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Abstract
The area under the curve (AUC) gives an overall summary measure of the performance

of the Receiver Operating Characteristic (ROC) curve. AUC summarizes the entire area
under the curve. Sometimes clinical studies need to focus on the area with low FPR and
high TPR rates. To find the area of portion of an ROC curve, partial AUC (pAUC) came
into use. The seminal works on estimating the pAUC was in the framework of Bi-normal
ROC curve. However, in a real-life scenario, we may come across non-normality, and the
data may be of multi-class. In such cases the existing methodology of binormal ROC curve
will not be of use and this creates the need to bring out a new methodology for estimating
the pAUC under non-normal data. In this paper we made an attempt to address the above
point and derived the expressions for the pAUC of multi-class ROC curve. Further estimating
the partial AUC has been carried out by means of asymptotic confidence intervals of the
false positive rates. Adding to this the constraint on TPR has been considered to elicit the
focused area of the ROC curve and termed it as two-way pAUC (TpAUC). Good amount of
simulations and two real datasets have been considered for necessary illustrations.
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1. Introduction

The Receiver Operating Characteristic (ROC) curve is the popular classification tool
to evaluate the performance of a diagnostic test/marker. ROC curve was first used for signal
detection during World War II (Peterson et al., 1954; Tanner and Swets, 1954). ROC curve
analysis was introduced into diagnostic medicine by Lusted (1971), and its applications
can be seen in several clinical domains that rely extensively on screening and diagnostic
procedures, laboratory testing, epidemiology, radiology, etc.(Obuchowski, 2003).

ROC curve is generated using the coordinate pairs, namely the false positive rates
(FPRs) and true positive rates (TPRs), which are usually referred as intrinsic measures. Out
of these thresholds, one has to choose a threshold that can give better accuracy with reason-
able values of false positives and true positives. AUC is the summary measure of the ROC
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curve, which is used to determine the performance/accuracy of a diagnostic test/marker.
AUC has a theoretical value lies between 0 and 1. An AUC of 0.5 indicates that the classi-
fication is random, the accuracy of a diagnostic test or procedure will increase as the value
of AUC gets closer to 1.

Let us assume that H denote the population 1 with distribution function F and D be
the population 2 with distribution function G; then the ROC form is given as

y(t) = G(F −1
0 (t)), 0 ≤ t ≤ 1 (1)

where, G(x) =
´∞

x
g(x)dx and F0(y) =

´∞
y

f(y)dy; g(x) and f(y) is the density functions of
H and D populations respectively. The probability of detecting/ identifying a subject with
condition is called as the TPR = P (S > t/D), and the probability of classifying a subject
is FPR = P (S > t/H). Here S denotes the data value or score observed from a subject and
t is the threshold. Each data point in the ROC serves as a threshold point, with which one
can calculate the TPRs and FPRs. Yet there is a need to determine the optimal threshold
among the set of all possible thresholds, which is done by using Youden’s J index. The
optimal threshold is determined by taking the maximum value of Youden’s J index from a
vector of values obtained from (2). Now, the FPR and TPR values corresponding to this
optimal threshold have to be considered as the optimal FPR and TPR.

J = maximum (TPR(t) − FPR(t)) (2)

which is the maximum distance between the curve and the chance line. With this optimal
threshold, the subjects will be classified with the atmost accuracy and can also be used to
assign the status of unspecified subjects. When J = 1, the test is perfect, meaning there are
no false positives or negatives.
The AUC of an ROC curve is defined as

AUC =
ˆ 1

0
ROC(t) dt

AUC is defined as the average TPR value for all possible TNR (1-FPR) values, which will
consider the entire area under the curve (Obuchowski, 2003; Zhou et al., 2009; McClish,
1989; Obuchowski and Bullen, 2018). Analyzing the entire ROC curve involves both strict
and lax thresholds; hence, considering a portion of ROC curve will be more meaningful in
some instances, and such portion is named as partial AUC (pAUC) (see Figure 2). From
Figure 1, we can see that the lax threshold provides high TPRs and high FPRs, which are
not a region of interest for clinical studies. Since most clinical studies involve living subjects,
the FPR must be reasonably low. However, the strict threshold provides low FPR and TPR
values, which also does not indicate better classification. Hence, this generates the need to
speak about the portion of the ROC curve above the strict thresholds and below the lax
thresholds, which is shown in Figure 2 for some arbitrary values of c1 and c2 from the set of
FPRs. pAUC is now employed in numerous medical applications and has gained popularity,
particularly in screening research (Ricamato and Tortorella, 2011).

