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Abstract

We study the finite-sample properties of the traditional Prasad-Rao and the Fay-Herriot method
for estimating the unknown linking variance component estimator in the Fay-Herriot small area
model. Our study suggests that the traditional estimators are very sensitive to observations where
the residuals after fitting the mean using a linear regression are too low, or too high. Accordingly,
we propose some modified estimators. These estimators are shown to have much better finite
sample properties. We study cases with two different patterns of the sampling variances in the
Fay-Herriot model, and use three different sample sizes, exhibiting cases of high, moderate and
low sample size situations, in this paper.

Key words: Fay-Herriot model, Prasad-Rao estimation, Fay-Herriot estimation, Robustness, Finite
sample properties, Simulations.

1 Introduction

The Fay-Herriot (Fay III and Herriot, 1979) model is perhaps the most popular and widely-
used model for small area statistics. In its current and popularly studied form, this is the following
coupled framework:

1. Sampling model: Conditional on the unknown and unobserved area-level effects θ =
(θ1, . . . , θn)T , the sampled and observed data Yn = (Y1, . . . , Yn)T follows a n-variate Nor-
mal distribution with mean θ and covariance matrix D with known diagonal entries Di > 0
and off-diagonal entries 0. This component of the Fay-Herriot model captures the sampling
level variability and distribution in the observations, conditioned on the inherent character-
istics θ of the various small areas under consideration.
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2. Linking model: The unobserved area-level effects θ follows a n-variate Normal distribution
with mean Xβ for a known and non-random n× p matrix X and unknown but fixed vector
β ∈ Rp. The covariance matrix is ψIn, where the matrix In is the n dimensional identity
matrix and ψ > 0 is an unknown positive-valued constant. This component of the Fay-
Herriot model links the various small areas together and provides effective shrinkage, by
requiring that all the small areas share a common set of regression parameters β ∈ Rp and a
common variance component ψ > 0.

In the above description of the Fay-Herriot model and in the rest of this paper, we consider
all vectors to be column vectors, and for any vector or matrix A, the notation AT denotes its
transpose. For any finite-length Euclidean vector a, the notation |a| stands for its Euclidean norm,
that is |a| = (aTa)1/2. In a slight abuse of notation, we will use D to denote a vector in Rn whose
entries are the diagonal elements of D. The notation ai will denote the i-th element of vector a,
similarly Aij will denote the (i, j)-th element of matrix A. The notation tr(A) denotes the trace of
a matrix A, that is, tr(A) =

∑
iAii. The notation IA is the indicator function of measurable set A,

that is, it takes the value one if A holds and the value zero otherwise.

The notationNq(µ,Σ) will be used to denote the q-dimensional Normal (Gaussian) distribution
with mean µ ∈ Rq and positive definite covariance matrix Σ ∈ Rq×Rq. When q = 1, it is dropped
from the notation, thus N(µ, σ2) corresponds to the one-dimensional Gaussian distribution. Other
notations will be introduced and described as they arise.

Most surveys are constrained by feasibility, ethics and cost constraints and do not record ade-
quate data on all variables of interest in as fine a scale as required by stakeholders. Models like the
Fay-Herrot framework are consequently required to obtain accurate predictions at finer resolutions
of spatial, demographic or other variables for planning, policy formulation and implementation
purposes. A comprehensive recent monograph detailing small area methods, principles and proce-
dures is Rao and Molina (2015), other resources on small area statistics include Jiang et al. (2002);
Das et al. (2004); Pfeffermann and Glickman (2004); Datta et al. (2005); Rao (2005); Jiang and
Lahiri (2006); Chatterjee et al. (2008); Li and Lahiri (2010); Salvati et al. (2012); Datta et al.
(2011); Pfeffermann (2013); Yoshimori and Lahiri (2014a,b); Molina et al. (2015); Sugasawa and
Kubokawa (2015); Rao (2015).

