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Abstract
In this paper, we introduce a new generated distribution called the Topp-Leone Gen-

erated q-Weibull(TLqW) Distribution. The described distribution’s many distributional
attributes and reliability traits are covered. Some well-known special cases of the mentioned
model are also listed. When the lifetimes follow this distribution, it is better to establish a
new reliability test plan, which aids in picking the best choices. The maximum likelihood
method is investigated for parameter estimation in models. Using actual data sets, we used
empirical evidence to demonstrate the value and adaptability of the new model in the model
building process. The new test plan is then used to demonstrate how it may be used for
creating dependable software in commercial settings.
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1. Introduction

Numerous statistical distributions, including exponential, Weibull, logistic, and oth-
ers, are significant in modelling survival and life-time data. The support for almost all of
these distributions is unbounded. However, there are instances in real life where observa-
tions can only represent values in a small range, such percentages, proportions, or fractions.
According to Papke and Wooldridge (1996), the variable is limited between zero and one
in many economic scenarios, including the percentage of total weekly hours spent working,
pension plan participation rates, industry market shares, percentage of land area given to
agriculture, etc. As a result, for models to produce results that make sense, the unit in-
terval must be used as the definition. Additionally, some writers use continuous models
with finite support to characterise lifetime data while conducting reliability analysis. The
most prevalent distribution for modelling continuous variables in the unit interval is the
beta distribution, as is widely known. Due to the excellent flexibility of its density function,
this distribution is well-liked in the fields of engineering, economics, biology, and ecology,
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among others. However, the mathematical formulation is found to be challenging because
its distribution function cannot be written in closed form and it incorporates the incomplete
beta function. In contrast, a number of scholars have suggested alternatives to the beta
distribution by reviving the one Kumaraswamy suggested in 1980.

Topp and Leone’s new distribution, known as the Topp Leone (TL) distribution, de-
fined on finite support, was introduced in 1955. Several authors researched this distribution.
The Topp Leone distribution offers closed variants of the probability density function (pdf)
and cumulative density function (cdf), and it describes empirical data with a J-shaped his-
togram, such as powered tool band failures and automatic adding machine failure. Prior to
being identified by Nadarajah and Kotz (2003), the Topp Leone distribution has gotten little
attention. They examined various aspects of TL distribution and supplied its moments, cen-
tral moments, and characteristic functions. Some reliability metrics of the TL distribution,
including a hazard function, mean residual life, reversed hazard rate, predicted inactivity
time, and its stochastic orderings were presented by Ghitany et al. (2005). Kotz and Seier
(2002) reported a discussion on the TL distribution’s kurtosis.

If a random variable X belongs to the TL distribution, it can have either finite (0 <
x < b) or infinite (0 < x < b < ∞) support. To avoid using any additional functions
for creating a new family of produced distributions, we here largely concentrate on the TL
distribution with b = 1 (see Zografos and Balakrishnan (2009), Alzaatreh et al. (2013), Lee
et al. (2013)).

Topp and Leone concentrated on creating J-shaped histogram distributions for em-
pirical data. A random variable X is distributed as the TL, bounded on (0,1) with cdf

FT L(x) = xα(2 − x)α; 0 < x < 1, (1)

where α > 0. Its pdf associated with equation (1) is

fT L(x) = 2αxα−1(1 − x)(2 − x)α−1. (2)

This distribution can alternatively be seen as one in which the failure rate is propor-
tional to a power of time, assuming the random variable X represents the failure times. The
survival and hazard functions are the other crucial traits. They are respectively

s(x) = 1 − xα(2 − x)α,

and

h(x) = 2αxα−1(1−x)(2−x)α−1

1−xα(2−x)α .

Life time distributions’ hazard rate functions can be monotonically increasing, mono-
tonically decreasing, or U-shaped (bath tub shaped). Each example has applications in the
real world. In the case of the TL distribution, the failure rate decreases over time if the
shape parameter’s value is less than one, remains constant over time if it is equal to one,
and rises over time if it is more than one. Additionally, Nadarajah and Kotz noted that the
bathtub shape of the hazard function is provided by the TL distribution when 0 < α < 1.
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To get the Topp-Leone generated (TLG) family of distribution, use the TL distri-
bution as the generating distribution. Then relation of a random variable X having the
TLG distribution and a random variable T having TL distribution is X = G−1(T ), with
T ∼ TL(α). This relationship depicts how the function G(.) transforms the TL distribu-
tion’s pdf (2) into a new probability function.

FT LG(x) = 2α

ˆ G(x)

0
tα−1(1 − t)(2 − t)α−1dt = G(x)α(2 − G(x))α. (3)

By differentiating, we get the corresponding pdf,
fT LG(x) = 2αg(x)(1 − G(x))G(x)α−1(2 − G(x))α−1. (4)

The Topp-Leone generated exponential (TLE) distribution was introduced by Sangsa-
nit and Bodhisuwan (2016) as an illustration of the Topp-Leone generated distribution. Even
though exponential distribution is frequently used in reliability analysis, its constant hazard
rate still remains a limitation of this distribution. The two-parameter Weibull distribu-
tion is one of the most well-known generalisations of the exponential distribution. Weibull
distribution has many applications in real data analysis. Aryal et al. (2017) discussed
characterizations and applications of Topp-Leone generated Weibull distribution. We can
generalize TLE distribution into TLW distribution using a transformation. If X follows
TLE distribution then the distribution of Y = X

1
γ , γ > 0 follows TLW distribution. Hence,

a random variable X is said to follow TLW distribution if it has the cdf and the pdf as in
the form

FT LW (x) = 1 − exp(−2(νx)γ)α, γ, α, ν > 0, (5)

fT LW (x) = 2αγνγxγ−1exp(−2(νx)γ)(1 − exp(−2(νx)γ)α−1, (6)
where α, γ are shape parameter and ν is the scale parameter.

