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Abstract
Bayesian estimation, a non-classical method of estimation has emerged as one of the

most accepted method in statistical inference. In this paper, the Bayesian estimators of
the parameters of Inverted Kumaraswamy distribution under two priors, namely Gamma
and Uniform have been obtained considering three different cases: (i) when α is known and
β is unknown, (ii) when α is unknown and β is known, and (iii) when α and β both are
unknown. The symmetric and asymmetric loss functions viz., Linear exponential (LINEX),
Squared error (SE) and Entropy loss (EL) functions have been used for the Bayesian esti-
mation. Lindley’s approximation (L-approximation) has been used to obtain approximate
Bayes estimators. Their performance was compared using simulated risks. An intensive sim-
ulation study is carried out with the help of Matlab and R software to examine the behavior
of estimators based on their relative mean square errors.

Key words: Bayesian estimation; Inverted Kumaraswamy distribution; Lindley’s approxima-
tion; Relative mean square error; Symmetric and asymmetric loss function.
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1. Introduction

In recent literature, several novel distributions have been proposed for describing
various real life situations in many applied sciences. Kumaraswamy (1980) obtained a dis-
tribution, which is derived from beta distribution after fixing some parameters in beta dis-
tribution. But it has a closed-form cumulative distribution function which is invertible and
for which the moments do exist. If X follows Kum(α,β), then the Cumulative Distribution
Function CDF is given by

F (x) = (1 − (1 − x)α)β; 0 < x < 1, α, β > 0

The distribution is appropriate to natural phenomena whose outcomes are bounded from
both sides, such as the individuals’ heights, test scores, temperatures and hydrological daily
data of rain fall.
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Abd Al-Fattah et al. (2017) derived the Inverted Kumaraswamy (IKum) distribution
from Kumaraswamy (Kum) distribution using the transformation T = 1

X
− 1 so if X follows

Kum(α,β) where α and β are shape parameters, then the T has a IKum distribution with
CDF

F (t) = (1 − (1 + t)−α)β; t > 0, α, β > 0 (1)

and probability density function (pdf)

f(t) = αβ(1 + t)−(α+1)(1 − (1 + t)−α)β−1; t > 0, α, β > 0 (2)

Also the Reliability and Hazard rate functions are given by

R(t) = P (T > t) = 1 − F (t) = 1 − (1 − (1 + t)−α)β (3)

H(t) = f(t)
R(t) = αβ(1 + t)−(α+1)(1 − (1 + t)−α)β−1

1 − (1 − (1 + t)−α)β
(4)

Abd Al-Fattah et al. (2017) found IKum distribution to be a right skewed distri-
bution, which according to Moustafa and Mahmoud (2018), will affect long term reliability
predictions, producing optimistic predictions of rare events occurring in the right tail of the
distribution compared with other distributions. Also the IKum distribution provides good
fit to several data in literature.

The inverse distributions, also known as inverted or reciprocal distributions, have
been widely applied to a wide variety of scenarios in this context. Lately, many researchers
have considered and studied the properties of inverted distributions. For example, Tiao and
Cuttman (1965) obtained Inverted Dirichlet distribution and its application to a problem in
bayesian inference. Prakash (2012) studied the inverted exponential model and Flaih et al.
(2012) presented exponentiated inverted Weibull distribution. Iqbal et al. (2017) developed
a general form of IKum distribution. Fan and Gui (2022) studied the statistical inference of
inverted exponentiated Rayleigh distribution based on joint progressively type-II censored
data. Aldahlan et al. (2022) estimated the parameters of the Beta Inverted Exponential
Distribution under Type-II Censored Samples. Sana et al. (2023) considered the problem of
estimation of unknown parameters based on lower record values for Inverted Kumaraswamy
distribution using Lindley’s approximation.

To our best knowledge no such Bayesian analysis for Inverted Kumaraswamy distri-
bution under these combinations of priors and loss functions has been done.