In the above Fay-Herriot model, the unknown parameters are the regression parameters β ∈ Rp

and a common linking variance component ψ > 0. Define the diagonal matrix B, whose i-th
element is given by

Bi = Di/(Di + ψ), i = 1, . . . , n. (1.1)
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The main quantity of interest in small area statistics centers around the properties of

[θ|Yn] = Nn

(
θ̃, Ṽ

)
, where (1.2)

θ̃ =
[
D−1 + ψ−1In

](
D−1Y + ψ−1Xβ

)
=
(
In −B

)
Y + BXβ and (1.3)

Ṽ =
[
D−1 + ψ−1In

]−1
=
(
In −B

)
D. (1.4)

For example, the conditional mean, E(θ|Yn) = θ̃ in our notation above, often referred to the BLUP
(Best Linear Unbiased Predictor), is a primary quantity of interest. Note that the BLUP depends on
the unknown parameters β and ψ, and as such cannot be predicted. Since θ̃ is a random variable,
our preferred terminology to predict it, and not estimate it.

Estimators for the unknown parameters β and ψ may be obtained from the marginal distribution
of Y:

[Y] = Nn

(
Xβ,D + ψIn

)
. (1.5)

If β̂ and ψ̂ are estimators of β and ψ, we may consider using plugging-in these in place of the
unknown parameters, and this yields the EBLUP (Empirical Best Linear Unbiased Predictor)

θ̂ =
(
In − B̂

)
Y + B̂Xβ̂, (1.6)

where B̂ is a diagonal matrix with the i-th diagonal element given by B̂i = Di/(Di + ψ̂), i =
1, . . . , n. A typical small area application revolves around using θ̂ as a predictor, and the quality
of prediction for the i-th small area is often evaluated using the MSPE (Mean Squared Prediction
Error)

Γi(β, ψ) = E
(
θ̂i − θi

)2
. (1.7)

Alternatively, prediction intervals may also be used, as done in Chatterjee et al. (2008) and Yoshi-
mori and Lahiri (2014b).

The quality of prediction, evaluated by MSPE Γi or any other measure, naturally depends on
the properties of the estimators β̂ and ψ̂. In this paper, we first present some evidence that the
latter can be very biased, depending on the data at hand and the methodology used to estimate
the linking variance ψ. We then present some strategies improve these estimators, so that they
are robust against outlying observations and data quality issues. Apart from numeric studies, we
also present some insights to understand the properties of the improved estimators. An improved
estimator for ψ typically naturally results in an improved estimator for β, and better quality EBLUP
and other quantities of interest.

We consider two different classical estimation frameworks in this paper, both have been dis-
cussed and extensively studied earlier. First, we use the moment-based estimators that have been
proposed in the seminal paper Prasad and Rao (1990), where much of the modern studies in small
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area statistics originated. Second, we consider the estimation methodology that is related to the
original paper in this line of work, namely Fay III and Herriot (1979). A modern treatment and
discussion on both these estimation methods may be found in Datta et al. (2005).

The Prasad-Rao (PR hereafter) estimation procedure begins by fitting an ordinary least squares
regression on Y using the covariates X in (1.5), thus obtaining

β̂OLS =
(
XTX

)−1
XTY.

Let us use the notation Px for the projection matrix on the column space of X , thus Px =

X
(
XTX

)−1
XT , this matrix is often referred to as the hat matrix in statistical literature. Based

on the above estimator for β, we may define the vector of residuals

R = (In −Px)Y.

We use the notation Ri for the i-th element of R. The PR estimator for ψis given by

ψ̂PR = (n− p)−1
{
|R|2 −

n∑
i=1

Di +
n∑

i=1

(PxD)i

}
. (1.8)

This estimator is positive almost surely when the intercept is the only covariate. Based on the
discussion around equation (3.5) of Prasad and Rao (1990), we conclude the authors recommend
using ψ̂PR from (1.8) to obtain a new estimator of the regression coefficients:

β̂PR =
(
XTWX

)−1
XTWY, where (1.9)

W =
(
D + ψIn

)−1
. (1.10)

We also would like to study an alternative estimator of ψ, that is a natural extension of equation
(17) of Datta et al. (2005). This is given by

ψ̂PR1 = (n− p)−1|R|2 − n−1
n∑

i=1

Di. (1.11)

It can be easily seen that ψ̂PR1 has the same first order asymptotic properties as ψ̂PR, for any fixed
p. One advantage of this estimator is its easier computation.

