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Abstract 
 

Multiple testing, which refers to testing of more than one hypothesis in an experiment, is 
routinely performed in statistical analysis of genome-wide data, such as testing the association 
of single-nucleotide polymorphisms (SNPs) with a particular phenotype. A common practice 
is application of multiple-testing correction methods to exclude candidate SNPs that could 
otherwise be spuriously marked as statistically significant. However, in many cases such 
methods are overly conservative and often result in no significant SNPs at all. In this paper, we 
summarize commonly used multiple-testing correction procedures and Monte Carlo 
simulation-based methods. We propose a simple modification to subsampling-based simulation 
method to estimate empirical p-values by borrowing the principles of stratified sampling. Using 
real datasets from the cancer genome atlas (TCGA) data repository, we demonstrate that the 
traditional multiple testing correction methods yielded almost none or very few significant risks 
associated SNPs, whereas the proposed stratified subsampling successfully resulted in 
appropriate number of significant candidate SNPs. We also show that the proposed 
modification has provided meaningful p-values and made the test more powerful as compared 
to simple subsampling without stratification.  
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1. Introduction 

With the exponential growth of the omics data, computational analysis of large datasets 
has become commonplace in the study of human biology and disease. The sampled subjects, 
on which the data is collected, usually differ by sex, race, age and ethnicity, leading to 
heterogeneous data. The research presented here is motivated by statistical analyses of such 
genome-scale data, e.g., The Cancer Genome Consortium Data (Ding et. al., 2018), involving 
multiple comparisons of thousands of genomic features between heterogeneous populations. 
While human genome sequences are mostly identical between different individuals, a small 
number of genetic differences exist that result in the striking phenotypic variation observed 
among individuals. Studying the association between genetic and phenotypic variation and 
identification of disease associated genetic variants and their prevalence across different 
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populations have been the subjects of numerous genome projects since the publication of the 
human genome (Lander et. al., 2001; Landrum et. al., 2018).  

 
The most common genetic variation is single nucleotide polymorphism (SNP), which 

roughly occur every 1200 base pairs in comparisons of a pair of human chromosomes. For 
example, dbSNP database provides a general catalog of SNPs that are characterized according 
to frequency, distribution among populations and functional genomic regions, potential 
functional consequences, inferred mutation pattern, linkage, and organization within each 
chromosome in each individual (haplotype) (Sherry et. al., 2001; Neykov et. al., 2019).  These 
SNPs can help discern small differences both within a population and among different 
populations, leading to the identification of population based risk genetic variants for common 
and complex diseases. 

 
Motivating Example: Cancer is a complex genetic disease with significant 

heterogeneity across patients. Molecular understanding of tumor heterogeneity is key to 
effective cancer treatment and personalized medicine. High-grade serous ovarian carcinoma 
(HGSOC) accounts for 70 to 80 percent of ovarian cancer deaths, with little improvement in 
overall survival in recent years (Siegel et. al., 2016). The standard therapy for HGSOC includes 
maximal cytoreductive surgery followed by platinum and taxane chemotherapy. While the 
majority of HGSOC patients respond to initial treatment, most tumors recur and become 
increasingly resistant to chemotherapy, with an overall 5-year survival rate of approximately 
30 percent (Reid et. al., 2017).  As a heterogeneous disease, understanding how genetic 
differences in individuals contribute to their cancer susceptibility and response to therapy can 
help guide medical practitioners to give the best advice to achieve a favorable outcome for the 
patient. As genome technologies evolve, genotyping of individuals could be available to all 
patients using a simple saliva test. Large-scale genome-wide association studies and meta 
analyses have provided powerful insights into SNPs that may be predictive of disease and an 
individual's length of survival (or response to therapy). For example, The Cancer Genome Atlas 
(TCGA) data portal (https://portal.gdc.cancer.gov) provides multiple layers of -omics data (e.g. 
gene expression, methylation, SNPs) along with clinical/phenotypic information (e.g. cancer 
stage, survival information, drugs/treatment information) for more than 1500 ovarian cancer 
patients (Cancer Genome Atlas Research, 2011; GTExProject, 2017). These data provide an 
unprecedented opportunity for exploratory data analysis to identify SNPs that are associated 
with cancer, survival status and response therapy. It is expected that the catalogue of such SNPs 
will provide the foundation for tailored detection, prevention and treatment of diseases leading 
to the era of personalized cancer medicine (Dayem Ullah et. al., 2018). One common goal in 
large genome-wide experiments is to identify the genomic markers (e.g. genes or SNPs) that 
are significantly different between different populations or associated with a response or 
covariate of interest. The response could be censored survival time or other clinical outcomes, 
the covariates could be either categorical (e.g. treatment/control status, cancer subtype) or 
continuous (e.g. dose of a drug).  