Authors have recently examined a variety of q-type distributions, including q-exponen-
tial, q-Weibull, q-logistic, etc. Since the exponential form can be attained gradually as q → 1,
the q-exponential distribution can be seen as a stretched model of the exponential distribu-
tion (see Beck (2006), Beck and Cohen (2003), Mathai(2005)). According to Tsallis statistics
and many research based on q-type distributions, including q-Weibull, Wilk and Wlodarczyk
(2000, 2001) and Tsallis (1988). Costa et al. (2006) described a research of dielectric break-
down in electronic device oxides and demonstrated that a q-Weibull distribution provides
a satisfactory fit for the data. For x > 0 and for q > 1 the distribution function and the
density function of the q-Weibull distribution is,

F1(x) = 1 − [1 + (q − 1)(λx)γ]
q−2
q−1 , (7)

f1(x) = γλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]
−1

q−1 . (8)
where, γ, λ > 0, 1 < q < 2. For x > 0 and q < 1,the cdf and the density function of q -
Weibull distribution becomes

F2(x) = 1 − [1 − (1 − q)(λx)γ]
2−q
1−q , 0 ≤ x ≤ 1

λ(1 − q)
1
γ

, (9)
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f2(x) = γλγ(2 − q)xγ−1[1 − (1 − q)(λx)γ]
1

1−q . (10)

Clearly, as q tends to 1 f1(x) and f2(x) tend to the usual Weibull distribution with two
parameters γ, λ.

The rest of the paper is organized as follows. In section 2 we will introduce the Topp-
Leone q-Weibull Distribution (TLqW) and further properties. In section 3, we described a
new reliability test plan for TLqW distribution. In section 4, we study the estimation of
parameters of the TLqW distribution, using the method of maximum likelihood. Simulation
studies, real data illustrations, and reliability test applications of TLqW distribution are also
discussed in section 5. Concluding remarks are addressed in section 6.

2. Topp Leone q - Weibull distribution

The applications of the q-weibull distribution have recently been studied by a number
of researchers in the contexts of information theory, statistical mechanics, reliability mod-
elling, etc. In terms of reliability, the TL distribution is a fairly adaptable distribution. We
therefore use the origin of the TLG distribution to merge these two distributions inspired by
this. As a result, we present the TLqW distribution.

A random variable X possessing the TLqW distribution with q > 1 has the cdf and
pdf respectively are

F1T LqW =
(

1 − (1 + (q − 1)(λx)γ)
2q−4
q−1

)α

, x > 0, λ, α, γ > 0, 1 < q < 2. (11)

and

f1T LqW (x) = 2αγλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]
q−3
q−1 {1 − [1 + (q − 1)(λx)γ]

2q−4
q−1 }α−1, (12)

where x > 0, λ, α, γ > 0, 1 < q < 2.

Figure 1: Plots of pdf and cdf of TLqW distribution

The plots of pdf and cdf of TLqW for various values of the shape parameters α, γ and q are
shown in Figure 1. Survival function is the probability that a system will survive beyond a
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given time. The survival function S(x) for TLqW distribution is

S(x) = 1 − FT LqW (x)
= 1 − {1 − (1 + (q − 1)(λx)γ)2 q−2

q−1 }α. (13)

The TLqW distribution’s hazard function is

h(x) = fT LqW (x)
1 − FT LqW (x)

=
2αγλγ(2 − q)xγ−1[1 + (q − 1)(λx)γ]

q−3
q−1 {1 − [1 + (q − 1)(λx)γ]2 q−2

q−1}α−1

1 − {1 − (1 − [1 + (q − 1)(λx)γ]2
q−2
q−1 )}α

. (14)

One can see the behaviour of hazard function using Figure 2. The Cumulative hazard

Figure 2: Plot of h(x) of TLqW distribution

function H(x)is defined as

H(x) =
ˆ t

0
h(t)dt

= − ln{1 − {1 − (1 + (q − 1)(λx)γ)2 q−2
q−1 }α}. (15)

There are several new as well as well known distributions that can be obtained from
the TLqW distributions. The sub-models include the following distributions:

1. When q → 1, we obtain Topp Leone Weibull (TPW) distribution

2. When γ =1, we obtain Topp Leone q Exponential (TPqE) distribution

3. If q → 1 and γ =1, we have the Topp Leone Exponential (TLE) distribution
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2.1. L - Class property

The class L distributions are a significant class of distributions utilised in queuing
theory and risk theory.

A distribution F belongs to the class L if

lim
x→∞

1 − F (x − y)
1 − F (x) = 1, ∀y ∈ R.

2.2. Quantile function

Probability distributions can be defined in terms of distribution functions or quantile
functions when modelling and analysing statistical data. Quantile functions are more prac-
tical for analysis since they possess a number of intriguing characteristics that distributions
do not share. The quantile function Q(u) is defined as for a non-negative random variable
X with distribution function F (x) (see Nair et al. (2013)),

Q(u) = F −1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1.