Based on the description of Datta et al. (2005), the Fay-Herriot (FH) method of parameter
estimation involves simultaneously solving the following set of equations:

β =
(
XTBD−1X

)−1
XTBD−1Y, (1.12)

1 = (n− p)−1(Y −Xβ)T
(
D + ψIn

)−1
(Y −Xβ)T . (1.13)

The solution to the above equations are denoted by β̂FH and ψ̂FH .

Note one issue of concern with ψ̂PR, ψ̂PR1 and ψ̂FH as estimators of the linking variance ψ,
which is a positive number. The issue is that none of these estimators are guaranteed to posi-
tive values only, and in fact in simulation experiments, these variance estimators are seen to take
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negative values with non-trivial frequencies. The reason for this concerning matter is easier to
understand in ψ̂PR: this typically happens when a substantial number of R2

i ’s are below the cor-
responding Di values. In other words, the observations for which the regression line is a good fit
and the corresponding residual is small, are poorer candidates for the problem of estimating the
linking variance! In order to practically address the issue of potential negative numbers a estimates
of variance, ψ̂PR, ψ̂PR1 and ψ̂FH are typically truncated at a small positive number, which we set
at ε = 10−4 throughout this paper.

2 A Large sample Numeric Study

To motivate the necessity for studying the properties of linking variance estimators, we present
a large sample numeric study in this section. The simulation exercises reported here are based on
the simulation framework presented in Datta et al. (2005). We consider n = 5k small areas, where
a set of known sampling variance components (D1, . . . , D5) are repeated k times. We consider
p = 1 and include the intercept as the only regression term, thus X is a n-dimensional column
of ones. We consider β = 0, thus the mean EY = Eθ = 0 ∈ Rn, although this is considered
unknown during the estimation and prediction processes. We consider ψ = 1 in this study. All
simulation experiments are replicated K = 1000 times, and the various summary measures and
plots are based on these 1000 replications of each experiment.

In our first study, we use k = 100, that is, n = 500 small areas. We use (D1, . . . , D5) =
(0.1, 0.4, 0.5, 0.6, 4.0), which is pattern (c) of Datta et al. (2005). The boxplot of ψ̂PR, ψ̂PR1 and
ψ̂FH are given in the left panel of Figure 1. In our second study, we used an identical framework
except for setting all the Di’s to be 1. The boxplot of ψ̂PR, ψ̂PR1 and ψ̂FH are given in the right
panel of Figure 1.

Note that the results of the classical linking variance estimators for the case of uneven D-
values, as shown in the left panel, are disastrous. Essentially, all methods overestimate the linking
variance, to the extent that the true value is not within the the whiskers of the boxplot. For the case
of all Di = 1, the results for the classical Prasad-Rao estimator (PR) are just as bad, however the
Fay-Herrot (FH) and the first modified Prasad-Rao (PR.1) method as given in (1.11) perform well
in this case.

Note that the above simulations do not show any kind of inconsistency of the well established
PR, FH or PR.1 methods. The asymptotic properties of these methods are as discovered and
reported in various publications earlier, some of which are cited above. The finite sample properties
of these estimators may be affected by different conditions, as demonstrated in Figure 1, and
samples of sizes even 500 are not adequate to ensure that the asymptotic regime is in place for these
linking variance estimators. A deeper study shows that the driving issue here is not the sample size,
but the fact that residuals with very high absolue values are often found in data, and methods like
PR are affected by outliers, leverage and influential points. This issue has been recognized in the
classical literature on regression for decades, see for example Chatterjee and Hadi (1986, 2015).
The linking variance estimators are particularly affected by residuals with high absolute values,
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and the use of the projection matrix (also called the “hat matrix”) in PR may make the matter
worse.