The pAUC consider the area of the ROC space where data have been observed or
that correspond to clinically significant TPR or TNR values. For example, only the lower
tail of the ROC curve is of interest for cancer screening because the FPR must be minimal to
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be acceptable (Zhang et al., 2018). Baker and Pinsky (2001) also pointed out that low FPR
needs to be maintained in cancer screening studies, which is important because it will avoid
costly biopsies. In such cases, analyzing a restricted portion will be more meaningful than
analyzing the entire area of the ROC curve. Seminal work on pAUC was done by McClish
(1989), where a method of analyzing the portion of the ROC curve was proposed and also
gave a transformation to obtain the standardized pAUC value. Thompson and Zucchini
(1989) introduced the method to estimate the partial area under the binormal ROC curve
over any specified region of interest. Later, Jiang et al. (1996) adopted the methodology
of McClish’s work and extended it to describe the partial area index for highly sensitive
diagnostic test. Hillis and Metz (2012) derived analytic expressions to estimate the pAUC
under the assumption of a latent binormal model.

Figure 1: ROC curve depicting strict, moderate and lax thresholds

Figure 2: A typical plot of pAUC between a fixed range of FPR

In practice, diagnostic tests with high FPR lead to enormous economic expenses
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because a significant fraction of healthy individuals would use up the limited supply of med-
ical treatments. Furthermore, when diagnosing a fatal disease, failure to correctly identify
severely ill patients (poor TPR) will result in severe ethical ramifications. Therefore, in such
cases, it is necessary to simultaneously maintain FPR and TPR at low and high levels, re-
spectively. So here, we have introduced a method to estimate the partial area by considering
the constraints on both FPR and TPR simultaneously, which is termed as Two-Way pAUC
(TpAUC). A diagrammatic representation of TpAUC is given in Figure 3 which considered
the area of the ROC curve with FPR range (c1,c2) and minimum TPR of d0, it can be
denoted as TpAUC(c1,c2,d0).

In literature, the works mainly focus on estimating the partial area of the binormal
ROC curve, which can only be used when the data consists of two classes and follows nor-
mality. However, in a real-life scenario, we may come across non-normality, and the data
may be of multi-class. In such cases the existing methodology of binormal ROC curve will
not be of use and this creates the need to bring out a new methodology for estimating the
pAUC under non-normal data. Estimation of AUC under the multi-class classification where
data tend to follow normal distribution was addressed by Gönen (2013); Cheam and Mc-
Nicholas (2016); Siva and Vishnu (2022). Recently Arunima and Vishnu (2022) proposed
gamma mixture ROC curve to classify the multi-class data where the population follows
gamma distributions, in which the gamma variate is transformed into normal by using the
Wilson-Hilferty transformation. In this paper we have considered one of the well-known life
time distribution; the exponential distribution and the partial area estimation of multi-class
exponential ROC is discussed in detail. The study is supported with simulated and real
datasets. Before we detail out the proposed methodology, a gentle introduction on Multi-
class Exponential ROC Curve is given. Thereafter, along with the proposed methodology,
the numerical illustrations are discussed in subsequent sections.

1.1. Multi-class exponential ROC curve

Let us assume that population 1, H ∼ exp(θ0) and population 2 has two sub popula-
tions namely D1 and D2 such that, D1 ∼ exp(θ1) and D2 ∼ exp(θ2). Then the expressions for
intrinsic measures of mixture Exponential ROC (mEROC) are defined Arunima and Vishnu
(2023) as below.
FPR of the mEROC (mFPR) is given as

mFPR = π1FPR1 + π2FPR2

where
FPR1 = x(t1) = P (S > t1 | H) = e−θ0t1 (3)
FPR2 = x(t2) = P (S > t2 | D1) = e−θ1t2 (4)

where πis are mixing proportions/weights; t1 and t2 are the respective threshold values for
the classification of (H, D1) and (D1, D2) respectively. From (3) and (4) we can write t1 and
t2 as

t1 = − log(x(t1))
θ0

; t2 = − log(x(t2))
θ1

(5)

TPR of mEROC (mTPR) is given as
mTPR = π1TPR1 + π2TPR2
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where