For every -∞ < x < ∞ and 0 < u < 1, we have

F (x) ≥ u if and only if Q(u) ≤ x.

As a result, Q(u) is the smallest value of x satisfying F (x) = u and F (Q(u)) = u
if there is an x such that F (x) = u. By solving the equation F (x) = u, we may get x in
terms of u, which is the quantile function of X, if F (x) is continuous and strictly growing.
Moreover, if Q(u) is the only value of x such that F (x) = u, then F (x) = u. The quantile
function of TLqW distribution when 1 < q < 2 is obtained as,

Q(u) =


(√

1 − u
1
α

)( q−1
q−2 )

− 1

(q − 1)λγ


1/γ

, 1 < q < 2.

where u is chosen at random from the uniform distribution throughout the range (0, 1).
By matching population features with comparable sample characteristics, quantile-based
measures of distributional properties such as location, dispersion, skewness, and kurtosis
can be used to estimate model parameters. We can obtain the median as

M = Q(1
2) =

1 − (1 − 0.50 1
α )

1−q
4−2q

(1 − q)λγ


1
γ

.

The inter-quartile-range (IQR) of the TLqW model is,

IQR = Q(3
4) − Q(1

4) =
1 − (1 − 0.75 1

α )
1−q

4−2q

(1 − q)λγ


1
γ

−

1 − (1 − 0.25 1
α )

1−q
4−2q

(1 − q)λγ


1
γ

.
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The Galton’s coefficient of skewness (S) of the TLqW model is,

S =
Q(3

4) + Q(1
4) − 2Median

IQR

=

(
1−(1−0.75

1
α )

1−q
4−2q

(1−q)λγ

) 1
r

−
(

1−(1−0.25
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

− 2
(

1−(1−0.50
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

(
1−(1−0.75

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1−0.25
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

.

Moor’s coefficient of kurtosis (T) of the TLqW model is,

T =
Q(7

8) − Q(5
8) + Q(3

8) − Q(1
8)

IQR

=

(
1−(1− 7

8
1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 5
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 3
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

−
(

1−(1− 1
8

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

(
1−(1− 3

4
1
α )

1−q
4−2q

(1−q)λγ

) 1
r

−
(

1−(1− 1
4

1
α )

1−q
4−2q

(1−q)λγ

) 1
γ

.

2.3. Simulation

A random variable Y having TLqW distribution can be simulated, for 1 < q < 2 as,

Y =

 [1 − U
1
α ]

q−1
2(q−2) − 1

(q − 1)(λ)γ


1
γ

,

where U ∼ U(0, 1).

3. Reliability test plan

The acceptance sampling plan inspection method, which is used to decide whether to
accept or reject a specific quantity of material (see Kantam et al. (2001), Rao et al. (2011),
Jose and Joseph (2018), etc.), is prescribed. If it is applied to a series of lots, the method
will give a specific probability of accepting lots of a given quality. Here we establish the
reliability test, with its operating characteristic function plan for accepting or rejecting a
lot where the lifetime of the product follows Topp-Leone generated q-Weibull distribution.
The process in a life testing experiment is to call the test off at a predetermined time t and
record the number of failures. We accept the lot with a specified probability of at least p
if the number of failures at the end of time t does not exceed a predetermined number c,
known as the acceptance number. However, we reject the lot if the failure rate reaches c
before time t. We are interested in obtaining the smallest sample size possible in order to
arrive at a decision for such a truncated life test and the accompanying decision rule.

Although many distributions from the Topp-Leone produced family have been created
with a variety of uses, none of them have been used in acceptance sampling to create relia-
bility test plans. Assume that the lifetime of a product T follows the Topp-Leone generated
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q -Weibull distribution with cdf

F (t) = {1 − [1 + (q − 1)( t

λ
)γ]2( q−2

q−1 )}α, t > 0, λ, α, γ > 0, 1 < q < 2. (16)

Let λ0 be the required minimum average life time and the shape parameters α,γ and
q are known. Then

FT LqW (t; α, q, γ, λ) ≤ GT LqW (t; α, q, γ, λ0) ⇔ λ ≥ λ0. (17)

The number of units under test n, the acceptance number c, the maximum test time
t, and the minimum average lifetime λ0 are used to define a sampling plan. The consumer’s
risk (chance of accepting a bad lot) shouldn’t be higher than the value 1 − p∗, where p∗ is
a lower bound on the likelihood that the sampling plan will reject a lot with a true value
of λ below λ0 . The sampling plan is defined by (n, c, t/λ0) for fixed p∗ . For sufficiently
large lots, the acceptance probability can be determined using the binomial distribution. For
given values of c and t/λ0, the goal is to find the smallest positive integer n such that

L(p0) =
c∑

i=0

(
n

i

)
p0

i(1 − p0)n−i ≤ 1 − p∗. (18)

The operational characteristic function is increasing in λ, as indicated by the fact that
the product’s average lifespan increases with λ and the failure probability p(λ) decreases.
Where p0 = FT LqW (t; α, q, γ, λ0) is given in (16) and denotes the failure probability before
time t, which solely depends on the ratio t/λ0. For α = 2, q = 1.1,γ = 1.2 and p∗=0.75
and t/λ0 = 0.248, 0.361, 0.482, 0.602, 0.903, 1.204, 1.505 and 1.806, the minimal values of n
fulfilling (18) are obtained. Table 1 presents the findings.