It is interesting to observe that for estimating the linking variance, two kinds of observations
are problematic. First, those that fit the linear regression very well, and consequently have small
residual values, which in turn leads to underestimation. Second, those that have very high residuals,
which leads to overestimation. Since the distribution of R2

i in general is intractable, a universal
prescription on how to handle very small and very high residuals is difficult. Also, the fact that the
Di values may have a large spread contributes to the problem.

3 Modifications for Robustness

These paper is on proposals to address the lack of finite-sample robustness issues as illustrated
by Figure 1, and thereby improve the performance of estimators of the linking variance.

First, note that while not explicitly recommended by Prasad and Rao (1990), perhaps owing to
computational difficulties when this paper was published, the Prasad-Rao scheme lends itself to a
system of equations, just like the Fay-Herrot method given in equations (1.12) and (1.13). Define

W =
(
D + ψIn

)−1
,

M2 = In −X
(
XTWX

)−1
XTW.

This PR-system equations are as follows:

β̂PR =
(
XTWX

)−1
XTWY, and (3.1)

ψ̂PR2 = tr(MT
2 M2)

−1
{
|R|2PR − tr(MT

2 M2D)
}
, where (3.2)

RPR = Y −Xβ̂PR. (3.3)

The original PR estimators, given in (3.2) and (3.1) may be seen as a one-step version of
the above system of equations. Our first proposed modification is to iterate between (3.2) and
(3.1) to convergence, and consider the simultaneous solution to these equations as our parameter
estimators.

Our simulation studies, some of which are reported later in this paper, show that ψ̂PR2 presents a
substantial improvement in finite-sample performance over the original ψ̂PR, and also a noticeable
but small improvement over ψ̂PR1. While these results are reasonably satisfactory and promising,
we still noted the substantial positive bias in ψ̂PR2, as seen earlier for ψ̂PR and ψ̂PR1. As noted
earlier, residuals whose values are very close to zero, or very high in absolute value, are problematic
for linking variance component estimation. To address this issue, our proposal is to only use those
values for which | log(D−1i R2

i |) < C for some cut-off value C. This eliminates observations with
very small residual values, as well as very high residual values. Define the diagonal matrix W̃ with
entries

W̃ij = I{i=j}I{| log(D−1
i R2

i )|<C}.
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Based on this, our next version of the Prasad-Rao type of estimators is as follows:

ψ̂PR3 = (n− p)−1
{
RT W̃R−

n∑
i=1

Di +
n∑

i=1

(PxD)i

}
. (3.4)

The estimators (3.2) and (3.4) are designed to make minimal changes to the original PR es-
timator ψ̂PR for the linking variance given in (1.8). In the former case, we propose the natural
optimization of simultaneously solving the equations that arise in Prasad and Rao (1990). In the
latter case, we essentially use a trimmed sum instead of the full sum, a well-established proce-
dure for ensuring a reasonable breakdown value of the resulting estimator. We essentially use a
multiplicative trimming in W̃ owing to the fact that both Di and R2

i are positive, and as a random
variable R2

i has a skewed distribution.

Our final estimator in the PR-framework combines the features of ψ̂PR2 and ψ̂PR3. That is, we
propose that in our next estimator, we solve simultaneously for the estimators of β and ψ as in
(1.12) and (1.13), or as in (3.1) and (3.2). We also require that only those residuals be used that are
neither too small or too large. Recall that the definition of W is given in (1.10) and that of RPR is
given in (3.3). Define

W̌ij = I{i=j}I{| log(D−1
i R2

PRi)|<C},

M4 = In −X
(
XTWX

)−1
XTW.

Thus, our next set of estimators are given as the simultaneous solution to

β̂PR =
(
XTWX

)−1
XTWY, and (3.5)

ψ̂PR4 = tr(MT
2 W̌M2)

−1
{
|R|2PR − tr(MT

2 W̌M2D)
}
. (3.6)

In our simulations, it turned out that convergence was extremely fast, typically requiring only
2 iterations for the successive values of ψ̂PR4 to be within 10−4 of each other.

Based on the considerations discussed above, we propose a modified version of the FH es-
timator as well. Suppose we start with our initial estimator β̂FH , and define the initial RFH =
Y −Xβ̂FH . Define

~Wij = I{i=j}I{| log(D−1
i R2

FHi)|<C}.