The paper is carried out as follows: In Section 2 the likelihood function is obtained,
followed by the derivation of posterior distribution of the unknown parameter in all three
cases under the considered priors in Section 3. In Section 4 different loss functions are used to
compute the estimates of the parameters. Section 5 depicts the simulation study conducted
for performance evaluation along with the results in tabular form. The study is concluded
in Section 6, followed by references used for literature review.
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2. Likelihood function for the inverted Kumaraswamy distribution

LetX1, X2, ..., Xn be a random sample of size n taken from the Inverted Kumaraswamy
distribution. Then the likelihood function for the given sample observations is

L(x;α, β) = αnβn
n∏

i=1
(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

L(x;α, β) = αnβn
n∏

i=1

(1 + xi)−(α+1)

(1 − (1 + xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) (5)

3. Priors and posterior distributions for the unknown parameters of
inverted Kumaraswamy distrubution

In Bayesian estimation selection of appropriate prior for the parameters is a cru-
cial step. In this paper, we consider one informative and one non-informative prior. The
corresponding posterior distributions were derived for each case.

3.1. CASE I: When β is unknown and α is known

3.1.1. Posterior distribution under gamma prior

π1(β|a, b) = e−bββa−1ba

Γ(a) ; β, a, b > 0 (6)

Using the likelihood function (5) and the prior (6), the posterior distribution for the param-
eter β becomes

π1(β|x) = L(x;α, β) ∗ π1(β|a, b)� ∞
0 L(x;α, β) ∗ π1(β|a, b)dβ

=
αnβn∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) e−bββa−1ba

Γ(a)� ∞
0 αnβn

∏n
i=1

(1+xi)−(α+1)

((1−(1+xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) e−bββa−1ba

Γ(a) dβ

π1(β|x) = β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) , (7)

where R(x, α) = b−∑n
i=1 ln (1 − (1 + xi)−α)

3.1.2. Posterior distribution under uniform prior

π2(β|k) = k; β, k > 0 (8)
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Using the likelihood function (5) and the prior (8), the posterior distribution for the param-
eter β becomes

π2(β|x) = L(x;α,β)∗π2(β|k)� ∞
0 L(x;α,β)∗π2(β|k)dβ

=
αnβn

∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α) e
β
∑n

i=1 ln(1−(1+xi)−α)k

� ∞
0 αnβn

∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α) e
β
∑n

i=1 ln(1−(1+xi)−α)
kdβ

π2(β|x) = βn exp (−βT )T n+1

Γ(n+ 1) , (9)

where T (x, α) = −∑n
i=1 ln (1 − (1 + xi)−α)

3.2. CASE II: When β is known and α is unknown

3.2.1. Posterior distribution under gamma prior

π1(α|a, b) = e−bββa−1ba

Γ(a) ;α, a, b > 0 (10)

Using the likelihood function (5) and the prior (10), the posterior distribution for the pa-
rameter β becomes

π1(α|x) = L(x;α, β) ∗ π1(α|a)� ∞
0 L(x;α, β) ∗ π1(α|a)dα

=
αnβn∏n

i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1 e−bββa−1ba

Γ(a)� ∞
0 αnβn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1 e−bββa−1ba

Γ(a) dα

= αn+a−1e−bα∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

= K−1
1 αn+a−1e−bα

n∏
i=1

(1 + xi)−(α+1)
(
1 − (1 + xi)−α

)β−1

where,

K1 =
� ∞

0
αn+a−1e−bα

n∏
i=1

(1 + xi)−(α+1)
(
1 − (1 + xi)−α

)β−1
dα (11)

3.2.2. Posterior distribution under uniform prior

π2(α|a) = k; k > 0 (12)
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π2(α|x) = L(x;α, β) ∗ π2(α|a)� ∞
0 L(x;α, β) ∗ π2(α|a)dα

= αnβn∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

k� ∞
0 αnβn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1kdα

= αn∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

� ∞
0 αn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

= K−1
2 αn

n∏
i=1

(1 + xi)−(α+1)
(
1 − (1 + xi)−α

)β−1

where,
K2 =

� ∞

0
αn

n∏
i=1

(1 + xi)−(α+1)
(
1 − (1 + xi)−α

)β−1
dα (13)

3.3. CASE III: When α and β both are unknown

3.3.1. Posterior distribution under gamma prior

Suppose the parameters are independent and follow Gamma distribution,

π(α|a1, b1) ∝ αa1−1e−b1α;α > 0, a1, b1 > 0
π(β|a2, b2) ∝ βa2−1e−b2β; β > 0, a2, b2 > 0

where, a1&b1 and a2&b2, are non-negative hyperparameters and are known. The joint prior
distribution for α and β is given by