The binomial probability can be approximated by the Poisson probability with the
parameter θ = np0 if p0 = FT LqW (t; α, q, γ, λ0) is small and n is very large. As a result, (18)
becomes true.

L1(p0) =
c∑

i=0

θi

i! e−θ ≤ 1 − p∗. (19)

For the same set of values for α,γ, q, p∗ and t/λ0, the minimum values of n satisfying
(19) are obtained and shown in Table 2. In the beginning equation,

L(p0) =
c∑

i=0

(
n

i

)
p0

i(1 − p0)n−i, (20)

and in the end equation, p = F (t, λ), where λ is taken into consideration, the probability
L(p0) of accepting the lot is given by the operating characteristic function of the sampling
plan (n, c, t/λ0). When p∗ and t/λ0 are given values, the values of n and c are calculated using
the operating characteristics (OC) function, taking into account the fact thatp = F ( t

λ0
/ λ

λ0
),

and the results are displayed in Table 3.

The probability of rejecting a lot when λ > λ0 is the producer’s risk. By first de-
termining that p = F (t; λ) and then employing the binomial distribution function, we may
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calculate the producer’s risk. For illustration, we generate p from the sample plan provided
in Table 1 for the given value of producer’s risk, say 0.05, under the constraint that

c∑
i=0

(
n

i

)
p0

i(1 − p0)n−i ≥ 0.95. (21)

The minimal value of meeting (21) λ/λ0 for the sampling plan (n, c, t/λ0) and for the specified
p∗ are reported in Table 6.

3.1. Explanation of the tables

Assume that q=1.1 and α=2 correspond to the TLqW distribution throughout the
lifespan. Let us say the experimenter wants to confirm that the true unknown average life is
at least 1000 hours with a p∗ = 0.75 level of confidence. At t = 903 hours, the experiment
should come to an end. The required n is hence 9 for an acceptance number c = 4 (Table
1). With a confidence level of 0.75, the experimenter can claim that the average life is
at least 1000 hours if, during the course of 903 hours, no more than 4 failures out of 9
are detected. The value of n is 11 if the Poisson approximation to binomial probability is
utilized (Table 2). The operational characteristic values from Table 3 are reported in Table
4 for this sample plan (n = 9, c = 4, t/λ0 = 0.903) under the TLqW distribution. The
operational characteristic values from Table 3 are reported in Table 5 for the sample plan
(n = 7, c = 4, t/λ0 = 1.806) with the consumer’s risk of 0.05 under the TLqW distribution.
This demonstrates that producers’ risk is 0.05 when λ/λ0 = 3 and insignificant when λ/λ0
= 4. According to Table 3 for this plan, the minimum value of λ/λ0, which represents the
producer’s risk as 0.05, is 3. When the consumer’s risk is 0.25 or p∗ =0.75, c = 4 and
t/λ0 = 0.903, the minimum ratio, λ/λ0 = 1.9619 (from Table 6) which indicates that if
λ ≥ 1.9619 × (t/0.903) = 2.1726t = 1961.9 hours, then, with sample size n = 9 and c = 4,
the lot will be rejected with probability less than or equal to 0.05.

4. Maximum likelihood estimation

Let x1, x2, ..., xn be an observed random sample from TLqW distribution with 1 <
q < 2 unknown parameter vector θ = (α, γ, λ, q)T . The likelihood function is then expressed
as

L(θ) =
n∏

i=1
2αγλγ(2 − q)xγ−1

i (1 + (q − 1)(λxi)γ)
q−3
q−1 {1 − (1 + (q − 1)(λxi)γ)2 q−2

q−1 }α−1.

The log-likelihood function is given by,

l(θ) = ln L(θ) = n ln 2 + n ln α + n ln γ + nγ ln λ + n ln(2 − q) + (γ − 1)
n∑

i=1
ln xi+

q − 3
q − 1

n∑
i=1

ln(1 + (q − 1)(λxi)γ) + (α − 1)
n∑

i=1
ln{1 − (1 + (q − 1)(λxi)γ)2 2−q

1−q }.

Let zi(x) = 1 + (q − 1)(λxi)γand k = 2 (q−2)
(q−1) , then l(θ) can be written as,
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Table 1: Using the Binomial approximation, minimum sample size

p∗ c t/λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 18 8 5 3 2 1 1 1
1 35 16 10 7 4 3 2 2
2 51 21 14 10 6 4 4 3
3 66 30 18 13 8 6 5 5
4 82 37 22 16 9 7 6 6
5 60 33 22 17 11 9 8 7
6 70 38 25 19 13 10 9 8
7 79 43 29 22 14 12 10 9
8 88 48 32 24 16 13 11 11
9 97 52 35 27 18 14 13 12
10 106 57 39 30 20 16 14 13

0.90 0 29 13 8 5 3 2 2 1
1 50 23 13 9 5 4 3 3
2 69 31 18 13 7 5 4 4
3 86 39 23 16 9 7 6 5
4 103 47 28 19 11 8 7 6
5 120 54 32 23 13 10 8 7
6 136 62 37 26 15 11 9 9
7 152 69 41 29 17 13 11 10
8 168 76 46 32 19 14 12 11
9 184 84 50 35 21 16 13 12
10 200 91 55 38 22 17 14 13