Based on this initial value, our modified FH estimators for β and ψ are the simultaneous solutions
to

β =
(
XT ~WBD−1X

)−1
XT ~WBD−1Y, (3.7)

1 = (n− p)−1(Y −Xβ)T ~W
(
D + ψIn

)−1
(Y −Xβ)T , (3.8)

RFH = Y −Xβ. (3.9)

The solution to the above equations are denoted by β̂FH2 and ψ̂FH2. Note that at each iteration the
residuals are updated, making the optimization problem interesting.



296 SNIGDHANSU CHATTERJEE [Vol. 16, No. 1

4 Results from Simulation Experiments

4.1 Study with Large Sample Size

Our first study is on comparing the proposed modified estimators, namely PR.2, PR.3, PR.4 and
FH.2 in the cases described in Section 2. In Figure 2, we present the results for all the methods.
The framework of the studies are exactly as described in Section 2, namely, n = 500 and ψ = 1,
the experiments are replicated K = 1000 times. As in Figure 1, the left panel corresponds to
(D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0), the right panel corresponds to all Di’s equal to one.

We notice from the left panel of Figure 2 that PR.2 is comparable to PR.1, and while PR.3
offers considerably reduced bias and reduced variability, its box and whiskers plot still does not
cover the true value. On the other hand, PR.4 and FH.2 perform as desired. While there still is a bit
of positive bias, it is not substantial and significant enough for the true value to be completely out
of range. We report some additional details in Table 1, where we present the mean, bias, variance,
the bias of the median, and the percentage of cases where the linking variance estimator was below
10−4, for this case. We also present the number of iterations required for the computation of PR.4
method to converge.

A natural question, given the performances of PR.3 and PR.4 in the left panel of Figure 2, is
whether the iterated equation solving steps of PR.2 are needed at all, since the substantial reduction
of bias seems to be driven primarily by the deletion of residuals with very high and very low values.
The right panel of Figure 2 shows that just deleting cases with very high and very low residuals
is not enough, and in this case FH, PR.1, PR.2, PR.4 and FH.2 perform well. In fact, PR.3 is a
poor performer in this situation, though not as poor as the original PR. We report additional details
in Table 2, where we present the mean, bias, variance, the bias of the median, and the percentage
of cases where the linking variance estimator was below 10−4, for this case. We also present the
number of iterations required for the computation of PR.4 method to converge. It is noticeable that
in this case only a single iteration leads to convergence, and that PR.1 and PR.2 are identical up to
high number of significant digits.

4.2 Study with Moderate Sample Size

We repeat the entire exercise, however, this time with sample size n = 50, thus making this
a moderate sample size experiment. The boxplots for the linking variance component estimators
are given in Figure 3. Additional details from the simulations are given in Table 3 and Table 4.
From Figure 3, it is evident that all the methods except for the original PR method perform well,
with FH, PR.4 and FH.2 performing exceedingly well under both layouts of the D-values, and
PR.1, PR.2 and PR.3 performing excellently in at least one case. Note however from Table 3 that
PR.4, and from Table 4 that FH, PR.1, PR.2, FH.2 can take negative (or very low) values when
the sample size is not extremely high. Overall, the benefits for modifying the estimators to ensure
robustness seem to be applicable in this case also.
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4.3 Study with Low Sample Size

We again repeat the entire exercise, however, this time with sample size n = 15, thus making
this a low sample size experiment. Note that this sample size now corresponds to the that of Datta
et al. (2005). The boxplots for the linking variance component estimators are given in Figure 4.
Additional details from the simulations are given in Table 5 and Table 6. From Figure 4, it is
evident that all the methods perform decently. Note that in this case the boxplot for the orignal
PR estimator contains the true value of ψ. In terms of the plots alone, PR.4 and FH.2 stand out as
being always reliable and accurate.

