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Abstract
Optimal two-treatment, p period crossover designs for binary responses are determined.

The optimal designs are obtained by minimizing the variance of the treatment contrast
estimator over all possible allocations of n subjects to 2p possible treatment sequences. An
appropriate logistic regression model is postulated and the within subject covariances are
modeled through a working correlation matrix. The marginal mean of the binary responses
are fitted using generalized estimating equations. The efficiencies of some crossover designs
for p = 2, 3, 4 periods are calculated. An equivalence theorem is provided to verify optimality
of numerically obtained locally optimal designs.
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1. Introduction

In crossover trials, every experimental unit receives a sequence of treatments over
different time periods. For the real life applications of crossover trials see e.g., Jones and
Kenward (2014) and Senn (2003). The problem of determining optimal designs for crossover
trials has been studied quite extensively in recent years and we refer to Bose and Dey (2009)
for a review of results on optimal crossover designs. However, most of the available results
on optimal crossover designs relate to situations where the response variable is continuous
(see Kershner and Federer (1981), Laska and Meisner (1985), Matthews (1987) and Carriere
and Huang (2000) and the references therein). In clinical or pharmaceutical research, the
outcome of interest is often binary in nature. While methods for analyzing binary data
arising from crossover trials are available in Jones and Kenward (2014) and Senn (2003),
the question of designing such studies in an optimal manner does not seem to have been
addressed much in the literature. Waterhouse et al. (2006) considered crossover designs for
binary response, where the treatments were taken to be continuous in nature and no period
effects were considered in the model. Singh and Mukhopadhyay (2016) proposed optimal
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crossover Bayesian designs for the generalized linear models (GLMs). One of their case
study was based on a four periods (p = 4) binary crossover design for four periods. Recently,
Singh et al. (2020) proposed min–max crossover designs for the GLMs. Following the
methodology proposed in Singh and Mukhopadhyay (2016), Jankar et al. (2020) proposed
locally D-optimal designs for the GLMs. In comparison aforementioned references, the
present article discusses the binary crossover design in greater details for p = 2, 3, 4 periods
and two treatments. We discuss optimal designs for binary responses in a logistic regression
framework.

Since the main interest lies in the estimation of the treatment effect, the designs pro-
posed, minimize the variance of the estimator associated with the treatment effect. For a
binary logistic model, the variance of the treatment effect estimator depends on the model pa-
rameters, to address the issue of parameter dependence, various intervals of model parameter
are assumed and a subset of parameter values are selected from these intervals. In crossover
studies the response at the current time period may have the effect of the treatment from
the previous time period. This effect is refer to as the ”carryover effect”. Often the interest
lies in estimating the carryover effect. Optimal crossover designs to estimate the carryover
effect for the normal response are discussed in Laska and Meisner (1985) and Gondaliya and
Divecha (2015). In our setting assuming that the carryover effect of a treatment lasts only
to the next succeeding period, optimal designs for estimating the carryover effect are also
discussed. A population average approach is utilized for the estimation of the model pa-
rameters. In this approach we treat the subject effects as a nuisance parameter and use the
generalized estimating equations of Liang and Zeger (1986) to estimate the marginal means.
The observations from each subject over different time points are assumed to be mutually
correlated while the observations from different subjects are uncorrelated. The correlation
between observations within subjects are modeled using a “working correlation structure”.
We study the effect of three working correlation structures, uncorrelated, equi-correlated and
autoregressive (AR) on the designs chosen. The rest of the article is organised as foloows. In
Section 2, we define the crossover logistic model for a binary response and discuss the estima-
tion of the crossover model using generalized estimating equations. In Section 3, results on
optimal two-treatment designs for 2, 3 and 4 periods are given. The optimally of numerically
obtained locally optimal designs is verified using an equivalence theorem given in Section 3.5.