0.95 0 39 17 10 7 4 3 2 2
1 61 27 16 11 6 4 3 3
2 81 36 21 15 8 6 5 4
3 100 45 27 18 10 8 6 5
4 118 53 32 22 12 9 7 7
5 135 61 36 25 14 11 9 8
6 153 69 41 29 16 12 10 9
7 170 77 46 32 18 14 11 10
8 186 84 50 35 20 15 13 11
9 203 92 55 38 22 16 14 12
10 219 99 59 42 24 18 15 14

0.99 0 58 26 15 10 5 4 3 2
1 85 38 22 15 8 6 4 4
2 107 48 28 19 10 7 6 5
3 128 58 34 23 13 9 7 6
4 149 67 39 27 15 11 9 7
5 168 75 45 31 17 12 10 9
6 187 84 50 34 19 14 11 10
7 205 92 55 38 21 15 13 11
8 224 101 60 41 23 17 14 12
9 242 109 65 45 25 18 15 14
10 259 117 70 47 27 20 17 15
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Table 2: Using the Poisson approximation, the minimal sample size

p∗ c t/λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 19 9 6 4 3 2 2 2
1 36 17 10 7 5 4 4 3
2 52 24 15 11 7 6 5 5
3 67 31 19 14 9 7 6 6
4 83 38 24 17 11 9 8 7
5 98 45 28 20 13 10 9 8
6 113 52 32 23 14 12 10 10
7 127 59 36 26 16 13 12 11
8 142 66 40 29 18 14 13 12
9 157 72 45 32 20 16 14 13
10 171 79 49 35 22 17 15 15

0.90 0 31 14 9 7 4 3 3 4
1 51 24 15 11 7 6 5 6
2 70 33 20 15 9 7 7 7
3 88 41 25 18 11 9 8 9
4 105 49 30 22 14 11 10 10
5 122 57 35 25 16 12 11 12
6 138 64 39 28 18 14 13 13
7 155 72 44 32 20 16 14 15
8 171 79 49 35 22 17 15 16
9 187 86 53 38 24 19 17 17
10 202 94 57 41 26 20 18 18

0.95 0 40 19 12 8 5 4 4 4
1 63 29 18 13 8 7 6 6
2 83 39 24 17 11 9 8 7
3 102 47 29 21 13 11 9 9
4 120 56 34 25 15 12 11 10
5 138 64 39 28 18 14 13 12
6 156 72 44 32 20 16 14 13
7 173 80 49 35 22 17 16 15
8 190 88 54 39 24 19 17 16
9 206 95 59 42 26 21 18 17
10 223 103 63 45 28 22 20 19

0.99 0 61 28 18 13 8 6 6 5
1 87 41 25 18 11 9 8 8
2 111 51 32 23 14 11 10 10
3 132 61 38 27 17 13 12 11
4 152 71 43 31 19 15 14 13
5 172 80 49 35 22 17 16 15
6 191 89 54 39 24 19 17 16
7 210 97 60 43 27 21 19 18
8 228 106 65 47 29 23 20 19
9 246 114 70 50 31 25 22 21
10 264 122 75 54 33 27 24 22
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Table 3: Values for the sample plan’s operating characteristic function (n, c, t/λ0)

λ/λ0
p∗ n c t/λ0 2 2.5 3 3.5 4 4.5 5

0.75 82 4 0.241 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
37 4 0.361 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
22 4 0.482 0.9980 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
16 4 0.602 0.9952 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999
9 4 0.903 0.9856 0.9984 0.9997 0.9999 0.9999 0.9999 0.9999
7 4 1.204 0.9587 0.9938 0.9989 0.9998 0.9999 0.9999 0.9999
6 4 1.505 0.9162 0.9838 0.9968 0.9993 0.9998 0.9999 0.9999
6 4 1.806 0.7663 0.9360 0.9838 0.9958 0.9988 0.9996 0.9998

0.90 103 4 0.241 0.9993 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
47 4 0.361 0.9975 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
28 4 0.482 0.9940 0.9995 0.9999 0.9999 0.9999 0.9999 0.9999
19 4 0.602 0.9894 0.9990 0.9998 0.9999 0.9999 0.9999 0.9999
11 4 0.903 0.9621 0.9951 0.9993 0.9998 0.9999 0.9999 0.9999
8 4 1.204 0.9192 0.9864 0.9976 0.9995 0.9998 0.9999 0.9999
7 4 1.505 0.8195 0.9587 0.9910 0.9979 0.9994 0.9998 0.9999
6 4 1.806 0.7663 0.9360 0.9838 0.9958 0.9988 0.9996 0.9998

0.95 118 4 0.241 0.9987 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
53 4 0.361 0.9958 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999
32 4 0.482 0.9894 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999
22 4 0.602 0.9801 0.9980 0.9997 0.9999 0.9999 0.9999 0.9999
12 4 0.903 0.9448 0.9925 0.9988 0.9998 0.9999 0.9999 0.9999
9 4 1.204 0.8659 0.9747 0.9953 0.9990 0.9997 0.9999 0.9999
7 4 1.505 0.8195 0.9587 0.9910 0.9979 0.9994 0.9998 0.9999
7 4 1.806 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996

