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Abstract 

 

This paper aims to provide a comprehensive overview of the Bayesian estimation 

methodology for the multiple covariate vector autoregressive (MC-VAR) model, in both 

methodology and application point of view. In that respect, conditional posterior distributions 

are derived to obtain the Bayesian estimators and influence based on covariate is analyzed by 

posterior odds ratio. Due to multiple integrations, the Gibbs sampler method is employed for 

the estimation of the MC-VAR model. Our approach is applied on both simulation and real 

data series to show the applicability of the proposed model. The real data result is useful for 

analyzing the relationship of covariates in economic time series. 
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1. Introduction 

 

The VAR model is continuously attracting the researchers to depict the behavior of a 

variable over time (Al-hajj et al. (2017), Sharma et al. (2018)). In the VAR model, present 

value of the variable is expressed as a linear function of past values and a random error (Fuller 

(1985)). For the analysis of multivariate time series data, VAR is frequently used model see 

Fuller (1985), Juselius (2006), Tsay (2014) and Lutkepohl (2005). VAR is most preferred and 

equally popular model for understanding the behavior of financial and economical data in 

various literatures see Wei (1990), Lutkepohl (2005), Al-hajj et al. (2017) and Sharma et al. 

(2018). VAR model is/was also used for structural analysis. In structural analysis, causal 

impacts of the variables are observed when certain hypotheses are imposed and resultant causal 

impacts are précised in Granger causality and impulse response function (IRF) in Wei (1990), 

Hamilton (1994), Lutkepohl (2005), etc. In the VAR model, when one includes exogenous 

variables, the VAR model extended to a covariate vector autoregressive (CVAR) model and 

allows those variables in the dataset to be modeled jointly over present and past time periods 

as considered in Hamilton (1994) and Tsay (2015).  

 

The main motive behind the study of time series model with covariate is to make precise 

inferences about the impact of covariates on the response series under Bayesian framework. 

There are so many articles to explore the covariate in various univariate and multivariate time 

series model. Hansen (1995) developed covariate augmented Dickey-Fuller (CADF) unit root 

test with some stationary covariates for autoregressive parameter. This CADF test further 

extended to a point optimal covariate (POC) unit root test by Elliott and Jansson (2003). 
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Costantini and Lupi (2013) developed panel data model with stationary covariate which is the 

extension of Hansen (1995) model. Chaturvedi et al. (2017) discussed the Bayesian unit root 

hypothesis for covariate autoregressive model. Chang et al. (2017) developed bootstrap unit 

root tests with covariate method to the CADF test to deal the nuisance parameter dependency 

and provided a valid basis for inference based on the CADF test. Anggraeni et al. (2017) 

discussed performance of autoregressive integrated moving average with explanatory variable 

(ARIMAX) with VAR model using Indonesia economic data sets. Based on MAPE results, 

observed that performance of ARIMAX model is better than VAR model. Kumar et al. (2018) 

discussed Bayesian estimation and testing procedure for panel autoregressive time series model 

with covariate. Recently, Ji Linying et al. (2019) implemented VAR model with non-ignorable 

missingness in dependent variables and covariates under Bayesian framework. They 

introduced a Bayesian model which simultaneously represents the time dependency in 

multivariate and multiple subject time series data via VAR model.   

 

The purpose of present paper is to make inference of multiple covariate-vector 

autoregressive (MC-VAR) model under Bayesian framework. We use Monte Carlo simulation 

method to estimate the parameters using conditional posterior distributions and then testing the 

impact of stationary covariate using posterior odds ratio. A simulation study has been carried 

out to validate the theoretical results. An empirical study of GDP series with export and import 

series as covariates is carried out to evaluate the performance of proposed model and obtained 

the Bayes estimators. 