TPR1 = y(t1) = P (S > t1 | D1) = e−θ1t1 (6)
TPR2 = y(t2) = P (S > t2 | D2) = e−θ2t2 (7)

substituting (5) in (6) and (7) we will get the mEROC curve which be written as,

mEROC = π1x(t1)β1 + π2x(t2)β2

where β1 = θ1
θ0

and β2 = θ2
θ1

.
accuracy can be expressed notationally as

mAUC =
ˆ 1

0
ROC(t) dt = π1

θ0

θ0 + θ1
+ π2

θ1

θ1 + θ2

2. Proposed methodology - partial area of mEROC curve

Let c1 and c2 denote any two arbitrary FPR values, then pAUC for mEROC can be
defined as

mA(c1,c2) = π1A1(c1,c2) + π2A2(c1,c2)

where A1(c1,c2) and A2(c1,c2) are the partial areas of H & D1 and D1 & D2 respectively. which
is defined as

A1(c1,c2) =
ˆ c2

c1

TPR1(t) FPR′
1(t) dt =

ˆ c2

c1

e−θ1t e−θ0t (−θ0) dt

= θ0

θ1 + θ0

[
e−(θ0+θ1)c2 − e−(θ0+θ1)c1

]
and

A2(c1,c2) =
ˆ c2

c1

TPR2(t) FPR′
2(t) dt =

ˆ c2

c1

e−θ2t e−θ1t (−θ1) dt

= θ1

θ2 + θ1

[
e−(θ1+θ2)c2 − e−(θ1+θ2)c1

]
The area (A+B) in Figure 3 indicates the pAUC between the FPR range c1 and c2. To this,
one more additional constraint is added in the form of d0. The area generated between c1,
c2 and d0 is termed as the two-way pAUC and denoted by mTpAUC(c1,c2,d0). Here c2 is the
upper limit of FPR; d0 is the lower limit of TPR, c1 is the corresponding FPR value at d0.
The area encapsulated between the triplet combination (c1, c2, d0) is indicated as B in Figure
3 and it can be obtained as

mTpAUC(c1,c2,d0) = Area (A + B) − Area A

= mA(c1,c2) − [c2 − c1]d0

In the above expression the constants c1, c2 and d0 are to be estimated. To do so we
need to employ two ways; one is arbitrarily choosing the values and the other is to estimate
them using the method of asymptotic confidence interval. Below we describe the way of
determining the c1, c2 and d0.
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Figure 3: Depicting the area of A and B

Method I

In this method the c2 and d0 will be chosen arbitrarily and c1 can be obtained from d0.
Instead of choosing arbitrarily one can impute using the knowledge from previous studies.
In general clinicians prefer to have reasonably law FPR and moderate/high TPR.

Method II

Here we introduce the asymptotic confidence interval approach to define c2 and d0. For
which the asymptotic confidence intervals are defined and respective variances for mFPR
and mTPR are derived. The upper limit of mFPR will be taken as c2 and lower limit of
mTPR will be the d0; the corresponding mFPR value is taken as c1.

Asymptotic confidence intervals for mTPR and mFPR

The 100(1 − α)% asymptotic confidence interval for mTPR is

mTPR ± Z1−( α
2 )

√
V ar(mTPR)

where Z1− α
2

is the 1 − α
2 standard normal percentile and by delta method (Miller Jr, 1981),

we can obtain variance of mTPR.

V ar(mTPR) = π1V ar(TPR1) + π2V ar(TPR2)
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where

V ar(TPR1) =
(

∂TPR1

∂θ0

)2

V ar(θ0) +
(

∂TPR1

∂θ1

)2

V ar(θ1)

=

e
−θ1

(ln(θ0)−ln(θ1))
θ0−θ1 [θ1 (θ0 − θ1 − θ0(ln(θ0) + ln(θ1))]

θ0(θ0 − θ1)2


2

θ0
2

n0

+

e
−θ1

(ln(θ0)−ln(θ1))
θ0−θ1 [θ1 − θ0ln(θ0) − θ0 + θ0ln(θ0)]

(θ0 − θ1)2


2

θ1
2

n1

V ar(TPR2) =
(

∂TPR2

∂θ1

)2

V ar(θ1) +
(

∂TPR2

∂θ2

)2

V ar(θ2)

=

e
−θ2

(ln(θ1)−ln(θ2))
θ1−θ2 [θ2 (θ1 − θ2 − θ1(ln(θ1) + ln(θ2))]

θ1(θ1 − θ2)2


2

θ1
2

n0

+

e
−θ2

(ln(θ1)−ln(θ2))
θ1−θ2 [θ2 − θ1ln(θ1) − θ1 + θ1ln(θ1)]

(θ1 − θ2)2


2

θ2
2

n1

For the method II we choose d0 as lower limit of mTPR

d0 = mTPR − Z1−( α
2 )

√
V ar(mTPR) (8)

then c1 will be the corresponding FPR of the d0.