 
In the above example of ovarian cancer data, our main goal is to identify the SNPs that 

are associated with patient survival. Log rank test is the most widely used test for testing the 
equality of survival distributions between different patient populations. However, a major 
challenge in the analysis and interpretation of such large-scale genome studies is the 
simultaneous handling of multiple comparisons, where a large number of genes or SNPs (or 
null hypotheses) are simultaneously tested. For example, let us suppose that an experiment 
involves 100 SNPs to be tested, each with a Type 1 error probability of 0.05, assuming the null 
hypothesis is true for each SNP the expected number of false significant SNPs is equal to 5. 
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Moreover, if all tests are mutually independent, then the probability that at least one true null 
hypothesis will be rejected is given by 1–0.95100 = 0.994. Therefore, in any large genome-wide 
study involving large number of SNPs (usually more than a million), any truly significant calls 
will be accompanied by correspondingly large number of false findings. 
 
2. Multiple-Testing Correction Methods 
 

Multiple-testing correction methods adjust the significance level for each test to a value 
𝛼 such that the overall type I error for the study (the probability of rejecting a correct null 
hypothesis in at least one of the tests) will not exceed a predetermined acceptable level, often 
set to 0.05. Widely accepted approaches to deal with the multiple-testing problem control either 
the family wise error rate (FWER), which is the probability of at least one false rejection 
(Hochberg and Tamhane, 1987), or the false discovery rate (FDR), which is the expected 
proportion of falsely rejected null hypotheses (Reiner et. al., 2003; Benjamini and Yekutieli, 
2005). 

 
For example, Bonferroni correction, which controls FWER, for testing the SNPs that are 

associated with survival, is performed as 
 
(i)   Compute p-values using log rank test. 
(ii) Reject the null hypothesis for 𝑝! ≤

"
#
. 

 
where m is the total number of comparisons/tests we are performing, or total number of 
hypotheses.  
 

Similarly, Benjamini-Hochberg (BH) correction, which controls FDR, is performed by 
following step-wise procedure.  

 
(i) Sort the p-values in increasing order. 
(ii) For a given α, find the largest l such that 𝑝! ≤

!
#
𝛼, where m is again the total 

number of hypotheses to be tested, and l is the rank of SNPs. 
(iii) Reject the null hypotheses for all H(m), m=1, 2, …, l. 

 
 

Resampling-based multiple-testing correction methods: Resampling-based multiple testing 
procedures are widely used in genome data analysis, especially when the sample size is small 
or the distribution of test statistic does not follow normality assumption or is unknown. 
Resampling-based multiple testing procedures can account for dependent structures among p-
values or test statistics, resulting in lower type II errors. The commonly used resampling 
techniques include permutation tests and bootstrap methods. 
 