π11(α, β|a1, b1, a2, b2) ∝ αa1−1βa2−1e−b1α1−b2β

The joint posterior density function of parameters α and β is obtained as

π11(α, β|x) = L(x;α, β) ∗ π11(α, β|a1, b1, a2, b2)� ∞
0

� ∞
0 L(x;α, β) ∗ π11(α, β|a1, b1, a2, b2)dαdβ

the above equation cannot be obtained in closed form so in order to find the Bayes estimator
of the parameters we have used Lindley approximation method. The joint posterior density
function can be written as

π11(α, β|x) ∝ αn+a1−1βn+a2−1
n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
e−b1α1−b2β (14)

3.3.2. Posterior distribution under uniform prior

Suppose the parameters are independent and follow Uniform distribution,

π(α|k1) = k1;α > 0, k1 > 0
π(β|k2) = k2; β > 0, k2 > 0
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The joint prior distribution for α and β is given by

π12(α, β|k1, k2) = k1k2

The joint posterior density function of parameters α and β is obtained as

π12(α, β|x) = L(x;α, β) ∗ π12(α, β|k1, k2)� ∞
0

� ∞
0 L(x;α, β) ∗ π12(α, β|k1, k2)dαdβ

the above equation cannot be obtained in closed form so in order to find the Bayes estimator
of the parameters we have used Lindley approximation method. The joint posterior density
function can be written as

π11(α, β|x) ∝ αnβn
n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
(15)

4. Bayesian estimation under different loss functions

This section presents the Bayes estimates of the unknown parameter obtained under
three loss functions viz., Linear exponential, Squared error and Entropy loss functions.

4.1. Case I: When β is unknown and α is known

4.1.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under LINEX loss function

The LINEX loss function is given by

L(β̂, β) = exp(q1(β̂ − β)) − h(β̂ − β) − 1; q1, h ̸= 0 (16)

By using LINEX loss function as given in (16), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0
exp(q1(β̂ − β) − h(β̂ − β) − 1).π1(β|x)dβ

=
� ∞

0

[
exp (q1β̂). exp (−q1β) − hβ̂ + hβ − 1

]
.
β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= exp(q1β̂) Rn+a

[R + q1]n+a
+ h

R
(n+ a) − (hβ̂ + 1)

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

exp (q1β̂) = h

q1

(
R + q1

R

)n+a

Taking log on both sides, we obtain the Bayes estimator as

β̂LINEX = 1
q1

[
ln
(
h

q1

)
+ (n+ a) ln

(
R + q1

R

)]
(17)
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• Bayes estimator under squared error loss function

The squared error loss function is given by

L(β̂, β) = (β̂ − β)2 (18)

By using Squared error loss function as given in (18), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

[
(β̂ − β)2

]
.π1(β|x)dβ

=
� ∞

0

[
(β̂ − β)2

]
.
β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= β̂2 + (n+ a+ 1)(n+ a)
R2 − 2β̂ (n+ a)

R

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ 2β̂ − 2(n+ a)
R

= 0

=⇒ β̂SELF = (n+ a)
R

(19)

• Bayes estimator under entropy loss function

The entropy loss function is given by

L(β̂, β) = b[∆ − ln(∆) − 1]; b > 0 (20)

Assuming b = 1,∆ = β̂
β
, we have

L(β̂, β) =
 β̂

β

− ln
 β̂
β

− 1
 (21)

By using Entropy loss function as given in (21), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

 β̂
β

− ln
 β̂
β

− 1
 .π1(β|x)dβ

=
� ∞

0

 β̂
β

− ln
 β̂
β

− 1
 .β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= β̂.
R

n+ a− 1 − ln(β̂) + ψ(n+ a)
Γn+ a

− 1

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ R

n+ a− 1 − 1
β̂

= 0

=⇒ β̂ELF = n+ a− 1
R

(22)
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4.1.2. Bayesian estimation by using uniform prior under various loss functions

• Bayes estimator under LINEX loss function

The LINEX loss function is given by

L(β̂, β) = exp(q1(β̂ − β)) − h(β̂ − β) − 1, q1, h ̸= 0 (23)

By using LINEX loss function as given in (23), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0
exp(q1(β̂ − β) − h(β̂ − β) − 1).π2(β|x)dβ

=
� ∞

0

[
exp (q1β̂). exp (−q1β) − hβ̂ + hβ − 1

]
.
βn exp (−βT )n+1

Γ(n+ 1) dβ

= exp(q1β̂)[
(

T

(T + q1)