2. The Model and Estimation

Consider a crossover trial involving t treatments, n subjects and p periods. Suppose
the response obtained from the jth subject is Yj = (Y1j, . . . , Ypj)′, where a prime denotes
transposition. Instead of specifying a joint distribution of the repeated measurements we
use a working GLM to describe the marginal distribution of Yij as (Liang and Zeger, 1986)

f(yij) = exp[{yijφij − b(φij) + c(yij)}ψ].

For a binary random variable Yij, φij = log µij
1− µij

, b(φij) = log[1 + exp{φij}], c(yij) = 0,

and the scale parameter ψ is 1 (Robinson and Khuri, 2003). The mean of Yij is µij and
variance µij(1− µij).
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In a crossover setup, we model the marginal mean µij using the population-average
model

logit(µij) = ηij = µ+ βi + τd(i,j) + ρd(i−1,j); i = 1 . . . , p, j = 1, . . . , n, (1)

where µ is the overall mean, βi represents the effect of the ith period, τs is the treatment
effect due to treatment s and ρs is the carryover effect due to treatment s, s = 1, . . . , t.
Throughout, 1u is a u × 1 vector of all ones, Iu is the identity matrix of order u and 0ab is
an a× b null matrix. Also, we write β = (β1, . . . , βp)′, τ = (τ1, . . . , τt)′ and ρ = (ρ1, . . . , ρt)′.
Since there is no carryover effect in the first period, we set ρd(0,j) = 0 for all j.

In matrix notation, the linear predictor corresponding to the jth subject, ηj = (η1j, . . . , ηpj)′,
can be written as

ηj = Xjθ, (2)

where θ = (µ,β′, τ ′,ρ′)′. The design matrix is Xj = [1p Pj Tj Fj], where Pj = Ip; Tj is a
p× t matrix with its (i, s)th entry equal to 1 if subject j receives the treatment effect of the
treatment s in the ith period and zero otherwise; Fj is a p× t matrix with its (i, s)th entry
equal to 1 if subject j receives the carryover effect of the treatment s in the ith period and
zero otherwise. Note that the first row of Fj consists of all zeros since ρd(0,j) = 0 for all j.

Since we are working with the population–average model, the estimation of the model
parameters can be done using the generalized estimating equation (GEE) approach proposed
by Liang and Zeger (1986) and Zeger et al. (1988). The GEEs are utilized to estimate the
parameters of GLM with a possible unknown correlation between outcomes. The resulting
estimators are referred to as the GEE estimators. The GEE estimators are consistent even
if the correlation structure is misspecified. It is assumed that measurements from the same
subject in the p periods are correlated while observations from different subjects are uncor-
related. The dependencies between repeated observations from a subject are modeled using
a “working correlation” matrix C(α) where α is a vector of length s. If C(α) is the true
correlation matrix of Yj, then

Cov[Yj] = D
1/2
j C(α)D1/2

j , (3)

where Dj = diag(µ1j(1− µ1j), . . . , µpj(1− µpj)). Let Wj = D
1/2
j C(α)D1/2

j .

For a repeated-measures model, Zeger et al. (1988, equation (3.1)) derived the gener-
alized estimating equations (GEE) to be

n∑
j=1

∂µ′j
∂θ

W−1
j (Yj − µj) = 0,

where µj = (µ1j, . . . , µpj)′. The asymptotic variance for the GEE estimator θ̂ (see Zeger et
al., 1988, equation (3.2)) is

V ar(θ̂) =
 n∑
j=1

∂µ′j
∂θ

W−1
j

∂µj
∂θ

−1

, (4)
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if Cov(Yj) = Wj, i.e. the working correlation is same as the true correlation. However, if
the true correlation structure varies from the “working correlation” structure, then V ar(θ̂)
is given by the sandwich formula (Zeger et al., 1988, equation (3.2))

V ar(θ̂) = A−1BA−1,

where
A =

n∑
j=1

∂µ′j
∂θ

W−1
j

∂µj
∂θ

, and B =
n∑
j=1

∂µ′j
∂θ

W−1
j Cov(Yj)W−1

j

∂µj
∂θ

.