In permutation tests, the distribution of the test statistics is constructed by calculating all 
possible values or a sufficiently large number of test statistics (usually 1000 or above) from 
permuted sampling observations under the null hypothesis. Permutation tests are distribution-
free, which can provide exact p-values even when sample size is small. Bootstrap method finds 
an approximate distribution of the test statistic by taking many repeated samples with 
replacement from one random sample (Efron and Tibshirani, 1994). The bootstrap method 
provides an asymptotically unbiased estimator for the variance of a sample median and for 
error rates in a linear discrimination problem outperforming cross-validation (Efron, 1979). 
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The p-values obtained by the bootstrap method are less exact than p-values computed from the 
permutation method, and the bootstrap estimated p-values are asymptotically convergent to the 
true p-values (Pollard and van der Laan, 2004). Please refer (Farcomeni, 2008) for a review of 
multiple hypothesis testing procedures and applications in the analysis of DNA microarray 
data.  

 
Subsampling-based multiple-testing correction methods: Subsampling procedure is 
different from resampling technique. While resampling scheme generates multiple samples (of 
size equal to the original sample size) by choosing the observations from the sample with 
replacement, subsampling scheme selects the observations from the sample without 
replacement. Statistical inference based on the samples of fixed size in resampling but in case 
of subsampling scheme, the inference is drawn on the samples of smaller size than fixed sample 
size. The samples are drawn in resampling technique by using simple random sampling with 
replacement (SRSWR), whereas in subsampling the samples are drawn by simple random 
sampling without replacement (SRSWOR). Subsampling (or Two stage sampling) at few 
places in the literature should not be confused with subsampling defined by (Politis and 
Romano, 1993). Technically, while two-stage sampling is a two-stage-sampling scheme, 
subsampling is resampling method without replacement by selecting a smaller size subsamples 
from the original sample. For example, (Nigam and Rao, 1996) constructed second order 
balanced designs when sample size (n) is a composite and prime number, and extended the 
results to stratified multistage samples and provided inferential procedures on balanced 
bootstrap for stratified multistage samples.  

 
The distribution of Studentized statistic was estimated by subsampling by (Politis and 

Romano, 1993). They constructed confidence regions by approximating the sampling 
distribution of a statistic based on the values of the statistic computed over small subsets of the 
data, and showed their method works well under weak assumptions (Politis and Romano, 
1994). In the subsequent publications, they approximated the sampling distribution of a statistic 
based on the values of the statistic computed over small subsets of the data, and illustrated its 
application on time series data (Politis and Romano, 1996). Their book provides some of the 
foundation for subsampling methodology and related methods (Politis et. al., 1999).  Further, 
the asymptotic theory of subsampling was discussed in (Politis et. al., 2001), and K-sample 
subsampling for iid observations and time series data were discussed by (Politis and Romano, 
2008). In a later publication, they constructed the confidence intervals and p-values for the tests 
based on subsampling by shortening the number of iterations (Berg et. al., 2010). They showed 
that the new p-values were asymptotically uniform under the null hypothesis and converged to 
zero under alternative hypothesis, leading to improved power of the test and meaningful p-
values. 

 
The application of subsampling methods for assessing the significance of observations 

in large-scale genome studies was discussed in (Bickel et. al., 2010). Recently, a subsampling 
without replacement-based normalization scheme was employed for identification of 
differentially expression that accounted for the hierarchy and amplitude of effect sizes within 
samples (Mohorianu et. al., 2017). Xavier et al. (Xavier et. al., 2017) proposed the use 
of subsampling bootstrap Markov chain in genomic prediction. The proposed method consists 
of fitting whole-genome regression models by subsampling observations in each round of a 
Markov Chain Monte Carlo. Further, the subsampling based approach was effectively used for 
determining appropriate sequencing depth trough efficient read subsampling of RNA-seq data 
(Robinson and Storey, 2014). 
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In this paper, we propose a modification to the subsampling scheme, by performing 
stratified sampling without replacement. Because of the complex and heterogeneous nature of 
disease population (cancer patients in the current study), there is a need to account for the 
heterogeneity; such as race, living status, cancer type etc. Using a real example of TCGA 
ovarian and brain cancer data, we demonstrate that dividing the heterogeneous data into strata 
and then applying subsampling approach leads to more meaningful empirical p-values for log 
rank test. We also show that traditional multiple testing correction methods seem to be too strict 
for studies on a genomics scale, whereas the proposed stratified subsampling approach can 
successfully result in appropriate number of significant observations. In the following section, 
we begin by introducing the basic principle of stratified subsampling. 
 