 

2. Model Description 
 

In this section, we begin with vector autoregressive (VAR) model that captures the 

complex dynamics behaviour of multiple time series and their interactions and provides 

multiple series in a systematic manner. The basic form of VAR model represents a vector of 

N-dimensional time series measured at a particular time period. Let {Yt, t = 1,2,…,T} be a VAR 

process expresses as a linear combination of past observations at lag p. Then, model is defined 

as 

 .2211 tptpttt YAYAYAY      (1) 

Generally, influence regarding the observation is based not only the study variables but 

also other associated variables. If these associated variables are also included in the process, 

then efficiency of the process may be increased. So, we include K stationary covariates (Wt, t 

= 1,2,…,T) in the model that having dependence with its own past observations up to lag q then 

it can be written as 

 

,...
11

112211 t

K

l
qltlq

K

l
ltlptpttt WBWBYAYAYAY   





 

 

,
1 11

t

K

l

q

j

jltlj

p

i

itit WBYAY   
 





  

 .''
tttt ZXY    (2) 

Here,  
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The final model in terms of matrix notation as 

   ZXY  (3) 

where N is the numbers of variables under study, K is the number of covariates, tY  and ηt are 1 

x N, Aij is N x N. The disturbances ηt are unobservable random variable with E(ηt) = 0 and 

VAR(ηt) = Σ. The model is multiple covariate-vector autoregressive of order p time series 

model. 
 

 

3. Bayesian Inference
 

 

The following prior distributions are considered for Bayesian analysis. We consider a 

basic prior distribution that enables analytical derivation of the posterior distribution and, thus, 

fast computations. The matrix variate normal conditional prior distribution is considered for θ 

and δ.  An inverse Wishart marginal prior distribution is assumed for Σ. Let us assume the 

following prior distributions for the parameters used in the models 

   ,,0;,,,~ 1010  VVMN   (4) 

   ,,0;,,,~ 2020  VVMN   (5) 

   .1;0,,~  NvSSIWN   (6) 

Here MN and IW denote matrix variate normal distribution and inverse Wishart distribution, 

respectively. The joint prior probability of all parameters    ,, for MC-VAR model is 

determined using the equations (4) to (6) 
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The likelihood function of the model is 
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The posterior distribution is expressed as the product of likelihood function given in equation 

(8) and joint prior distribution given in equation (7) 
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where K is the normalizing constant which is given by    


  dPYLK |1 .  

 

3.1. Bayesian estimation 

 

For Bayesian estimation, the estimator of the parameter is derived by using loss function 

and the posterior distribution. We consider two loss functions, one is symmetric known as 

quadratic loss or squared error loss and other one is asymmetric, entropy loss function. The 

Bayes estimators of any parametric function, say ϕ(Θ) under squared error loss function 

(SELF), entropy loss function (ELF) and precautionary loss function (PLF) are defined by 
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It is to be noticed here that a major difficulty in the implementation of Bayes procedure 

is the evaluation of the ratio of two integrals as described in equations (10) to (12) for which 

closed expression is not easy to obtain analytically. Therefore, we use Gibbs sampler algorithm 

to obtain the posterior samples from posterior distribution. For this, expression of full 

conditional posterior distribution are obtained 

    ,,,~,, 11   ABAMNY   (13) 

    ,,,~,, 11   CDCMNY   (14) 

    ,,~,, ** vSIWY    (15) 
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.13*  TNvv  

Using the generated samples from the above conditional posterior distributions, Bayes 

estimates of the parameters are evaluated under different loss functions. Bayes estimate under 

SELF, ELF and PLF is the posterior mean,    11 |
 YE and  YE |2 respectively. 

3.2. Bayesian testing procedure 

 

Under Bayesian perspective, posterior odds ratio (POR)/ Bayes Factor (BF) is used in 

decision making for hypothesis testing problem/model selection procedure. POR (β01) is 

product of prior odds ratio with Bayes factor (BF01) of the null (H0) and alternative (H1) 

hypothesis. Here, the null hypothesis considers that covariates do not impact the study series, 

i.e., H0: δ = 0 against the alternative hypothesis assumes that there is a significant relationship 

exists between study variable and covariates, i.e., H1: δ ≠ 0.  The model under null and 

alternative hypothesis is  

 

  XY  :Under H0  

  ZXY  :Under H1  

Then, β01 is expressed as  
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where O(Ho) is the prior odds ratio, i.e., it is the ratio of prior probability under null is p0 and 

alternative is (1 − p0). 