)
]n+1 − h

(n+ 2)
T

− (hβ̂ + 1)

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

exp (q1β̂) = h

q1

(
T + q1

T

)n+1

Taking log on both sides, we obtain the Bayes estimator as

β̂LINEX = 1
q1

[
ln

(
h

q1

)
+ (n+ 1)log

(
T + q1

T

)]
(24)

• Bayes estimator under squared error loss function

The squared error loss function is given by

L(β̂, β) = (β̂ − β)2 (25)

By using Squared error loss function as given in (25), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

[
(β̂ − β)2

]
.π2(β|x)dβ

=
� ∞

0

[
(β̂ − β)2

]
.
βn exp (−βT )n+1

Γ(n+ 1) dβ

= β̂2 + (n+ 2)(n+ 1)
T 2 − 2β̂ (n+ 1)

T

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ 2β̂ − 2(n+ 1)
T

= 0
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=⇒ β̂SELF = (n+ 1)
T

(26)

• Bayes estimator under entropy loss function

The entropy loss function is given by

L(β̂, β) = b[∆ − ln(∆) − 1]; b > 0 (27)

Assuming b = 1,∆ = α̂
α
, we have

L(β̂, β) =
[(
α̂

α

)
− ln

(
α̂

α

)
− 1

]
(28)

By using Entropy loss function as given in (28), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

 β̂
β

− ln
 β̂
β

− 1
 .π2(β|x)dβ

=
� ∞

0

 β̂
β

− ln
 β̂
β

− 1
 .βn exp (−βT )n+1

Γ(n+ 1) dβ

= β̂.
T

n
− ln(β̂) + ψ(n+ 1)

Γn+ 1 − 1

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ T

n
− 1
β̂

= 0

=⇒ β̂ELF = n

T
(29)

4.2. Case II: When β is known and α is unknown

4.2.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under LINEX loss function

The bayes estimator of α under LINEX loss function is given by

α̂LINEX = −1
h

lnE[e−hα|x] (30)

where,

E[e−hα|x] =
� ∞

0 αn+a−1e−α(b+h)∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα
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• Bayes estimator under squared error loss function

The bayes estimator of α under SELF is given by

α̂SELF = E[α|x] (31)

where,

E[α|x] =
� ∞

0 αn+ae−bα∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under Entropy loss function

The bayes estimator of α under ELF is given by

α̂ELF = (E[α−1|x])−1 (32)

where,

E[α−1|x] =
� ∞

0 αn+a−1e−bα+α−1 ∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

4.2.2. Bayesian estimation by using Uniform prior under different loss functions

• Bayes estimator under LINEX loss function

The bayes estimator of α under LINEX loss function is given by

α̂LINEX = −1
h

lnE[e−hα|x] (33)

where,

E[e−hα|x] =
� ∞

0 αne−hα∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under squared error loss function

The bayes estimator of α under SELF is given by

α̂SELF = E[α|x] (34)

where,

E[α|x] =
� ∞

0 αn+1∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under entropy loss function

The bayes estimator of α under ELF is given by

α̂ELF = (E[α−1|x])−1 (35)

where,

E[α−1|x] =
� ∞

0 αn−1∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα
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4.3. Case III: When α and β both are unknown

In previous section, we obtained the mathematical expression for the Bayes estimates
of the parameters. We notice that these estimators are in the form of ratio of two integrals.
Thus, Lindley’s approximation method is a good alternative to solve such types of problems
see Lindley (1980). Therefore, we briefly discuss about this approximation technique and
apply it to evaluate the Bayesian estimates by considering the function I(x), defined as
follows;

I(x) = E[α, β|x] =
�
u(α, β)eL(α,β)+G(α,β)d(α, β)�

eL(α,β)+G(α,β)d(α, β) (36)

where,

u(α, β) is the function of α and β only; L(α, β) is the log likelihood function; G(α, β)
is the log of joint prior density.