Similarly, 100(1 − α)% asymptotic confidence interval for mFPR is,

mFPR ± Z1−( α
2 )

√
V ar(mFPR)

V ar(mFPR) = π1V ar(FPR1) + π2V ar(FPR2)

where

V ar(FPR1) =
(

∂FPR1

∂θ0

)2

V ar(θ0) +
(

∂FPR1

∂θ1

)2

V ar(θ1)

=

e
−θ0

(ln(θ0)−ln(θ1))
θ0−θ1 [θ0 − θ1ln(θ0) − θ1 + θ1ln(θ1)]

(θ0 − θ1)2


2

θ0
2

n0

+

e
−θ0

(ln(θ0)−ln(θ1))
θ0−θ1 [θ0 (θ1 − θ0 + θ1ln(θ0) + θ1ln(θ1))]

θ1(θ0 − θ1)2


2

θ1
2

n1
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and

V ar(FPR2) =
(

∂FPR2

∂θ1

)2

V ar(θ1) +
(

∂FPR2

∂θ2

)2

V ar(θ2)

=

e
−θ1

(ln(θ1)−ln(θ2))
θ1−θ2 [θ1 − θ2ln(θ1) − θ2 + θ2ln(θ2)]

(θ1 − θ2)2


2

θ1
2

n1

+

e
−θ1

(ln(θ1)−ln(θ2))
θ1−θ2 [θ1 (θ2 − θ1 + θ2ln(θ1) + θ2ln(θ2))]

θ2(θ1 − θ2)2


2

θ2
2

n2

then the value of c2 will be

c2 = mFPR + Z1− α
2

√
V ar(mFPR) (9)

3. Numerical illustrations

For illustrating the proposed work both simulated and real datasets are considered
and the results are tabulated accordingly.

3.1. Simulated datasets

Exponential random samples of size n = (25, 50, 100, 200) are generated with different
parameter combinations. The moderate and better classification scenarios will be demon-
strated using the parameter combinations given in Table 1. Methods I and II are used to
estimate the partial area on the samples that were generated.

For illustration purpose, we have chosen different parameter combinations of θ0 and θ1
and calculated the partial area by taking c2 = 0.5 and d0 = 0.65 (one may choose any values
for c2 and d0 according to prior knowledge on the study). The results for each parameter
combination with respective sample sizes are reported in Tables 1 and 2 and respective ROC
curves are given in Figure 4. From Table 1, consider n=100 in set A, the overall m̂AUC is
observed to be 86.71%, with true positives about 76.61% and false positives of 13.40%, which
indicates comparatively a better accuracy. In similar lines, in set B for n=100, the overall
m̂AUC is observed to be 68.27%, with true positives about 51.19% and false positives of
27.84%, which indicates a moderate accuracy. Table 2 gives the results pertaining to partial
area for method I, and we can observe that, let say for n=100 for set A the values for d0
and c2 are chosen as 0.65 and 0.5 respectively, ĉ1 is the corresponding mFPR at d0 which is
about 0.0816 provides mpAUC (m̂A) and ̂mTpAUC about 0.3786 and 0.1066 respectively.
And for n=100 in set B, the corresponding mFPR at d0 which is about 0.3911 provides
mpAUC (m̂A) and ̂mTpAUC about 0.1496 and 0.0788 respectively. Here we can see that
within a fixed range of mFPR and mTPR the m̂AUC, m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) are
proportional to each other. For better understanding the ̂mTpAUC for n=100 of sets A and
B using method II are depicted in Figures 5.
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Ĵ
m̂

F
P

R
m̂

T
P

R
m̂

A
U

C

Se
t

A
:

θ̂ 0
=

0.
99

;
θ̂ 1

=
0.

3;
θ̂ 2

=
0.

01
25

0.
50

15
0.

49
85

1.
03

51
0.

31
36

0.
01

05
1.

70
19

11
.5

85
8

0.
62

77
0.

13
49

0.
76

25
0.

86
50

50
0.

50
24

0.
49

76
1.

01
51

0.
30

66
0.

01
02

1.
71

32
11

.6
43

9
0.

63
04

0.
13

35
0.

76
39

0.
86

62
10

0
0.

49
83

0.
50

17
0.