For the crossover model (1), the ith element of ∂µj

∂θ
is x′ijµij(1−µij), where x′ij is the ith row

of Xj for i = 1, . . . , p.

Before introducing the design selection criterion, we list the main objectives of the
paper with the help of the following example. Consider a trial reported by Senn (2003,
page 127) wherein it was desired to study the effect of two drugs on 24 children aged 7 to
13 suffering from exercise-induced asthma. The two treatments were, a single dose of 12µg
formoterol solution aerosol (treatment A) and a single dose of 200µg of salbutamol solution
aerosol (treatment B). Each child was given both the treatments either in the order, AB
or BA. The response variable was binary, taking value 1 if the drug was effective and 0
otherwise. An equal number of children were allocated to each treatment sequence, AB or
BA. Several questions arise about the design used:

• Is the design with equal allocation to sequences {AB,BA} optimal for the binary
model? If not which is the optimal design?

• For continuous responses [Laska and Meisner (1985)], in a 2–periods 2–treatments
(2 × 2) crossover study, proved that the design with equal allocation to treatment
sequences {AB,BA} is optimal when there are no carryover effects in the model. If
the same design is used for binary model what is the efficiency loss, if any?

• In binary models design selection depends on the model parameters. What will be the
effect of these parameters when selecting a crossover design?

• Will the design change in a binary model if we include carryover effects in the model?

Finding an exact optimal design (optimal number of subjects to the treatment se-
quences) which is associated with the integer optimization problem of a non-linear function
is mathematically intractable. Instead to find optimal crossover designs for the binary model
we use the approximate theory as in Laska and Meisner (1985) and Kushner (1997, 1998).
For a review of results on optimal crossover designs using the approximate theory, we refer
to Bose and Dey (2009, Chapter 4). An approximate/continuous crossover design with k
treatment sequences can be expressed in the form of a probability measure as follows:

ζ =
{
ω1 ω2 . . . ωk
pω1 pω2 . . . pωk

}
,
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where ωi ∈ Ω (set of all permutations of t treatments of length p). Observe that Ω denotes
the set of all possible treatment sequences of length p. Here pωi

is the proportion of subjects
assigned to treatment sequence ωi. Fixing the number of subjects to n and periods to p,
we determine the proportion of subjects assigned to a particular treatment sequence. We
denote by nω the number of subjects assigned to sequence ω. Then, n = ∑

ω∈Ω nω, nω ≥ 0,
pωi

= nωi
/n ≥ 0 and ∑k

i=1 pωi
= 1, for i = 1, · · · , k. Once an approximate optimal design

is obtained, an exact design can be found by efficient rounding (Kiefer (1971), Pukelsheim
and Rieder (1992)).

It follows from Lemma 4.2.1 in Bose and Dey (2009) that Tω = Tj and Fω = Fj for
all j subjects assigned to a treatment sequence ω. This implies that Xj = Xω. Since npω
subjects are assigned to sequence ω, the variance of θ̂ in (4) can be expressed as

V arζ(θ̂) = U−1 =
∑
ω∈Ω

npω
∂µ′ω
∂θ

W−1
ω

∂µω
∂θ

−1

. (5)

For the estimation of the treatment effect, instead of working with the full variance-covariance
matrix of θ̂ we concentrate on V ar(τ̂ ) where,

V arζ(τ̂ ) = HV arζ(θ̂)H ′, (6)

where H is a t×m matrix given by [0t1, 0tp, It, 0tt] and m is the total number of parameters
in θ.