According to Lindley (1980), if ML estimates of the parameters are available and n
is sufficiently large then the above ratio of the integral can be approximated as:

I(x) = u(α̂, β̂) + 1
2 [(ûββ + 2ûβ p̂β)σ̂ββ + (ûαβ + 2ûαp̂β)σ̂αβ + (ûβα + 2ûβ p̂α)σ̂βα + (ûαα +

2ûαp̂α)σ̂αα]+ 1
2 [(ûβσ̂ββ + ûασ̂βα)(L̂βββσ̂ββ + L̂βαβσ̂βα + L̂αββσ̂αβ + L̂ααβσ̂αα)+(ûβσ̂αβ + ûασ̂αα)

× (L̂αββσ̂ββ + L̂βαασ̂βα + L̂αβασ̂αβ + L̂ααασ̂αα)]

where, α̂ and β̂ are the MLE of α and β respectively. The expressions for the MLE of the
parameters of Inverted Kumaraswamy distribution have been derived by Al-Fattah et. al.
(2017) and Sana et.al. (2023)

ûα = ∂u(α̂, β̂)
∂α̂

, ûβ = ∂u(α̂, β̂)
∂β̂

, ûαβ = ∂2u(α̂, β̂)
∂α̂∂β̂

, ûβα = ∂2u(α̂, β̂)
∂β̂∂α̂

,

ûαα = ∂2u(α̂, β̂)
∂α̂2 , ûββ = ∂2u(α̂, β̂)

∂β̂2
, p̂α = ∂G(α̂, β̂)

∂α̂
, p̂β = ∂G(α̂, β̂)

∂β̂
,

L̂αα = ∂2L(α̂, β̂)
∂α̂2 , L̂ββ = ∂2L(α̂, β̂)

∂β̂2
, L̂ααα = ∂3L(α̂, β̂)

∂α̂3 , L̂ααβ = ∂3L(α̂, β̂)
∂α̂∂α̂∂β̂

,

L̂ββα = ∂3L(α̂, β̂)
∂β̂∂β̂∂α̂

, L̂βαβ = ∂3L(α̂, β̂)
∂β̂∂α̂∂β̂

, L̂αββ = ∂3L(α̂, β̂)
∂α̂∂β̂∂β̂

, L̂βαα = ∂3L(α̂, β̂)
∂β̂∂α̂∂α̂

4.3.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under squared error loss function

After substitution, the equation (14) reduces like Lindleys integral, therefore, for the
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Bayes estimates of the parameter α under squared error loss function are,

u(α, β) = α

L(α, β) = n lnα + n ln β − (α + 1)
∑

ln(1 + xi) + (β − 1)
∑

ln(1 − (1 + xi)−α)
G(α, β) = (a1 − 1) lnα + (a2 − 1) ln β − b1α− b2β

It may be verified that,

uα = 1, uαα = uαβ = uβα = uββ = 0

pα = a1 − 1
α

− b1, pβ = a2 − 1
β

− b2

Lα = n

α
−
∑

ln(1 + xi) + (β − 1)
∑ (1 + xi)−α

1 − (1 + xi)−α
ln(1 + xi)

Lαα = −n
α2 − (β − 1)

∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2

Lααα = 2n
α3 − (β − 1)

∑ (
(1 + xi)3α − (1 + xi)−α

)
[1 − (1 + xi)−α]4 (ln(1 + xi))3

Lαβ =
∑ (1 + xi)−α ln(1 + xi)

[1 − (1 + xi)−α] = Lβα

Lααβ = −
∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2 = Lβαα = Lαβα

Lβ = n

β
+
∑

ln(1 − (1 + xi)−α)

Lββ = −n
β2

Lβββ = 2n
β3

Lββα = Lβαβ = Lαββ = 0

If α and β are orthogonal then σij = 0 for i ̸= j and σij = − 1
Lij

for i = j.

After evaluation of all U-terms, L-terms, and p-terms at the point (α̂, β̂) and using
the above expression, the approximate Bayes estimator of α under SELF is,

α̂L
SELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (37)

and similarly the Bayes estimate fir β under SELF is, uβ = 1, uαα = uαβ = uβα = uββ = 0
and remaining L-terms and p-terms will be same as above. Thus we have

β̂L
SELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (38)
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• Bayes estimator under LINEX loss function

The approximate Bayes estimator of α under LINEX is evaluated by taking u(α, β) =
e−hα, h > 0, uα = −he−hα, uαα = h2e−hα, uαβ = uβα = uββ = 0 and remaining L-terms and
p-terms will be same as above. Thus we have

α̂L
LINEX = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (39)

and similarly the Bayes estimate fir β under LINEX is evaluated by taking u(α, β) =
e−hβ, h > 0, uβ = −he−hβ, uββ = h2e−hβ, uαβ = uβα = uαα = 0 and remaining L-terms
and p-terms will be same as above. Thus we have