 

The decision is taken to reject H0 if POR is less than one, otherwise accept. So, the posterior 

probability under null and alternative hypothesis is computed as 
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Then, the POR is constructed as 
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4. Simulation Study 

 

This section discusses the appropriateness of the testing of hypothesis and record the 

performance of the estimators in the proposed model using the simulation study. For simulation 

purpose, a bivariate VAR(2) model with single covariate is generated from equation (2) with 

starting value of observed series is Y = (4 6)  and covariate series is W = (2 3). The results are 

obtained based on R-language version 3.6.2. We have considered different sizes of the time 

series T = c (200, 300). For series generation, fixed arbitrarily values are defined for the model 

parameters in the equation (19). 
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where η.t is a normally distributed random variable. To get more appropriate results, process is 

repeated 1000 times and each time 5000 posterior samples are generated using the Gibbs 

sampling procedure. For the different sizes of the series, average estimates (AE) and its 

standard deviation (SD) are summarized in Tables 1-2 (given in Appendix). For comparison 
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between the different estimators, average absolute bias (AB) and average mean square error 

(MSE) of the estimators of the parameters are recorded in Tables 3-4 (given in Appendix).  

 

Tables 1-2 conclude that average estimates are near to the true value of the parameters 

and standard deviation is also small that shows less variability in the estimation of the 

parameters.  From Tables 3-4, we observed that size of the ser1ies increases, MSE and AB 

decreases from near to bottom of the series. In comparison of different loss functions, ELF 

performance better as compared to other estimators because MSE and AB is minimum. The 

next target for this study is to determine the significant affect of the covariate in the time series. 

For that, hypothesis testing for the presence or absence of covariate is carried out and records 

the POR results in Table 5 for different sizes of series and different number of covariates. From 

Table 5, we reject the null hypothesis as the POR values are less than one for different sizes of 

simulated series. This concludes that including the covariates in the model, better inference is 

drawn from the given series. Here, we also notice that number of covariates depends upon the 

series size since it does not much explain the small series with higher covariate as seen in T = 

100 and K = 3.  

                

  Table 5: Posterior odds ratio with T and K 

 

T K=1 K=2 K=3 

100 1.47E-05 3.74E-02 2.17E+00 

200 1.54E-23 2.82E-21 3.70E-18 

300 2.25E-47 2.63E-36 1.69E-31 

400 4.07E-66 5.22E-45 3.68E-42 

500 1.06E-103 2.50E-65 4.01E-57 

 

5. Real Data Analysis 

 

A macroeconomic data set is taken to illustrate the performance of proposed model. We 

use yearly series on gross domestic product (GDP), export and import for the period 1962 to 

2018 from IMF’s International Financial Statistics as well as The World Bank data source 

(http://datahelp.imf.org/ and https://data.worldbank.org/). For analysis purpose, most 

developing countries India and China is considered as vector form where GDP is the study 

variable and export and import are two covariates.  The reason behind the selection of these 

two countries is that most of the Indian market is depended upon the import material of China 

product so this impacts the GDP of both countries. First, we determine the best suitable order 

of each variable using the in-built function in R-language and display in Table 6.  Based on 

Table 6, we observe that GDP series have VAR order two (p = 2) model whereas import and 

export series obtain VAR order one (q = 1) model.   

  

http://datahelp.imf.org/
https://data.worldbank.org/
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Table 6:  Order selection based on various selection criterion 

  

Series Order (lag) 1 2 3 

GDP 

AIC 5.0812 4.6713 4.7246 

HQ 5.1670 4.8142 4.9248 

SC 5.3043 5.0430 5.2451 

Import 

AIC 1.9540 2.0192 2.0602 

HQ 2.0397 2.1621 2.2603 

SC 2.1770 2.3909 2.5806 

Export 

AIC 1.3716 1.4176 1.4832 

HQ 1.4574 1.5605 1.6834 

SC 1.5947 1.7893 2.0037 

 

Once, we get the order of the series, estimation of model parameters are carried out using 

the proposed methodology and then obtain the consequence of covariate(s) in the response 

series.  Here, we analyze the inference of the proposed model based on one and two covariates, 

i.e., show the suitable impact of GDP versus import or export or both series. As per simulation 

study, we recorded that the best estimated values of the parameters of the proposed model is 

obtained through ELF estimators. So, we only estimate the MC-VAR model parameters under 

ELF and recorded in equations (20)-(22) for single and bivariate covariates. 
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The calculated POR for the proposed model under study are recorded in Table 7 that 

shows the suitable covariate is necessary to analyze the growth of the GDP series.  We see that 
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individual covariate has an impact on GDP series as compared when both covariates are jointly 

analyzed because it does not reject the null hypothesis.  