A locally optimal design (LOD) ζ∗ is one which minimizes the log(V arζ(τ̂ )) with
respect to pw, when ∑

w∈Ω pw = 1 and ω ∈ Ω. Similarly, an LOD associated with the
carryover effect can be obtained by minimizing log(V arζ(ρ̂)). As an example, consider the
case when p = 3 and Ω = {AAA,AAB,ABB,ABA,BAB BAA,BBA,BBB}. An optimal
design (approximate/continuous) is specified by the optimal proportions p∗ω for each ω ∈ Ω for
which V arζ(τ̂ ) is minimized with respect to these proportions. In other words, ζ∗ determines
the optimal proportion p∗ω of the total observations assigned to the treatment sequences ω.
Suppose,

ζ∗ =
{
AAA AAB ABB ABA BAB BAA BBA BBB
0.40 0 0 0.15 0.10 0.25 0 0.10

}
,

Then the optimal design allocates 40% of subjects to treatment AAA, 15% to treatment
ABA, 10% subjects to BAB and BBB, and 25% to BAA. No subjects are allocated to the
treament sequences {AAB,ABB,BBA}. In equation (8) we note that the variance of the
treatment effect estimator depends on the model parameters. Thus, the optimal design found
by minimizing the variance of the treatment effect is parameter dependent and actually an
LOD.

3. Two Treatment Crossover Trials: Results and Discussion

With two treatments of interest, the problem simplifies to minimizing the variance
of the treatment contrast τ1 − τ2 to obtain optimal crossover designs. Reparameterizing
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model (1) as in Singh and Mukhopadhyay (2016) and Laska and Meisner (1985), using
τ = (τ1 − τ2)/2 and ρ = (ρ1 − ρ2)/2 we get

logit(µij) = µ+ βP + τΦd(i,j) + ρΦd(i−1),j), (7)

where P takes value 0 for period 1 and 1 for period 2, ΦA = 1,ΦB = −1 and Φd(0,j) = 0.

For illustration we go back to the example in Section 2, where there are two treatments,
A and B applied in two periods to each child. The design used involved the treatment
sequences AB and BA, with equal allocation to each treatment sequence. Thus, the matrix
Xω depends on the treatment sequence ω ∈ Ω = {AB,BA}. If the treatment sequence, for
example is ω = AB, then

Xω =
(

1 0 1 0
1 1 −1 1

)
In the following, we look at the performance of the design, {AB,BA}. Senn (2003) fitted
a logistic model with no carryover effect to the data set and computed confidence intervals
for the various components of θ. Using these intervals we investigate if the above two-
period design is the best choice in the given situation. We also look at general situations for
determining optimal designs when p = 2, 3 or 4 for two treatment case.

3.1. Designs compared

An optimal design obtained by considering all possible treatment sequences associated
with a p period model is denoted by D(p). For example when p = 2, D(2) is consists of the
treatment sequences {AA,AB,BA,BB} = Ω, with optimal proportions p∗ω associated to the
treatment sequence ω ∈ Ω. The designs that we consider are similar to those discussed by
Laska and Meisner (1985) and Carriere and Huang (2000) and are listed below for p = 2, 3
and 4. The notation D

(p)
i denotes ith design considered for a model with p time periods.

(i) p = 2:

D
(2)
1 : AB and BA; D(2)

2 : AB, AA, BA and BB, with equal number of subjects assigned to
each sequence. For normal responses, when there is no carryover effect, D(2)

1 is an optimal
design [Grizzle (1965)]. Design D(2)

2 is shown to be universally optimal [Carriere and Reinsel
(1992)].

(ii) p = 3:

D
(3)
1 : ABB and BAA;

D
(3)
2 : ABB, AAB, BAA and BBA;

D
(3)
3 : ABB, ABA, BAA and BAB.

In designs D(3)
1 −D

(3)
3 , each treatment sequence is allocated equally. These designs are shown

to be optimal under different scenarios for normal responses. Under appropriate assumption
on the within-subject correlation, Kershner (1986) and Laska et al. (1983) shown that D(3)

1
is an universally optimal design. Optimality of designs D(3)

2 and D
(3)
3 was investigated by
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Laska et al. (1983), Ebbutt (1984), Matthews (1987), Carriere (1994), and Carriere and
Huang (2000) for normal responses.