3. Stratified Subsampling 
 

In stratified subsampling, instead of drawing a subsample of size b<<n, we first partition 
the sample into non-overlapping groups, and then subsamples without replacement are drawn 
within each stratum as explained below. Strata are non-overlapping and homogeneous with 
respect to the characteristic under study. For example, in a survival analysis study based on 
genome sequencing data from cancer patients, the sample usually consists of both living 
patients and diseased, usually with varying proportions. If subsamples are drawn without 
accounting for this heterogeneity, the subsamples may disproportionately consist of one group 
versus the other, therefore, leading to spurious p-values. Here, we propose an approach to 
statistical significance in the analysis of genome-wide data sets, based on the concept of 
stratified sub-sampling p-values. 
 
Procedure of stratified subsampling: 
1. Divide the sample of N units into k strata. Let the ith stratum have ni, i=1,2, …,  k, number 

of units, such that 𝑁 = ∑ 𝑛$%
$&'  . 

2. Draw a subsample of size bi from sample of size ni from ith stratum using SRSWOR. 
3. All the subsampling units drawn from each stratum will constitute a stratified sample of 

size b. 
 
Let us define the following symbols as  
k:  Number of strata 
ni: Numbers of sampling units to be drawn from ith stratum  
bi: Number of subsampling units to be drawn from ith stratum  
𝑛 = ∑ 𝑛$%

$&' : Total sample size 
𝑏 = ∑ 𝑏$%

$&' : Total subsample size. 
 
Let xn = (X1, X2, …, Xn) be a sample of n independent and identically distributed (iid) random 
variables taking values in an arbitrary sample space S with unknown probability distribution P. 
P belongs to a class of distributions H which may be parametric, nonparametric or 
semiparametric. The idea is to approximate the sampling distribution of a statistic based on the 
values of the statistic computed over smaller subsets of the data.   
 
Let t(P) be the parameter and its estimator (or statistic) is given by  
 

𝑡( = 𝑓(𝑋',  𝑋),   . . . ,  𝑋(). 
 

Then the sampling distribution of the statistic is given by 
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𝐽((𝑥, 𝑃) = 𝑃{𝜏([(𝑡( − 𝑡(𝑝)) ≤ 𝑥]}, 
 

where 𝜏( is a normalizing sequence. 
 

The fundamental idea behind subsampling is that 𝐽((𝑥, 𝑃) can be accurately 
approximated by the normalized distribution of the same estimator calculated on appropriately 
data chosen subsets of data of size b (b<<n).   
 
Let the statistic calculated on the ith subset of size b is denoted by  
 

𝑡(,+,$ = 𝑡+(𝑋$', 𝑋$), . . . , 𝑋$+). 
 

Let 𝑁( = :𝑛𝑏; be the total number of available subsets of the data of size b. In this case, the ith 
subsample is constructed by sampling without replacement from iid data with purpose of 
forming a subsample of size b.  
 
The subsampling estimator of 𝐽((𝑥, 𝑃) is defined as follows 

𝐿(,+(𝑥) =
1
𝑁(

>𝐼[𝜏+(𝑡(,+,$ − 𝑡() ≤ 𝑥]
,!

$&'

 

where I is the indicator function. Under general conditions  

𝑁( → ∞, 𝑏 → ∞,   
𝑏%

𝑛 → 0 

and for the appropriate values of k and 𝜏( is such that -"
-!
	→ 0 whenever +

(
→ 0.  Politis and 

Romano (1994) showed that  
𝐿(,+(𝑥) − 𝐽((𝑥, 𝑃) →

.
0. 