However, it is evident from Table 5 and Table 6 that several of the proposed new methods, along
with FH and PR.1, can produce the occasional very low linking variance component estimator. This
is most noticeable in the case of PR.1, PR.2 and PR.4 in the case of unequal D-values, and for FH,
PR.1, PR.2, PR.4 and FH.2 in the equal D-values case.

4.4 On the Mean Squared Prediction Error

It is of interest to understand how the different estimators of ψ affect the mean squared predic-
tion error (MSPE), described in (1.7) earlier. As an illustrative example, we consider the case of
moderate sample size n = 50, and (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0). In Table 7 we present
the MSPE figures obtained out of K = 1000 replications of the simulation experiment. As can
be seen from this table, the modified estimators of ψ result is substantially reduced MSPE values.
This is especially noticeable in the case of PR.3, PR.4 and FH.2. This aspect deserves further study
and will be pursued later elsewhere. We do not report the MSPE values for the other cases owing
to space, and because the findings do not differ in substance from that of Table 7.

Notice that the expression of MSPE in (1.7) is dependent on the unknown parameters, hence
in practice this has to be estimated. The asymptotic expressions for the MSPE under different
modified estimators require further study, and should relate to asymptotics of robust estimators.
Another option is to use resampling methods, which we also propose to study in future.

5 Conclusions and Future Work

The various simulations reported in this paper, and other estensive simulations carried out and
not reported here, suggest that (i) simultaneously solving for estimators of β and ψ, and (ii) trim-
ming out very high and very low residual values substantially improves the finite sample properties
of the linking variance estimator. While the improvements in the PR estimators are dramatic, there
is very significant improvement in the FH estimator for the linking variance as well.

Theoretical properties of the modified estimators need to be studied. Such properties would
not just be about asymptotic efficiency, but robustness properties as well. Also, there seems to be
room for improvement in the nature of the trimming, and it is possibly that asymmetric trimming,
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or winsorization or reweighting may produce even better answers. We have not eliminated the
possibility of a negative valued estimator for the linking variance component.
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Figure 1: Boxplots of the Prasad-Rao (PR), Fay-Herriot (FH), and the first modified Prasad-
Rao (PR.1) linking variance estimators, based on K = 1000 replications of two experiments.
The sample size is n = 500, and ψ = 1 for both panels. The left panel corresponds to
(D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0), the right panel corresponds to all Di’s equal to one.

Table 1: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 500, ψ = 1 and (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0).

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 4.357 1.8829 3.245 3.236 1.734 1.4272 1.2467 1.9090
< 10−4 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000
Bias 3.357 0.8829 2.245 2.236 0.734 0.4272 0.2467
Variance 0.245 0.0977 0.245 0.244 0.026 0.0434 0.0367 0.0828
MSE 11.517 0.8773 5.283 5.243 0.564 0.2259 0.0976
Median-Bias 3.339 0.8576 2.226 2.217 0.727 0.4188 0.2268

Table 2: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 500, ψ = 1 and all the Di’s equal to one.

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 1.9995 0.9995 0.9995 0.9995 1.399 0.892 0.961 1
< 10−4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bias 0.9995 -0.0005 -0.0005 -0.0005 0.399 -0.1085 -0.039
Variance 0.0165 0.0165 0.0165 0.0165 0.006 0.008 0.015 0
MSE 1.015 0.0165 0.0165 0.0165 0.165 0.020 0.0169
Median-Bias 0.9945 -0.0054 -0.0055 -0.0055 0.398 -0.1095 -0.039
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Figure 2: Boxplots of the Prasad-Rao (PR), Fay-Herriot (FH), four modified Prasad-Rao
(PR.1 - PR.4) and one modified Fay-Herriot (FH.2) linking variance estimators, based on
K = 1000 replications of two experiments. The sample size is n = 500, and ψ = 1 for both
panels. The left panel corresponds to (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0), the right panel
corresponds to all Di’s equal to one.
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Figure 3: Boxplots of the Prasad-Rao (PR), Fay-Herriot (FH), four modified Prasad-Rao
(PR.1 - PR.4) and one modified Fay-Herriot (FH.2) linking variance estimators, based on
K = 1000 replications of two experiments. The sample size is n = 50, and ψ = 1 for both
panels. The left panel corresponds to (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0), the right panel
corresponds to all Di’s equal to one.
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Figure 4: Boxplots of the Prasad-Rao (PR), Fay-Herriot (FH), four modified Prasad-Rao
(PR.1 - PR.4) and one modified Fay-Herriot (FH.2) linking variance estimators, based on
K = 1000 replications of two experiments. The sample size is n = 15, and ψ = 1 for both
panels. The left panel corresponds to (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0), the right panel
corresponds to all Di’s equal to one.