0.99 149 4 0.241 0.9965 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999
67 4 0.361 0.9889 0.9991 0.9999 0.9999 0.9999 0.9999 0.9999
39 4 0.482 0.9763 0.9977 0.9997 0.9999 0.9999 0.9999 0.9999
27 4 0.602 0.9551 0.9950 0.9993 0.9999 0.9999 0.9999 0.9999
15 4 0.903 0.8705 0.9788 0.9965 0.9993 0.9998 0.9999 0.9999
11 4 1.204 0.7287 0.9366 0.9866 0.9970 0.9993 0.9998 0.9999
9 4 1.505 0.5732 0.8659 0.9645 0.9908 0.9975 0.9993 0.9997
7 4 1.806 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996

Table 4: Values of the OC function for values of λ/λ0 at (n = 9, c = 4, t/λ0 = 0.903)

λ/λ0 2 2.5 3 3.5 4
L(p) 0.9856 0.9984 0.9997 0.9999 0.9999

Table 5: Values of the OC function for values of λ/λ0 at (n = 7, c = 4, t/λ0 = 1.806)

λ/λ0 2 2.5 3 3.5 4 4.5 5
L(p) 0.5795 0.8572 0.9587 0.9884 0.9966 0.9989 0.9996
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Table 6: Minimum of λ/λ0 for the acceptability of a lot with producer’s risk of 0.05

p∗ c t/λ0
0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75 0 4.4202 4.6647 5.0961 5.4557 6.3239 6.7439 7.9027 9.2078
1 2.6177 2.6953 2.9073 3.1296 3.4508 3.7272 3.7349 4.2172
2 2.0644 2.1350 2.2313 2.3367 2.6114 2.7601 3.2916 3.2154
3 1.8393 1.8984 1.9580 2.0957 2.3727 2.5925 2.7851 3.2154
4 1.7188 1.7616 1.8008 1.8853 1.9619 2.1962 2.3978 2.7845
5 1.6234 1.6725 1.7327 1.7773 1.8712 2.1316 2.1554 2.5061
6 1.5622 1.6067 1.6543 1.6999 1.8052 1.9422 2.1922 2.2987
7 1.5160 1.5582 1.5945 1.6415 1.7548 1.8168 2.0356 2.1467
8 1.4796 1.5078 1.5479 1.5962 1.6361 1.8256 1.9156 2.0420
9 1.4459 1.4784 1.5107 1.5293 1.6141 1.7264 1.8159 1.9256
10 1.4182 1.4546 1.4804 1.5026 1.5949 1.6536 1.7332 1.8456

0.90 0 5.5043 5.8420 6.3102 6.4500 7.6763 8.4810 10.5436 10.1158
1 2.9925 3.1559 3.2234 3.3993 3.7805 4.4528 4.6590 5.5908
2 2.3788 2.4760 2.5309 2.7041 2.8758 3.1049 3.3046 3.9655
3 2.0771 2.1603 2.2278 2.3005 2.4810 2.7966 3.1275 3.2283
4 1.9092 1.9837 2.0451 2.0857 2.2539 2.4017 2.6903 2.7896
5 1.8031 1.8494 1.9003 1.9837 2.1086 2.3241 2.3978 2.5061
6 1.7165 1.7739 1.8216 1.8785 2.0026 2.1140 2.1922 2.6307
7 1.6558 1.6997 1.7458 1.7932 1.9211 2.0932 2.2509 2.4552
8 1.6064 1.6464 1.6942 1.7292 1.8635 1.9541 2.1100 2.2987
9 1.5685 1.6095 1.6466 1.6791 1.8133 1.9541 1.9979 2.1791
10 1.5355 1.5748 1.6167 1.6377 1.7172 1.8530 1.8996 2.0798

0.95 0 6.1698 6.4672 6.8688 7.3394 8.6576 10.1799 10.6012 12.7215
1 3.2479 3.3789 3.5622 3.7318 4.1507 4.4294 4.6590 5.5908
2 2.5480 2.6414 2.7313 2.9068 3.1138 3.4832 3.8811 3.9558
3 2.2262 2.3104 2.4118 2.4561 2.6408 3.0678 3.1275 3.2348
4 2.0322 2.0980 2.1983 2.2504 2.3868 2.6242 2.6903 3.2283
5 1.9003 1.9664 2.0179 2.0759 2.2092 2.4962 2.6688 2.8774
6 1.8144 1.8693 1.9220 1.9924 2.0919 2.2655 2.4336 2.6307
7 1.7428 1.7964 1.8492 1.9015 2.0026 2.2189 2.2509 2.4552
8 1.6853 1.7283 1.7741 1.8205 1.9304 2.0729 2.2832 2.2987
9 1.6416 1.6859 1.7281 1.7605 1.8721 1.9541 2.1580 2.2269
10 1.6012 1.6414 1.6779 1.7354 1.8256 1.9541 2.0530 2.2796