99
76

0.
30

35
0.

01
01

1.
72

64
11

.6
77

9
0.

63
25

0.
13

40
0.

76
64

0.
86

71
20

0
0.

49
86

0.
50

14
0.

99
08

0.
30

03
0.

01
01

1.
73

46
11

.7
39

2
0.

63
30

0.
13

42
0.

76
72

0.
86

74

Se
t

B
:

θ̂ 0
=

0.
99

;
θ̂ 1

=
0.

6
θ̂ 2

=
0.

2
25

0.
52

66
0.

47
34

1.
03

29
0.

62
87

0.
20

95
1.

26
12

2.
69

46
0.

24
85

0.
27

43
0.

52
28

0.
67

94
50

0.
51

43
0.

48
57

1.
01

22
0.

60
99

0.
20

33
1.

27
54

2.
73

82
0.

24
20

0.
27

92
0.

52
12

0.
68

31
10

0
0.

52
20

0.
47

80
0.

99
60

0.
60

66
0.

20
11

1.
28

23
2.

74
04

0.
24

15
0.

27
84

0.
51

99
0.

68
27

20
0

0.
51

09
0.

48
91

0.
99

40
0.

60
23

0.
19

97
1.

28
36

2.
75

12
0.

23
98

0.
28

19
0.

52
18

0.
68

51

T
ab

le
2:

P
ar

ti
al

ar
ea

es
ti

m
at

es
of

si
m

ul
at

ed
da

ta
se

ts
us

in
g

m
et

ho
d

I

d
0
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Table 3: Partial area estimates of simulated datasets using method II

V ar(m̂FPR) V ar(m̂TPR) d̂0 ĉ1 ĉ2 m̂A(c1,c2) ̂mTpAUC(c1,c2,d0)

Set A: θ̂0=0.99; θ̂1=0.3; θ̂2=0.01

0.00179 0.00206 0.68016 0.09353 0.21719 0.09823 0.01412
0.00096 0.00094 0.70578 0.10191 0.19527 0.07232 0.00642
0.00048 0.00046 0.72367 0.10988 0.17725 0.05133 0.00258
0.00025 0.00025 0.73621 0.11354 0.16539 0.03902 0.00084

Set B: θ̂0=0.99; θ̂1=0.6 θ̂2=0.2

0.00314 0.00302 0.41063 0.15767 0.35576 0.24532 0.16397
0.00118 0.00152 0.45334 0.17771 0.30952 0.15247 0.09272
0.00075 0.00116 0.46747 0.18847 0.29418 0.11795 0.06854
0.00046 0.00070 0.47924 0.20080 0.28167 0.08965 0.05089
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Figure 4: ROC curve for simulated datasets

Coming to method II, from Table 3, we can observe that for n=100 in set A, by using
the equations (8) and (9) the obtained value are d̂0 = 0.7237, ĉ2 = 0.1773 and the respective
m̂FPR at d̂0 is ĉ1 = 0.1099, and provides m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) of about 0.05133
and 0.00258 respectively. Similarly for n=100 in set B, the obtained value of d̂0, ĉ1 and ĉ2

are 0.46747, 0.18847 and 0.29418 which provides m̂A(c1,c2) and ̂mTpAUC(c1,c2,d0) of about
0.1179 and 0.06854 respectively.

3.2. Real datasets

To demonstrate the proposed methodology two real datasets are considered and their
results are tabulated accordingly with respective ROC curves in Figure 7.
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(a) Set A (b) Set B

Figure 5: TpAUC for set A and B for n=100

Data 1: Irradiated mice data

Irradiated mice data from Elandt-Johnson and Johnson (1980) is considered; the
variable of interest is the time at the death of 99 mice. The p-value of Kolmogorov-Smirnov
test for exponential distribution is 0.43 (test statistic (D)=0.113) which indicates that the
data follows exponential distribution.
The density plot of the irradiated mice data is given in the Figure 6(a), and is very clear
that there exists multi-modality which indicates the presence of sub-populations, i.e., the
data is of multi-class. By using EM algorithm we identified that there are three classes and
the estimated the parameters of the respective populations are θ̂0 = 0.3954, θ̂1 = 0.0279
and θ̂2 = 0.0201. The proposed methodology is used to classify the data and the results are
tabulated in the Tables 4 and 5.
It is observed that with thresholds t̂1 = 12.8556 and t̂2 = 417.2446, the overall m̂AUC is
about 0.7267, this indicates that the mEROC curve has accuracy about 72%, with false
positives of 24% and true positives of 69%. This means to that a subject can be classified
in the following manner.