(iii) p = 4:

D
(4)
1 : AABB, BBAA, ABBA and BAAB;

D
(4)
2 : AABB, BBAA;

D
(4)
3 : ABBA, BAAB;

D
(4)
4 : ABAB, BABA.

In designs D(4)
1 − D

(4)
4 , each treatment sequence is allocated equally. The performances of

these designs are investigated in Gondaliya and Divecha (2018).

For evaluating and comparing the above designs we define an efficiency measure as

Γ(ζ) =
(
V arζ∗(τ̂)
V arζ(τ̂)

)1/m

, (8)

where ζ∗ is the locally optimal crossover design and m is the number of unknown regression
parameters in the model. Note that the efficiency in (8) defined for designs associated with
the estimation of the treatment effect. Efficiency of designs associated with the estimation
of the carryover effect can be defined by replacing τ̂ with ρ̂ in (8).

3.2. Working correlation structures

We consider the uncorrelated, compound symmetric or, equi-correlated and the AR(1)
structures for the correlation matrix C(α). Under the equi-correlated covariance structure,
C(α) = (1− α)Ip + αJp, where α is a scalar.

Under the AR(1) assumption the (i, j)th element cij fo C(α) is,

cij = α|i−j|, i 6= j.

A Working Example: Here we present an example to illustrate the proposed methodol-
ogy for obtaining the optimal proportions and compute design efficiency. Consider the
case p = 3. We have used the reparametrized version of the model as described in Singh
and Mukhopadhyay (2016). Let the estimates of the parameters be θ̂ = [µ̂, β̂1, β̂2, τ̂ , ρ̂] =
[0.5, 1.0,−1.0,−2.0, 1] and α̂ = 0.1. A compound symmetric correlation structure is as-
sumed and Ω = {AAA,ABB,ABA,AAB,BAA,BAB,BBA,BBB}. Optimal design (pro-
portions) is obtained by minimizing the variance function given in equation (6) with respect
to ζ. For the given parameter estimates and treatment sequences, LOD is,

ζ∗ =
{
AAA ABB ABA AAB BAA BAB BBA BBB

0 0.1865 0 0.1317 0.2068 0.1105 0.3645 0

}
Observe that the above design uses treatment sequences {ABB,AAB,BAA,BAB,BBA}
with proportions of subjects {0.1865, 0.1317, 0.2068, 0.1105, 0.3645}, respectively. The effi-
cient conversion of approximate design to an exact design can be done using the methods
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given in Pukelsheim and Rieder (1992). Nearest integer approach is also one of the methods
used and works quite well in most of the cases.

Suppose we are interested in comparing ζ∗ with another design say

ζA =
{
ABB AAB BAA BBA
1/4 1/4 1/4 1/4

}

Design ζA distributes equal proportion of subjects to each treatment sequence considered.
The values of V arζ∗(τ̂ ) = 3.7263 and V arζA

(τ̂ ) = 3.9778. The design efficiency calculated
using the formula given in equation (8) for m = 6 is 0.987.

Remark 1: It is clear that the expression of V arζ(θ̂) given in (5) is a scalar multiple of n
and the design efficiency is independent of n, i.e., to compute the efficiency based on the
formula (8), total number of observations (n) is not required.

Remark 2: Here and later in this article, design optimization is done using numerical tech-
niques. In particular, we have used fmincon function of MATLAB R2014a. The function
fmincon is used for nonlinear optimization under a constraint. These programs are available
from authors upon request.

3.3. Parameter dependence

The variance of the treatment effect estimator depends on the model parameters and
the optimal design found by minimizing the variance of the treatment effect is actually locally
optimal. We have assumed that historical data from same study are available. Based on the
historical data, using GEE approach the point estimate θ̂ of θ is obtained. A parameter space
B for θ is set up by taking Cartesian product of the confidence intervals of the individual
parameters. For each period size p, the efficiencies of the designs listed in Section 3.1 are
calculated as follows:

(a) An LOD ζ∗ is obtained using θ̂. Suppose ζN denotes a competitive design listed in
Section 3.1.