  

Table 7: POR value based on real data series 

 

Covariate  Export Import Both Export and Import  

POR 0.9266 0.4488 1241.5250 

 

6. Conclusion 

 

In this paper, we develop a Bayesian approach for analyzing vector autoregressive (VAR) 

model with multiple covariates. The model is estimated by deriving the conditional posterior 

distribution and Bayesian estimators are obtained under different loss functions. We also test 

the association of covariates in the VAR model using the derived posterior odds ratio. Based 

on our simulation and empirical results, indicates that Bayesian estimators appropriate 

estimates the parameter values and import and export variables are related to GDP series 

individually. 
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APPENDIX 
 

Table 1: AE and SD of C-Var(2) model at T = 200 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
AE SD AE SD AE SD 

1 (1) 0.6718 0.1224 0.6624 0.1358 0.6929 0.1198 

2  (2) 1.6965 0.0896 1.5995 0.1067 1.6833 0.0874 

)1(

11 (0.2) 0.2017 0.0573 0.1835 0.0701 0.2085 0.0554 

)1(

12 (0.3) 0.3203 0.0424 0.3146 0.0433 0.3230 0.0420 

)2(

11 (0.15) 0.1468 0.0492 0.1340 0.0634 0.1542 0.0462 

)2(

12 (0.15) 0.1646 0.0458 0.1495 0.0562 0.1706 0.0425 

)1(

21 (0.25) 0.2464 0.0965 0.2635 0.0854 0.2629 0.0886 

)1(

22 (0.15) 0.1523 0.0695 0.1671 0.0932 0.1591 0.0615 

)2(

21 (0.2) 0.2101 0.0872 0.2100 0.0821 0.2249 0.0794 

)2(

22 (0.1) 0.1198 0.0830 0.0971 0.0692 0.0973 0.0639 

)11(

11 (0.3) 0.3062 0.0217 0.3050 0.0218 0.3068 0.0217 

)11(

12 (0.15) 0.1524 0.0216 0.1499 0.0220 0.1536 0.0214 

)11(

21 (0.2) 0.2117 0.0391 0.2066 0.0406 0.2141 0.0386 

)11(

22 (0.1) 0.1070 0.0373 0.0947 0.0735 0.1119 0.0355 

11 (0.09) 0.0739 0.0073 0.0725 0.0072 0.0747 0.0075 

12 (0.01) 0.0085 0.0670 0.0085 0.0652 0.0086 0.0681 

21 (0.01) 0.0085 0.0670 0.0085 0.0652 0.0086 0.0681 

22 (0.25) 0.1972 0.0195 0.1936 0.0191 0.1994 0.0198 
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Table 2: AE and SD of MC-Var(2) model at T = 300 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
AE SD AE SD AE SD 

1 (1) 0.7122 0.1338 0.7194 0.1530 0.7304 0.1309 

2  (2) 1.8086 0.0600 1.7557 0.0760 1.7909 0.0620 

)1(

11 (0.2) 0.1974 0.0476 0.1843 0.0600 0.2026 0.0462 

)1(

12 (0.3) 0.3168 0.0387 0.3126 0.0392 0.3189 0.0384 

)2(

11 (0.15) 0.1529 0.0410 0.1524 0.3054 0.1581 0.0393 

)2(

12 (0.15) 0.1625 0.0404 0.1506 0.0563 0.1668 0.0391 

)1(

21 (0.25) 0.2483 0.0773 0.2374 0.0606 0.2596 0.0731 

)1(

22 (0.15) 0.1507 0.0596 0.1561 0.0756 0.1533 0.0557 

)2(

21 (0.2) 0.2126 0.0690 0.1893 0.1131 0.2226 0.0653 

)2(

22 (0.1) 0.1162 0.0650 0.1032 0.0451 0.1136 0.0511 

)11(

11 (0.3) 0.3009 0.0182 0.3000 0.0182 0.3013 0.0181 

)11(

12 (0.15) 0.1536 0.0171 0.1518 0.0173 0.1544 0.0170 

)11(

21 (0.2) 0.2022 0.0289 0.1986 0.0295 0.2040 0.0287 

)11(

22 (0.1) 0.1089 0.0272 0.1010 0.0359 0.1121 0.0263 

11 (0.09) 0.0810 0.0065 0.0800 0.0063 0.0815 0.0065 

12 (0.01) 0.0098 0.0634 0.0099 0.0607 0.0099 0.0651 

21 (0.01) 0.0098 0.0634 0.0099 0.0607 0.0099 0.0651 

22 (0.25) 0.2128 0.0176 0.2103 0.0173 0.2142 0.0178 
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Table 3: MSE and AB of MC-Var(2) model at T = 200 