 
Let the hypotheses for testing the parameter be  

𝐻/: 𝑡(𝑃) = 𝜃/,      𝑃 ∈ 𝑃/ 
𝐻': 𝑡(𝑃) > 𝜃/,      𝑃 ∈ 𝑃' 

The sampling distribution of the statistic under null hypothesis is given by   
 

𝐽((𝑥, 𝑃/) = 𝑃[𝜏((𝑡( − 𝜃/) ≤ 𝑥] 
 

and its subsampling estimator is given by  
 

𝐿(,+(𝑥, 𝑃/) =
'
,!
∑ 𝐼[𝜏+(𝑡(,+,$ − 𝜃/) ≤ 𝑥],!
$&' . 

 
Politis et al. (1999) gave the proof of the consistency of the test. The test rejects H0 when 

												
1
𝑁(

>𝐼[𝜏((𝑡( − 𝜃/) ≥ 𝜏+(𝑡(,+,$ − 𝜃/)]
,!

$&'

> 1 − 𝛼 

1
𝑁(

>𝐼[𝑇( ≥ 𝑇(,+,$]
,!

$&'

> 1 − 𝛼 

Under null hypothesis, the subsampled distribution of Tn,b,I approximates the sampling 
distribution of Tn . 
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Stratified subsampling and Log rank test: Log rank test is the most widely used test for 
testing the equality of survival distributions. Let 
 
Y: Time until an event occurs where event is death of person 
T: Failure time with distribution function F(x) and probability density function f(x) 
C: Censoring time with distribution function G(x) and probability density function 
 

∆= 𝑚𝑖𝑛( 𝑇, 𝐶) = N1,       𝑇 ≤ 𝐶
0,     	 𝑇 > 𝐶  

 
Survival function is defined as the probability that a person will survive beyond a time t. It is 
defined as  

𝑆(𝑡) = 𝑃(𝑌 > 𝑡) = Q 𝑓(𝑥)𝑑𝑥 = 1 − 𝐹(𝑡),
0

1
								0 < 𝑡 < ∞. 

 
Consider the following q×2 table classifying those with and without the event of interest  
 
Group Event Total 

Dead at time Ti Alive at time Ti 
0 D0i N0(Ti)– D0i N0(Ti) 
1 D1i N1(Ti) – D1i N1(Ti) 
2 D2i N2(Ti) – D2i N2(Ti) 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
q Dqi Nq(Ti) – Dqi Nq(Ti) 

Total  Di N(Ti) – Di N(Ti) 

 
where T1, …, Ti, …, Tk are distinct failure times 
Ng(Ti): Number of persons in group g at risk at Ti 
Dgi: Number of persons in group g who fail at Ti, g = 0,1, 2, …, q, i = 1, 2, …, k. 
 
Dgi follows hypergeometric distribution.  
 
The hypotheses for testing the survival functions of different groups are given as  
 

										𝐻/: 𝑆/(𝑡) = 𝑆'(𝑡) = ⋯ = 𝑆2(𝑡) 
 

										𝐻':		Two or more Survival functions are different from others. 
 
The log rank test statistic for testing the above hypotheses is defined as  
 

𝜒 =
∑ (𝑂$ − 𝐸$)%
$&'

Z∑ 𝑉$%
$&'

 

 
where Oi: Observed number of failures, Ei: Expected number of failures, Vi: Variance of 
observed number of failures. Under 𝐻/, 𝜒 (or 𝜒)) follows standard normal (or chi-square) 
distribution approximately. This approximation is generally used to obtain an approximate test 
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for 𝐻/ by comparing the observed value of 𝜒 (or 𝜒)) to the tail area of the standard normal (or 
chi-square) distribution.  
 