Table 3: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 50, ψ = 1 and (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0).

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 4.336 1.983 3.292 3.204 1.757 1.415 1.357 1.967
< 10−4 0.000 0.000 0.000 0.000 0.000 0.200 0.000
Bias 3.336 0.983 2.292 2.204 0.757 0.415 0.357
Variance 2.208 1.017 2.278 2.179 0.286 0.450 0.409 0.032
MSE 13.336 1.983 7.532 7.035 0.859 0.622 0.537
Median-Bias 3.138 0.755 2.123 2.038 0.702 0.365 0.224

Table 4: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 50, ψ = 1 and all the Di’s equal to one.

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 1.991 0.991 0.991 0.991 1.413 0.915 0.962 1.000
< 10−4 0.000 0.100 0.100 0.100 0.000 0.000 0.100
Bias 0.991 -0.009 -0.009 -0.009 0.413 -0.085 -0.038
Variance 0.162 0.162 0.162 0.162 0.059 0.080 0.152 0.000
MSE 1.143 0.162 0.162 0.162 0.230 0.087 0.153
Median-Bias 0.969 -0.031 -0.031 -0.031 0.408 -0.091 -0.059
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Table 5: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 15, ψ = 1 and (D1, . . . , D5) = (0.1, 0.4, 0.5, 0.6, 4.0).

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 4.380 2.271 3.538 3.229 1.867 1.435 1.644 1.985
< 10−4 0.000 0.300 3.400 3.800 0.000 6.300 0.700
Bias 3.380 1.271 2.538 2.229 0.867 0.435 0.644
Variance 7.617 4.339 8.649 7.424 0.981 1.331 1.903 0.015
MSE 19.042 5.954 15.092 12.392 1.733 1.520 2.318
Median-Bias 2.659 0.555 1.811 1.553 0.760 0.226 0.208

Table 6: Table of mean, percentage of very low (below 10−4) values, bias, variance mean
squared error, and bias of the median for various linking variance estimators, based on K =
1000 replications. The sample size is n = 15, ψ = 1 and all the Di’s equal to one.

PR FH PR.1 PR.2 PR.3 PR.4 FH.2 Iter
Mean 2.009 1.022 1.022 1.022 1.447 0.962 0.996 1.000
< 10−4 0.000 6.900 6.900 6.900 0.000 3.400 7.100
Bias 1.009 0.022 0.022 0.022 0.447 -0.038 -0.004
Variance 0.614 0.583 0.583 0.583 0.224 0.316 0.549 0.000
MSE 1.631 0.584 0.584 0.584 0.424 0.317 0.549
Median-Bias 0.907 -0.093 -0.093 -0.093 0.394 -0.074 -0.109

Table 7: Table of the mean squared prediction error (MSPE), scaled by a factor of 100, for the
EBLUP, based on K = 1000 replications. The sample size is n = 50, ψ = 1 and (D1, . . . , D5)
= (0.1, 0.4, 0.5, 0.6, 4.0). The MSPE values corresponding to small areas with identical Di

values have been averaged.
D PR FH PR.1 PR.2 PR.3 PR.4 FH.2

0.1 1.03 1.28 1.11 1.12 1.25 2.10 1.64
0.4 14.14 14.71 14.21 14.23 14.63 17.48 16.26
0.5 21.34 21.19 21.14 21.14 21.00 23.64 22.49
0.6 29.04 27.47 28.22 28.16 27.05 29.67 28.41
4.0 509.82 272.06 412.24 403.28 203.38 177.61 185.78