 

Estimator SELF ELF PLF 

Parameter 

(True value) 

(True Value) 

MSE AB MSE ABS MSE ABS 

1 (1) 0.3728 0.5515 0.3405 0.5093 0.3870 0.5674 

2  (2) 0.2655 0.2466 0.2683 0.2848 0.2530 0.2722 

)1(

11 (0.2) 0.2121 0.2193 0.2180 0.2193 0.2104 0.2203 

)1(

12 (0.3) 0.2246 0.2752 0.2248 0.2715 0.2246 0.2770 

)2(

11 (0.15) 0.2308 0.2252 0.2445 0.2311 0.2282 0.2227 

)2(

12 (0.15) 0.2427 0.2236 0.2481 0.2297 0.2408 0.2219 

)1(

21 (0.25) 0.2066 0.2432 0.2841 0.3032 0.2037 0.2455 

)1(

22 (0.15) 0.2525 0.2398 0.2642 0.2541 0.2481 0.2375 

)2(

21 (0.2) 0.2170 0.2202 0.2561 0.2443 0.2119 0.2215 

)2(

22 (0.1) 0.2789 0.2551 0.2540 0.2393 0.2650 0.2377 

)11(

11 (0.3) 0.1965 0.2558 0.1965 0.2549 0.1965 0.2562 

)11(

12 (0.15) 0.2464 0.2149 0.2472 0.2155 0.2460 0.2146 

)11(

21 (0.2) 0.2022 0.2141 0.2031 0.2131 0.2018 0.2146 

)11(

22 (0.1) 0.2653 0.2342 0.2753 0.2493 0.2631 0.2311 

11 (0.09) 0.2869 0.2632 0.2876 0.2642 0.2865 0.2626 

12 (0.01) 0.2462 0.2440 0.2475 0.2462 0.2454 0.2427 

21 (0.01) 0.2927 0.2734 0.2942 0.2755 0.2918 0.2721 

22 (0.25) 0.2023 0.1969 0.2029 0.1963 0.2019 0.1974 
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Table 4: MSE and AB of MC-Var(2) model at T = 300 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
MSE ABS MSE ABS MSE ABS 

1 (1) 0.3874 0.5755 0.4016 0.5442 0.3612 0.5897 

2  (2) 0.2441 0.2555 0.2493 0.2821 0.2331 0.2768 

)1(

11 (0.2) 0.2244 0.2179 0.2231 0.2204 0.2280 0.2181 

)1(

12 (0.3) 0.2118 0.2686 0.2118 0.2657 0.2118 0.2701 

)2(

11 (0.15) 0.2342 0.2178 0.2325 0.2368 0.3262 0.2162 

)2(

12 (0.15) 0.2351 0.2157 0.2337 0.2198 0.2401 0.2149 

)1(

21 (0.25) 0.2190 0.2421 0.2170 0.2340 0.2201 0.2467 

)1(

22 (0.15) 0.2352 0.2253 0.2319 0.2775 0.2257 0.2276 

)2(

21 (0.2) 0.2223 0.2269 0.2200 0.2353 0.2381 0.2274 

)2(

22 (0.1) 0.2546 0.2431 0.2258 0.2331 0.2425 0.2279 

)11(

11 (0.3) 0.2093 0.2561 0.2092 0.2555 0.2093 0.2564 

)11(

12 (0.15) 0.2380 0.2136 0.2377 0.2139 0.2385 0.2134 

)11(

21 (0.2) 0.2237 0.2139 0.2233 0.2134 0.2246 0.2142 

)11(

22 (0.1) 0.2534 0.2328 0.2520 0.2386 0.2572 0.2308 

11 (0.09) 0.2661 0.2476 0.2658 0.2483 0.2665 0.2472 

12 (0.01) 0.2682 0.2558 0.2677 0.2572 0.2691 0.2550 

21 (0.01) 0.2728 0.2584 0.2723 0.2599 0.2737 0.2576 

22 (0.25) 0.2197 0.2147 0.2195 0.2140 0.2202 0.2151 

 