It is classified as =


P1, if S ≤ 12.8556
P2, if 12.8556 < S ≤ 417.2446
P3, if S > 417.2446

where P1, P2 and P3 are the three respective classes. For method I, the d0 and c2 is taken
as 0.6 and 0.4 respectively, and ĉ1 which is the corresponding m̂FPR at d0 is 0.206488.
Altogether, method I results m̂A and ̂mTpAUC as 0.1873 and 0.0711 respectively. Coming
to method II, by using equations (8) and (9) the obtained value for d̂0 and ĉ2 are about 0.6948
and 0.2837, ĉ1 which is the corresponding m̂FPR at d̂0 is obtained as 0.2516. By method
results the m̂A and ̂mTpAUC are 0.0381 and 0.0158 respectively. Since, the difference
between c2 and c1 is too small, the TpAUC portion on the mEROC curve is difficult to
depict. However, the TpAUC is shown for breast cancer data (Figure 8).
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Figure 6: Density plots of real datasets

Data 2: Breast Cancer data

The real dataset represent the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 (Lee and Wang, 2003). The p-value
of K-S test for exponential distribution is 0.06024 (test statistics (D)=0.12031) which indi-
cates that the data follows exponential distribution. The estimation is done by using both
the methods and respective results are shown in Tables 4 and 5.

The density plot of the breast cancer data is given in Figure 6 (b), and is very clear
that there exists multi-modality which indicates the presence of sub-populations. By using
EM algorithm we identified that there are three classes and the estimated the parameters
of the respective populations are θ̂0 = 0.4010, θ̂1 = 0.0280 and θ̂2 = 0.0202. The optimal
thresholds, t̂1 and t̂2 are 7.7311 and 44.6911, which gives accuracy about 75.26% with false
positive rates about 20.63% and true positives of 63.93%. This means to that a subject can
be classified in the following manner

It is classified as =


P1, if S ≤ 7.7311
P2, if 7.7311 < S ≤ 44.6911
P3, if S > 44.6911

where P1, P2 and P3 are the three respective classes with low, medium and high survival
rate respectively.

For method I, the d̂0 and ĉ2 are taken as 0.6 and 0.5 and the ĉ1 corresponding to d̂0 is
obtained as 0.1986, which results m̂A and ̂mTpAUC about 0.1935 and 0.01266. By method
II the values obtained for d̂0 and ĉ2 are about 0.6123 and 0.2837, the corresponding ĉ1 to
d̂0 is 0.2142, altogether results m̂A and ̂mTpAUC of 0.0509 and 0.0084 respectively. The
TpAUC for breast cancer data is depicted in Figure 8.
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Figure 7: ROC curves for real datasets

Table 4: ROC curve measures of real datasets

π̂1 π̂2 t̂1 t̂2 m̂FPR m̂TPR V ar(m̂FPR) V ar(m̂TPR) Ĵ m̂AUC

Mice data

0.4998 0.5002 12.8556 417.2446 0.2435 0.6973 0.000333 0.000308 0.45378 0.726739

Breast Cancer data

0.4999 0.5001 7.7311 44.6911 0.20627 0.6393 0.000371 0.000286 0.432985 0.752647

Table 5: Partial area estimates of real datasets

Dataset Method d̂0 ĉ1 ĉ2 m̂A(c1,c2) ̂mTpAUC(c1,c2,d0)

Mice I 0.6 0.206488 0.4 0.187254 0.071147
II 0.69483 0.251559 0.283712 0.038135 0.015794

Breast
Cancer

I 0.6 0.19857 0.5 0.193517 0.012659
II 0.61229 0.214157 0.283665 0.050896 0.008337

4. Summary

In this work, we made an attempt to explain the need and importance of analyzing
a portion of the ROC curve for multi-class non-normal data. Methodological descriptions
are given in detail for one-way and two-way pAUC. Expressions for mpAUC and mTpAUC
are also derived, and the terms d0 and c2 involved in these expressions are obtained using
asymptotic confidence intervals of mFPR and mTPR. Two real datasets and considerable
simulations are used to demonstrate the proposed work. From the results it is observed
that for a multi-class ROC curve, whose area is maximum (minimum), the areas within the
mFPR range and mTpAUC will also have a larger (smaller) portion in the entire area.
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Figure 8: Two way pAUC for Breast Cancer data
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