0.99 0 7.3513 7.8632 8.1828 8.6528 9.5893 11.4865 12.6403 12.7215
1 3.7743 3.9580 4.1543 4.3619 4.7903 5.5126 5.5958 6.6232
2 2.8869 3.0280 3.1469 3.2614 3.5104 3.8505 4.3540 4.6433
3 2.4840 2.6006 2.6998 2.7758 3.0848 3.3080 3.5050 3.7417
4 2.2557 2.3496 2.4185 2.5203 2.7413 3.0228 3.2723 3.2283
5 2.1068 2.1774 2.2695 2.3402 2.5059 2.6634 2.9051 3.2026
6 1.9953 2.0701 2.1332 2.1804 2.3501 2.5615 2.6635 2.9203
7 1.9227 1.9558 2.0314 2.0857 2.2155 2.3494 2.6372 2.7011
8 1.8377 1.8936 1.9542 1.9924 2.1256 2.2896 2.4426 2.5942
9 1.7811 1.8370 1.8958 1.9414 2.0488 2.1522 2.3121 2.5897
10 1.7328 1.7899 1.8419 1.8636 1.9827 2.1266 2.3142 2.4587
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l(θ) = n ln 2 + n ln α + n ln γ + nγ ln λ + n ln(2 − q) + (γ − 1)
n∑

i=1
ln xi

+ q − 3
q − 1

n∑
i=1

ln zi(x) + (α − 1)
n∑

i=1
ln{1 − zi(x)k}.

Differentiating l(θ) with respect to α, γ, λ,and q,we have
∂l(θ)
∂α

= n

α
+

n∑
i=1

ln{1 − zi(x)k}.

∂l(θ)
∂γ

= n

γ
+ n ln(λ) +

n∑
i=1

ln(xi) + (q − 3)
n∑

i=1
ln(λxi)(λxi)γ 1

zi(x)

− (α − 1)(q − 1)k
n∑

i=1
ln(λxi)(λxi)γ zi(x)k−1

1 − zi(x)k
.

∂l(θ)
∂λ

= nγ

λ
+

[
(q − 1)γλγ−1

] {q − 3
q − 2

n∑
i=1

xγ
i

zi(x) − (α − 1)k
n∑

i=1
xi

γ zi(x)k−1

1 − zi(x)k

}
.

∂l(θ)
∂q

= − n

2 − q
+ 2

(q − 1)2

n∑
i=1

ln zi(x) + q − 3
q − 1

n∑
i=1

(λxi)γ

zi(x)

− (α − 1)
n∑

i=1

1
1 − zi(x)k

d

dq
(zi(x))k,

where
d

dq
(zi(x))k = zi(x)k{k

(λxi)γ

zi(x) + k + 2
q − 1 ln zi(x)}.

Now, setting the non-linear system of equations,∂l(θ)
∂α

= 0, ∂l(θ)
∂γ

= 0, ∂l(θ)
∂λ

= 0,
∂l(θ)

∂q
= 0 and solving them simultaneously we obtain the maximum likelihood estimate,

θ̂ = (α̂, λ̂, γ̂, q̂)T . One can utilise iterative techniques like the Newton-Raphson type algo-
rithm to calculate the estimate when solving non-linear equations numerically.

5. Numerical illustration

5.1. Simulation study

In this section, we do simulation tests to assess how well the MLEs of the TLqW
distribution parameters perform over the long term. Numerous finite sample sizes are taken
into account and to be more specific, we create samples from the TLqW distribution with n
= 50, 75, 100 and 110 for the parameter values α = 1.275, λ = 1.5, γ = 7.8 and q = 1.7. Also,
the iteration is conducted 1000 times. The mean values of the biases, root mean squared
errors (RMSEs), 95% (asymptotic) coverage probabilities (CPs), and average lengths (ALs)
of the 95% (asymptotic) CIs corresponding to each of the parameter estimates for every
replication are calculated with respect to the corresponding sample sizes. From Table 7 it
can be seen that the RMSEs and ALs corresponding to each estimate decrease as the sample
size increases.
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Table 7: Simulation results

Sample Size Parameter MLE Bias RMSE CP AL
n=50 α 1.415 0.140 0.141 1.000 0.425

λ 1.469 -0.031 0.131 0.931 0.437
γ 9.557 1.758 10.14 0.971 11.469
q 0.024 -0.023 0.197 0.906 0.534

n=75 α 1.415 0.140 0.140 1.000 0.347
λ 1.477 -0.023 0.100 0.937 0.351
γ 8.727 0.927 3.177 0.967 7.500
q 1.695 -0.005 0.111 0.917 0.371

n=100 α 1.415 0.139 0.140 0.999 0.300
λ 1.481 -0.019 0.084 0.936 0.299
γ 8.562 0.762 1.838 0.969 6.146
q 1.703 0.003 0.083 0.925 0.302

n=110 α 1.415 0.139 0.139 0.878 0.286
λ 1.482 -0.017 0.077 0.944 0.282
γ 8.539 0.738 1.674 0.964 5.779
q 1.706 0.006 0.076 0.916 0.283

5.2. Data illustration for failure time data

In the reliability tests described in this section, lifetime data from engineering equip-
ment are used to show one use of the TLqW distribution. The example uses data from a
set measuring how long it took 500 MW generators to fail for the first time (see Jia et al.
(2020)). The data are (thousands of hours) 0.058, 0.070, 0.090, 0.105, 0.113, 0.121, 0.153,
0.159, 0.224, 0.421, 0.570, 0.596, 0.618, 0.834, 1.019, 1.104, 1.497, 2.027, 2.234, 2.372, 2.433,
2.505, 2.690, 2.877, 2.879, 3.166, 3.455, 3.551, 4.378, 4.872, 5.085, 5.272, 5.341, 8.952, 9.188
and 11.399. The use of the TLqW illustrates the ability of this distribution in dealing with
the non-monotonic hazard rate function, which includes a set of problems with relevant ap-
plications in the reliability context; for more information, see Jiang et al. (2003). Commonly
used distributions like Weibull are barely suitable to fit the mentioned failure data. The