β̂L
LINEX = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (40)

• Bayes estimator under entropy loss function

The approximate Bayes estimator of α under ELF is evaluated by taking u(α, β) =
eα−1 , uα = − eα−1

α2 , uαα = eα−1

α3

[
1
α

+ 2
]
, uαβ = uβα = uββ = 0 and remaining L-terms and

p-terms will be same as above. Thus we have

α̂L
ELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (41)

and similarly the Bayes estimate for β under LINEX is evaluated by taking u(α, β) = eβ−1 ,
uβ = − eβ−1

β2 , uββ = eβ−1

β3

[
1
β

+ 2
]
, uαβ = uβα = uαα = 0 and remaining L-terms and p-terms

will be same as above. Thus we have

β̂L
ELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (42)

4.3.2. Bayesian estimation by using uniform prior under different loss functions

• Bayes estimator under squared error loss function

After substitution, the equation (15) reduces like Lindleys integral, therefore, for the
Bayes estimates of the parameter α under squared error loss function are,

u(α, β) = α

L(α, β) = n lnα + n ln β − (α + 1)
∑

ln(1 + xi) + (β − 1)
∑

ln(1 − (1 + xi)−α)
G(α, β) = ln k1 + ln k2
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It may be verified that,

uα = 1, uαα = uαβ = uβα = uββ = 0
pα = pβ = 0

Lα = n

α
−
∑

ln(1 + xi) + (β − 1)
∑ (1 + xi)−α

1 − (1 + xi)−α
ln(1 + xi)

Lαα = −n
α2 − (β − 1)

∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2

Lααα = 2n
α3 − (β − 1)

∑ (
(1 + xi)3α − (1 + xi)−α

)
[1 − (1 + xi)−α]4 (ln(1 + xi))3

Lαβ =
∑ (1 + xi)−α ln(1 + xi)

[1 − (1 + xi)−α] = Lβα

Lααβ = −
∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2 = Lβαα = Lαβα

Lβ = n

β
+
∑

ln(1 − (1 + xi)−α)

Lββ = −n
β2

Lβββ = 2n
β3

Lββα = Lβαβ = Lαββ = 0

If α and β are orthogonal then σij = 0 for i ̸= j and σij = − 1
Lij

for i = j.

After evaluation of all U-terms, L-terms, and p-terms at the point (α̂, β̂) and using
the above expression, the approximate Bayes estimator of α under SELF is,

α̂L
SELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (43)

and similarly the Bayes estimate for β under SELF is, uβ = 1, uαα = uαβ = uβα = uββ = 0
and remaining L-terms and p-terms will be same as above. Thus we have

β̂L
SELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (44)

• Bayes estimator under LINEX loss function

The approximate Bayes estimator of α under LINEX is evaluated by taking u(α, β) =
e−hα, h > 0, uα = −he−hα, uαα = h2e−hα, uαβ = uβα = uββ = 0 and remaining L-terms and
p-terms will be same as above. Thus we have

α̂L
LINEX = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (45)

and similarly the Bayes estimate fir β under LINEX is evaluated by taking u(α, β) =
e−hβ, h > 0, uβ = −he−hβ, uββ = h2e−hβ, uαβ = uβα = uαα = 0 and remaining L-terms
and p-terms will be same as above. Thus we have

β̂L
LINEX = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (46)
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• Bayes estimator under entropy loss function

The approximate Bayes estimator of α under ELF is evaluated by taking u(α, β) =
eα−1 , uα = − eα−1

α2 , uαα = eα−1

α3

[
1
α

+ 2
]
, uαβ = uβα = uββ = 0 and remaining L-terms and

p-terms will be same as above. Thus we have

α̂L
ELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (47)

and similarly the Bayes estimate for β under LINEX is evaluated by taking u(α, β) = eβ−1 ,
uβ = − eβ−1

β2 , uββ = eβ−1

β3

[
1
β

+ 2
]
, uαβ = uβα = uαα = 0 and remaining L-terms and p-terms

will be same as above. Thus we have
β̂L

ELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂
2
ββL̂βββ) (48)

5. Simulation study

Next, a simulation study was conducted to investigate the performance of Bayes es-
timators of the unknown parameter for case I, i,e, when α is known and β is unknown
under two priors discussed in this paper. The study was executed for different sample sizes
specifically for n= 20,50,70,100,150,200. The observations were generated from Inverted
Kumaraswamy distribution using the quantile function. For the expression of quantile func-
tion refer Al-Fattah et al. (2017). The Bayes estimates were obtained using LINEX, SELF
and Entropy loss function. For Gamma prior the values of hyperparameters considered are
(a=0.01, b=0.01). In our study 6000 samples were generated. The Bayes estimates were
compared in terms of relative mean square errors.

