2−k:n) ∼ logn

n
→ 0.

(3) If k = kn →∞ such that kn = o(n), then

E(∆kn:n) ∼ kn
n2 → 0.

(4) If k = kn →∞ such that kn = o(n), then

E(∆n+2−kn:n) ∼ log(n/kn)
n

→ 0.

The recent trend in characterization through spacings is escalated by investigations in
probability distribution of adjacent spacings. By adjacent spacing we mean the neighborhood
around an order statistic, i.e., the points encapsulated in (Xk:n− d,Xk:n) or (Xk:n, Xk:n + d)
where the d may or may not be dependent on n. Pakes and Steutel (1997); Balakrishnan and
Stepanov(2005); Dembinska et al. (2007); Dembinska and Balakrishnan (2010) are few worth
references. Further Nagaraja et al. (2014) accelerated this route by discussing joint limiting
distribution of adjacent spacings (Yk:n, · · · , Yk+r:n) and (Yk:n, · · · , Yk−s:n) around three types
of order statistics in particular – central, intermediate or an extreme order statistic. When
n → ∞, these three different scenarios arise and (i) Central case where k

n
→ p, 0 < p < 1,
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(ii) Intermediate case where k, n− k →∞ and k
n
→ 0, (iii) Extreme case where k or n− k

is kept fixed. Borrowing the knowledge of extreme value theory they showed that in the
first two cases (r + s) spacings converge weakly to a batch of i.i.d. standard exponential
random variables but in extreme case, this weak convergence would hold only in the domain
of attraction of Gumbel (heavy tail distribution) or Weibull type (short ended, finite end
point distribution).

4. Conclusion

The main purpose of this review article is to elucidate some instructive results re-
lated to uniform spacings arising in the context of characterization theory, without much
dipping down to mathematical complexity. Other than the usual uniform and exponential
spacings, some relevant investigations were done by several authors on the characterization
of the Gamma, Normal and Weibull distributions as well as on some discrete distributions
like Geometric, Poisson, Negative Binomial distributions etc. Still characterization of uni-
form distribution through spacings draws fundamental importance in a wide variety of fields.
Apart from characterization theory; spacing, specially uniform spacing, is applicable in few
other fields as well e.g. distribution-free goodness of fit test, information theory, time series
analysis etc. A couple of topics of interest might be worth mentioning here.

Goodness of fit test is used to verify if the distribution function is equal to a spec-
ified one. By probability integral transformation, any specified continuous distribution func-
tion can be converted to uniform(0,1). Thus the null hypothesis of interest boils down to
H0 : F (x) = x, 0 ≤ x ≤ 1. To test this Ho, Greenwood (1946) introduced a statistic on the
basis of sum of squares of disjoint uniform spacings. The statistic, called Greenwood statis-
tic, is G = 1

n

∑n−1
0 (nY(i:n))2. By virtue of Pitman asymptotic efficiency (AE) Greenwood test

is proved as optimal among the goodness of fit tests within the class of symmetric tests.

All the more, Greenwood statistic could be generalized by Gn = n−1∑n−1
i=0 h(nY(i:n))

where h(.) is a function that satisfies some mild regularity conditions. Clearly, the choice of
h(x) = x2 would turn it to Greenwood’s original statistic. h(x) = xr for r > 0 was proposed
by Kimball (1950) who obtained the limiting distribution of statistic under H0. Another
popular choice of h(.) is h(x) = logx, suggested by Darling (1953).

Periodogram analysis is an effective device in frequency analysis of time series. For
a stationary, random time series periodogram ordinates are exponentially distributed and
independent. Actually ordinates have the same distribution as the uniform distributions of
the spacings. Thus to test for the peak , i.e., the largest ordinate of periodogram test statistic
might be considered as largest uniform spacing (For details see Durbin (1960)). Also, in the
context of distribution of serial/auto correlation coefficients; any order of serial correlation
coefficient can be put in the form of linear functions of spacings. The joint distribution of
several linear functions of the spacings was derived by Watson (1956) which could explain
out the distribution of serial correlations.

In applied economics, auction theory holds current trend of attraction. Motivated
by the upsurge of auctions in online advertisements, like auction through eBay and Amazon,
the query on expected revenues in auctions is quite of interest in recent years. Uniform
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spacings (or spacings as a whole) might come out as an effective tool in such stochastic
auction theory where the following spacings–Y2:n and Yn:n would represent auction rents in
buyers’ auction and reverse auction in the second-price business auction under identical bids.
One might be inquisitive on stochastic modeling of second price (explained by second order
uniform spacing) or if the expected revenues depending on the number of bidders.

So far what we presented here is all about univariate spacings. An intrinsic question
might trigger regarding the exact distribution of bivariate/multivariate uniform spacings.
There are myriad examples in which samples are drawn from bivariate/multivariate set-up
for which it is pertinent to study the spacings of the observations. As a stepping stone,
one can start with multivariate uniform distribution and investigate on multivariate uni-
form spacings accordingly. Barton and David (1962) studied the distribution on spacings
computed on the random points drawn on the two-dimensional plane but still now num-
ber of organized works in multivariate spacings is almost nil, probably due to its degree of
computational difficulty.
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