Empirical p-values based on Monte Carlo simulations: Monte Carlo simulations are 
routinely applied in permutation and resampling based methods to estimate the p-values.  
Suppose 𝜒3+4)  is the observed Chi-squared test-statistic value for a given random sample from 
log rank test. In Monte Carlo simulations, independent random datasets are generated using 
pseudo-random number either by resampling or subsampling methods.  Assuming m such data 
sets are simulated under the null hypothesis, each yielding a distinct test statistic 𝜒4$#) , the ideal 
p-value is	𝑝0 = 𝑃(𝜒4$#) > 	𝜒3+5) ). However, 	𝑝0 is unknown, because generating infinite 
number of datasets is not possible and only a finite number (m) of datasets are available.  Let 
B be the number of times out of m that 𝜒4$#) > 𝜒3+4) . It was previously shown that the unbiased 
estimator �̂�0 = 𝐵/𝑚 leads to an invalid test that does not correctly control the type I error rate 
at the required level (Phipson and Smyth, 2010), therefore, computing the tail probability 
directly for the Monte Carlo results was suggested as a valid approach. Therefore, in a 
randomization test, the test statistic is B rather than 𝜒3+4) , and the required tail probability is 
P(B ≤ b). It was shown by (Phipson and Smyth, 2010) that, under the null hypothesis, the 
marginal distribution of B over all possible data sets is discrete uniform on the integers from 0, 
…, m, and the exact Monte Carlo p-value is estimated as 

𝑃6 = 𝑃(𝐵 ≤ 𝑏) = 	 +7'
#7'

. 
 
While this is not an unbiased estimator, the amount of positive bias is just enough to allow for 
the uncertainty of estimation and to produce a test with the correct size. For further details 
about this p-value calculation, please refer (Edgington and Onghena, 2007; Phipson and Smyth, 
2010).  
 
4. Application on real-life datasets 

 
In order to compare our stratified subsampling scheme with other multiple testing correction 
methods, we have applied our method on two real-life datasets: SNP array data of TCGA 
ovarian cancer (OV, 570 patients, 580,886 SNPs) and low-grade glioma (LGG, 505 patients, 
251,258 SNPs). Each patient has three potential genotypes: AA (reference), Aa (heterozygous) 
and aa (alternative), for each SNP. We associated their survival functions with the genotypes 
and used log rank test to determine the statistical significance of the overall survival difference 
between 3 genotypes. For each genotype, we further stratified on the vital status of the patient, 
and drew random subsamples with different number of subsampling percentage (60%, 70%, 
80%) for n = 500 and 1,000 iterations. We then compared our stratified subsampling scheme 
with other methods for multiple testing correction, including Bonferroni and Benjamini-
Hochberg procedures, Bootstrapping method, as well as subsampling scheme without 
stratification, by plotting an empirical distribution of 𝜒)-statistic from log rank test. 
Specifically, we compared the χ12, …, χm2, …, χn2 with the χ02 obtained using the original un-
permuted sample, and computed the empirical p-value based on the Monte Carlo empirical p-
value formula below (and introduced in previous section): 

𝑃8#9 =	
:7'
;7'

, 

where r is the total number of iterations that χm2 > χ02.   
 
Table 1 shows the comparison of number of significant SNPs declared at different 

thresholds for OV and LGG respectively.  
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Table 1: Number of significant SNPs for different α 
 

Method Ovarian (OV) Brain (LGG) 
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

Single Sample Logrank 
test 8,228 35,257 66,855 5,275 18,917 33,645 

Multiple comparison-
Bonferroni Correction 1 2 2 4 4 8 

Multiple comparison-
Benjamini Hochberg 
Correction 

2 2 12 4 67 234 

Bootstrapping 0 0 0 0 0 0 
Stratified Subsampling 
with size 60% (500 
iterations) 

2 542 5,943 44 2,164 11,872 

Stratified Subsampling 
with size 70% (500 
iterations) 

0 46 1,396 4 630 5,298 

Stratified Subsampling 
with size 80% (500 
iterations) 

0 1 107 0 71 1,022 

 
Table 1 shows that traditional multiple testing correction methods, including Bonferroni and 
Benjamini-Hochberg procedures, as well as resampling-based method (Bootstrapping), all did 
not control number of significant findings to an appropriate level as they appear to be too 
stringent on a genomics scale, where hundreds of thousands of tests are performed 
simultaneously. This fact is more apparent when we compare across ovarian cancer (total 
580,886 SNPs) and glioma (total 251,258 SNPs), where less SNPs results in more significant 
candidates after multiple testing correction due to the less total number of tests performed in 
LGG. Compare with the methods above, stratified subsampling provided more candidates at 
different levels, across the two datasets. Moreover, decrease of subsampling percentage seems 
to be able to provide additional relaxation, allowing number of candidates to be controlled by 
adjusting the subsampling parameters. 
 