6. Conclusion

In this paper, we estimated the unknown parameter of IKum distribution considering
three different cases: (i)when α is known and β is unknown, (ii)when α is unknown and β is
known, and (iii)when α and β both are unknown, using two prior distributions under three
different loss functions, though simulations were carried out for caseI only. Relative MSE
were also derived using the following formula:

MSE =
∑N

i=1(Estimator − Truevalue)2

N

RelativeMSE = MSE

Truevalue

where N = 6000.

Concluding Remarks

∗ From Table 1, the Relative MSE of estimator under Entropy loss function is min-
imum for α = 0.4, β = 0.8 and the Relative MSE of estimator under Squared error loss
funtion is minimum for α = 0.5, β = 1.

∗ From Table 2 also, estimator under Entropy loss function stands most efficient for
α = 0.4, β = 0.8, whereas for α = 0.5, β = 1, estimator under Squared error loss function
holds minimum relative error.
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∗ From the graphs it is observed that Relative MSE decreases as sample size increases.

As a future research work, this paper can be extended in many ways. The simulation
results for the other two cases(when α is unknown and β is known, and when α and β
both are unknown) can also be computed and the obtained results can be represented in the
form of graphs. The obtained estimators can also be applied to real life data for illustrative
purposes. Additionally, the estimation of entropy in this setup may also be considered.

Acknowledgements

I am indeed grateful to the Editors for their guidance and counsel. I am very grateful
to the reviewer for valuable comments and suggestions of generously listing many useful
references.

Conflict of interest

The authors do not have any financial or non-financial conflict of interest to declare
for the research work included in this article.

References

Afaq, S. P., Ahmad, and Ahmed, A. (2015). Preference of priors for the exponentiated
exponential distribution under different loss functions. International Journal of
Modern Mathematical Sciences, 13, 307–321.

Ahmad, S. P. and Fatima K. (2017). Preference of priors for the generalized inverse Rayleigh
distribution under different loss functions. Journal of Statistics Applications and
Probability Letters, 4, 73–90.

Aldahlan, M. A., Bakoban, R. A., and Alzahrani, L. S. (2022). On estimating the param-
eters of the Beta inverted exponential distribution under type-II censored samples.
Mathematics, 10, 506–542.

Al-Fattah, A. A., E-Helbawy, A. A., and AL-Dayian G. R. (2017). Inverted Kumaraswamy
distribution: Properties and estimation. Pakistan Journal of Statistics, 33, 37–61.

Dey, S. (2012). Bayesian estimation of the parameter and reliability function of an inverse
Rayleigh distribution. Malaysian Journal of Mathematical Sciences, 6, 113–124.

El-Din, M. M. and Abu-Moussa, M. (2018). On estimation and prediction for the inverted
Kumaraswamy distribution based on general progressive censored samples. Pakistan
Journal of Statistics and Operation Research, 14, 717–736.

Fan, J. and Gui, W. (2022). Statistical inference of inverted exponentiated Rayleigh distri-
bution under joint progressively type-II censoring. Entropy, 24, 171.

Flaih, A., Elsalloukh, H., Mendi E., and Milanova, M. (2012). The exponentiated inverted
Weibull distribution.Applied Mathematics and Information Sciences, 6, 167–171.

Hasan, M. R. and Baizid, A. R. (2016). Bayesian estimation under different loss functions
using Gamma prior for the case of exponential distribution. Jouranl of Scientific
Research, 9, 67–78.

Iqbal, Z., Tahir, M. M., Riaz, N., Ali, S. A., and Ahmad, M. (2017). Generalized inverted
Kumaraswamy distribution: Properties and application. Open Journal of Statistics,
7, 645-662.



2025] BAYESIAN ESTIMATION OF SCALE PARAMETER 299

Kazmi, A. M. S., Aslam, M., and Ali. S. (2012). Preference of prior for the class of life-
time distributions under different loss functions. Pakistan Journal of Statistics, 28,
467–487.