Table 8: Goodness of fit for different distributions on the failure time data

Model Estimates(SE) lnL K-S p value AIC
Weibull λ̂=2.3118(0.256) -68.6906 0.1219 0.1880 141.3812

γ̂= 0.8156(0.058)
MWE λ̂=0.2130(0.133) -68.2628 0.1046 0.2900 142.5276

θ̂= 10.0923(0.003)
γ̂= 0.6920(0.001)

ENH λ̂=0.1430(1.934) -68.3560 0.1021 0.3330 142.712
η̂= 1.6347 (0.248)
γ̂= 0.6415(0.181)

TPW λ̂=0.4754(0.424) -68.4044 0.2483 0.0192 142.8089
α̂= 1.3378(0.859)
γ̂= 0.1337(0.046)

TLqW λ̂=0.1816(0.029) -46.9633 0.0852 0.9361 101.9265
α̂= 0.0794(0.019)
γ̂= 6.4944(0.154)
q̂=1.8799(0.013)

P − P plot of the failure time data is given in Figure 3. The estimated standard error values
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Figure 3: P -P plot of failure time data

are given in parentheses. It can be easily seen from the Table 8 that the TLqW distribution
is a good alternative to the other lifetime models, namely the Weibull, modified Weibull
extension (MWE), exponentiated Nadarajah-Haghighi (ENH), and TPW distributions.

5.3. Data illustration for fibre strength data

We use the original uncensored observations of the 1.5 cm glass fibre strengths made
by employees of the UK National Physical Laboratory (see Merovci et al. (2016)). The fibre
strength data are 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27,
1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55,
1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,
1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00,
2.01 and 2.24.

Table 9: Goodness of fit for different distributions on fibre strength data

Model Estimates(SE) lnL K-S p value AIC
qW λ̂=0.0357(0.028) -296.15 0.1113 0.4053 598.31

γ̂= 1.2934(0.830)
q̂= 1.2934(0.142)

TLqW λ̂=0.0360(0.007) -294.74 0.1062 0.4654 594.49
γ̂= 0.8304(0.206)
α̂= 3.0546(0.024)
q̂=1.1747(0.012)

Figure 4 gives the P − P plot of the fibre strength data. It can be easily seen from
the Table 9 that TLqW distribution gives better fit than q-Weibull (qW) distribution.

5.4. Reliability test comparison with Marshall-Olkin extended exponential dis-
tribution

Comparing Reliability Test Plans for Marshall-Olkin Extended Exponential distri-
bution (see Rao et al. (2011)) with TLqW distribution, the minimal sample size is 49
using binomial approximation, whereas for α=2, acceptance number c=9, for the stated
ratio t/λ0=0.482 and confidence level p∗=0.75, whereas for TLqW distribution it is 35. The
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Figure 4: P -P plot of fibre strength data

scaled termination time is uniformly less than that for the current reliability test plans if
we take into account each value of c and each value of t/λ0. The new test plan is now
more advantageous due to this modification, which also aids in selecting the best possible
decisions.

5.5. Real life application of the new test plan

Take into account the following software release failure times, which are ordered and
expressed in hours from the moment the software begins to run until a failure occurs (see,
Wood(1996)). The observations 254, 788, 1054, 1393, 2216, 2880, 3593, 4281, and 5180 make
up an ordered sample of this data with a size of n = 9.

Let’s assume that the desired average lifetime is 1000 hours and that the testing time
is 903 hours. This results in a ratio of t/λ0 = 0.903, with a corresponding sample size of n
= 9 and an acceptance number of c = 4, which is determined from Table 1 for p∗ = 0.75. As
a result, the sampling strategy for the sample data presented above is (n = 9, c = 4, t/λ0 =
0.903). We must choose whether to accept or reject the product in light of the observations.
Only products with fewer than or equal to four failures prior to 903 hours are accepted. The
sampling plan, however, only ensures the confidence level if the given life times follow the
TLqW distribution. We compared the sample quantiles and the corresponding population
quantiles and discovered a reasonable agreement, proving that the given sample is produced
by lifetimes following the TLqW distribution. As a result, it would seem appropriate to
adopt the sampling plan’s decision rule. There are just two failures in the sample of 9 units,
occurring 254 and 788 hours before t = 903 hours. Consequently, we approve the product.

6. Conclusion

The TLqW distribution is introduced in this paper as a generalization of the Weibull
distribution. Class L is where the new distribution fits in. Additionally, the generation of
random variates using the new model is straightforward. The Weibull distribution is shown to
be a competitor of the new model, and the model’s adaptability is demonstrated by fitting it
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to two sets of real-world data. Additionally, we determine the minimal sample size required
for a lot to be accepted or rejected using percentiles. The test strategy was established
using some helpful tables that were provided. Therefore, we draw the conclusion that the
Topp Leone q-Weibull distribution is the most appropriate model among those taken into
consideration, as well as a model that is particularly capable of explaining lifetime scenarios.
We anticipate that the new model will grab researchers’ attention as a serious threat to the
Weibull distribution.
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