It is also noteworthy that bootstrapping gives no significant candidates in our case no 
matter what cutoff we chose. To potentially elucidate why this happens, as well as why a larger 
subsample size results in smaller number of significant candidates, we plotted the estimated 
sampling distributions in these cases for the particular SNP with lowest p-value from single 
log rank test (rs10824799 for OV, rs7754576 for LGG), with increased number (10,000) of 
iterations (Figures 1 and 2).  
 

Table 2 shows that for both OV and LGG random subsampling tends to give less 
significant candidates as compared to stratified subsampling, indicating that it may again be 
too strict. Moreover, the random subsampling returns similar number of candidates as 
Benjamini-Hochberg approach in both cases. Since there is much more computation associated 
with subsampling approach compared to traditional multiple testing correction methods, 
applying simple random subsampling does not seem to offer any advantage. We can see from 
the examples and comparison that stratification can best capture the heterogeneity within the 
sample while not being too stringent. In this example, the number of strata is 2, with 
stratification based on living status – dead or living. However, the stratification and number of 
strata can be modified depending on other attributes, such as, race, ethnicity, sex, etc., provided 
such information is available and the sample size is large enough to yield desired power. 
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Table 2: Number of significant SNPs for different α 
 

Subsampling 
percentage 

Ovarian (OV) Brain (LGG) 
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

60% (random) 0 19 666 0 28 438 
70% (random) 0 1 75 1 2 72 
80% (random) 0 0 2 0 1 2 
60% (stratified) 2 542 5,943 44 2,164 11,872 
70% (stratified) 0 46 1,396 4 630 5,298 
80% (stratified) 0 1 107 0 71 1,022 

 
 

 

 
Figure 1: Distribution of simulated test-statistic (𝝌𝒔𝒊𝒎𝟐 ) based on stratified subsampling 
with 60% (top left), 70% (top right), 80% (bottom left) and bootstrapping (bottom right) 
with 10,000 iterations for OV. Black line indicates the actual test statistic value on the 
overall sample (𝝌𝒐𝒃𝒔𝟐 ). 
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Figure 2: Distribution of simulated test-statistic (𝝌𝒔𝒊𝒎𝟐 ) based on stratified subsampling 
with 60% (top left), 70% (top right), 80% (bottom left) and bootstrapping (bottom right) 
with 10,000 iterations for LGG. Black line indicates the actual test statistic value on the 
overall sample (𝝌𝒐𝒃𝒔𝟐 ). 
 
5. Conclusions 
 

In this paper, we introduced the concept of stratified subsampling for constructing p-
values for hypothesis tests in genomics research and showed that it can effectively handle the 
problem of multiple testing while not being too conservative. While the stratified subsampling 
based empirical p-values are proposed for the log rank test, the method can be generalized for 
any other statistical test. The proposed modification can be applied in case of heterogeneous 
data and when subsampling is performed to construct the p-values.  

 
Based on the empirical evaluation, we found that the simple random subsampling 

returned much less significant SNPs than stratified subsampling, suggesting that the simple 
random subsampling is also too stringent, and considering the computational burden, 
subsampling based p-values (without stratification) do not have advantages over traditional 
multiple testing correction (e.g. BH, Bonferroni), as they similarly returned very few 
candidates. We are currently working on theoretical aspects of constructing the confidence 
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intervals and p-values based on the stratified subsampling procedure proposed here. In 
addition, further work is needed to derive and evaluate the asymptotic properties of the 
proposed test-statistic under the null and alternative hypotheses. 
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