Kumaraswamy, P. (1980). A generalized probability density function for double bounded
random processes. Journal of Hydrology, 46, 79–88.

Prakash, G. (2012). Inverted exponential distribution under a Bayesian viewpoint. Journal
of Modern Applied Statistical Methods, 11, 190–202.

Reshi, J. A., Ahmed, A., and Ahmad, S. P. (2014). Bayesian analysis of scale parameter of
the generalized inverse Rayleigh model using different loss functions. International
Journal of Modern Mathematical Sciences, 10, 151–162.

Rastogi, M. K. and Oguntunde, P. E. (2019). Classical and Bayes estimation of reliability
characteristics of the Kumaraswamy-inverse exponential distribution. International
Journal of System Assurance Engineering and Management, 10, 190–200.

Sana, Faizan, M., and Khan, A. A. (2023). Bayesian estimation using Lindley’s approxima-
tion of inverted Kumaraswamy distribution based on lower record values. TWMS
Journal of Applied and Engineering Mathematics, 13, 65–73.

Tiao, G. G. and Cuttman, I. (1965). The inverted Dirichlet distribution with applications,
Journal of the American Statistical Association, 60, 793–805.

Tummala, V. M. and Sathe, P. T. (1978). Minimum expected loss estimators of reliability
and parameters of certain life time distributions. IEEE Transactions on Reliability,
27, 283–285.



300 ABLEEN KAUR, PARMIL KUMAR AND HEMANI SHARMA [Vol. 23, No. 1

ANNEXURE
Table 1: Bayes estimate and Relative mean square error under Gamma prior
when hyperparameters (a,b)=(0.01,0.01)

Case I: α known, β unknown

n α = 0.4,β = 0.8 α = 0.5,β = 1
LINEX SELF ELF LINEX SELF ELF

20 Estimate 0.83308 0.84414 0.80328 1.03981 1.0529 0.99961
RelMSE 0.04870 0.05210 0.04490 0.05910 0.06280 0.05390

50 Estimate 0.81030 0.81922 0.80116 1.01620 1.02001 1.00010
RelMSE 0.01730 0.01750 0.01660 0.02080 0.02140 0.02060

70 Estimate 0.80934 0.81081 0.80090 1.0109 1.0125 0.99918
RelMSE 0.01230 0.01260 0.01210 0.01510 0.01470 0.01460

100 Estimate 0.80651 0.80865 0.80010 1.0205 0.99102 1.00040
RelMSE 0.00824 0.00855 0.00802 0.01100 0.01010 0.01020

150 Estimate 0.80458 0.80526 0.79951 1.0141 0.99454 1.00070
RelMSE 0.00538 0.00550 0.00528 0.00715 0.00665 0.00696

200 Estimate 0.80325 0.80363 0.80090 1.0081 0.99723 0.99930
RelMSE 0.00414 0.00417 0.00400 0.00530 0.00498 0.00506

Table 2: Bayes estimate and Relative mean square error under Uniform prior

Case I: α known, β unknown

n α = 0.4,β = 0.8 α = 0.5,β = 1
LINEX SELF ELF LINEX SELF ELF

20 Estimate 0.87870 0.88261 0.84432 1.1579 1.00160 1.0559
RelMSE 0.06090 0.06200 0.05420 0.10100 0.05380 0.06670

50 Estimate 0.83057 0.82968 0.81540 1.0619 0.99932 1.0178
RelMSE 0.01880 0.01900 0.01780 0.02740 0.02050 0.02200

70 Estimate 0.82186 0.82366 0.81270 1.0430 0.99687 1.0147
RelMSE 0.01300 0.01340 0.01250 0.01780 0.01500 0.01570

100 Estimate 0.81395 0.81584 0.80961 1.0315 1.00010 1.0089
RelMSE 0.00858 0.00860 0.00811 0.00907 0.01190 0.01020

150 Estimate 0.80922 0.81043 0.80556 1.0205 1.00060 1.0073
RelMSE 0.00570 0.00555 0.00544 0.00738 0.00668 0.00690

200 Estimate 0.80754 0.80732 0.80328 1.0154 0.99883 1.0057
RelMSE 0.00418 0.00435 0.00416 0.00541 0.00484 0.00519



2025] BAYESIAN ESTIMATION OF SCALE PARAMETER 301

Figure 1: Relative Mean Square Error of β under Gamma prior

Figure 2: Relative Mean Square Error of β under Uniform prior
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