(b) From the parameter space B, 5000 values of θ are randomly generated. For each value
of θ, the efficiency based on ζ∗ and ζN is computed using (8). Thus, we shall have
5000 efficiencies values corresponding to 5000 values of θ.

(c) The performances of ζ∗ and ζN are assessed through the box–plot of 5000 efficiencies
values calculated in (b).

This allows us to study the robustness of the designs selected to the changes in the parameter
values.
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3.4. Results

LODs are computed for the following scenarios:

Scenario ID1: LOD for the estimation of the treatment effect (minimize the variance of
the estimate of the parameter associated treatment effect) in the model with no carryover
effects (NC). The working correlation structure is assumed to be independent (ID).

Scenario ID2: LOD for the estimation of the treatment effect when the carryover effect is
included in the model (WC). The working correlation structure is assumed to be ID.

Scenario ID3: LOD for the estimation of the carry effect when the carryover effect is
included in the model (WC). The working correlation structure is assumed to be ID.

Scenarios CS1, CS2, and CS3 are same as scenarios ID1, ID2, and ID3 except
that the ID structure is replaced by CS correlation structure. Similarly, scenarios AR1,
AR2, and AR3 are same as scenarios CS1, CS2, and CS3 except that the CS structure
is replaced by an auto regressive (AR) correlation structure. In the subsequent sections,
optimal proportions are denoted by a vector p∗ = (p∗ω1 , . . . , p

∗
ωs

)′, where ωi ∈ Ω for i =
1, . . . , s, and s is the cardinality of Ω. A LOD ζ∗ can be identify by p∗ and the associated
treatment sequences.

3.4.1. Two periods two treatment (2× 2) crossover trials

For 2× 2 binary trial, we used the data from a study reported in Jones and Kenward
(2014) (Page 97, Table 2.36). The experiment was designed to assess the cerebrovascular
deficiency. Two drugs (placebo and an active drug) given to subjects based on the treatment
sequences {AB,BA}. The responses are recorded as abnormal (0) and normal (1) electro-
cardiogram readings. Based on the data, the point estimates of the model parameters and
the 95% estimated confidence intervals are reported in Table 1. The estimated value of α is
0.1.

Table 1: Estimated 95% confidence intervals of the model parameters in a 2×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Model µ β τ ρ
NC [0.2997, 1.1253] [-0.5600, 0.2012] [-0.0572, 0.3238] ·
WC [0.2976, 1.1364] [-0.5652, 0.1952] [-0.1924, 0.6464] [-0.5441, 0.9141]

LODs for the binary 2 × 2 trial under scenarios ID1, ID2, ID3, CS1, CS2 and CS3
are computed based the point estimate θ̂ reported in Table 1. The parameter space to
compute the efficiencies is made up the Cartesian product of the interval estimates of the
model parameters (given in Table 1). The optimal proportions are reported for the following
sequence of treatments: {AB,AA,BA,BB}.
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Scenario ID1: The optimal proportions are obtained as p∗ = (0.2513, 0.2601, 0.2486, 0.2400)′.
Thus, LOD ζ∗ is close to D(2)

2 . From Figure 1(a), it can be observed that the performances
of ζ∗, D(2)

1 and D
(2)
2 are similar. For normal responses, D(2)

2 is an optimal design [see Laska
and Meisner (1985)].

Scenario ID2: LOD consists of the optimal proportions p∗ = (0.2436, 0.2633, 0.2514, 0.2418)′.
Design D

(2)
2 is as efficient as ζ∗ whereas D(2)

1 performs worst (see Figure 1(b)). Design D
(2)
2

is an optimal design for normal responses.

Scenario ID3: The vector of optimal proportions is p∗ = (0.5070, 0, 0, 0.4930)′. Observing
Figure 1(c), it can be concluded that LOD ζ∗ is slightly better than D

(2)
2 since the median

efficiency of D(2)
2 compared with ζ∗ is less than 1. The performance of D(2)

1 is worst.

(a) (b) (c)

Figure 1: Binary 2 × 2 crossover trials with independent correlation structure.
The efficiencies of design D(2) when compared to D

(2)
1 and D

(2)
2 are denoted by

”Γ1” and ”Γ2” respectively and given as box–plots. The red line indicates the
median and the red dots the outliers. (a) Scenario ID1 (b) Scenario ID2 (c)
Scenario ID3

Scenario CS1: Optimal proportions assigned by LOD ζ∗ are p∗ = (0.5011, 0, 0.4989, 0)′.
LOD is very close to D(2)

1 which is optimal for normal responses. From the efficiency box–
plots (see Figure 2 (a)) it is observed that ζ∗ and D(2)

1 are equally efficient. The performance
of D(2)

2 is not satisfactory.

Scenario CS2: LOD ζ∗ assigns the proportions p∗ = (0.2435, 0.2632, 0.2515, 0.2419)′. LOD
is very similar to D(2)

2 . The performance of ζ∗ is similar to D(2)
2 whereas D(2)

1 perform poorly
(see Figure 2 (b)).

Scenario CS3: Optimal proportions are p∗ = (0.4763, 0.0319, 0, 0.4919)′. Thus LOD assigns
approximately all the proportions to the sequences AB and BB. The efficiency plot (Figure
2 (c)) shows that design D

(2)
2 is as efficient as ζ∗.

In the above three scenarios (CS1, CS2 and CS3) the correlation parameter α is assumed
to take value 0.1. We have repeated the above exercise with α = 0.4 and computed the
efficiencies. The efficiency plots are depicted in Figure 2 (d), (e) and (f) for scenarios CS1,
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CS2 and CS3 respectively. From these plots it is observed that the ranking of designs based
on the efficiency remain unchanged for the higher correlation value.

(a) (b) (c)

(d) (e) (f)

Figure 2: Binary 2 × 2 crossover trials with CS correlation structure. The effi-
ciencies of design D(2) when compared to D

(2)
1 and D

(2)
2 are denoted by ”Γ1” and

”Γ2” respectively and given as boxplots. The red line indicates the median and
the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b) Scenario CS2 with
α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with α = 0.4 (e) Scenario
CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

3.4.2. Three periods two treatment (3× 2) crossover trials

The reparameterized version of model (1) for a 3× 2 crossover trial is written as

logit(µij) = µ+ β1P1 + β2P2 + τΦd(i,j) + ρΦd(i−1,j),

where where (P1, P2) takes values (0,0), (1,0), and (0,1) for the period 1, 2, and 3 respectively.

For the estimation of the confidence intervals we used the data set given in Example
3 of Morrey (1989). The estimated confidence intervals and the point estimates are pre-
sented in Table 2. The optimal proportions are reported in the following sequences of treat-
ments: {ABB,ABA,AAB,BAA,BAB,BBA,AAA,BBB}. LODs are calculated based on
the point estimates of the parameters reported in 2. In the computations of efficiency val-
ues, the parameter space is made up the Cartesian product of the confidence intervals of the
parameters given in Table 2.
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Table 2: Estimated 95% confidence intervals of the model parameters in a 3×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Correlation Model ν β1 β2 τ

CS NC [-0.8185, 0.4045] [-0.6396, 1.0616] [-1.1237, 0.4717] [0.1021, 0.7959]
WC [-0.8210, 0.3978] [-0.5991, 1.0233] [-1.3311, 0.4557] [0.1178, 0.8488]

AR NC [-0.8231, 0.4019] [-0.6334, 1.0620] [-1.1162, 0.4764] [0.0722, 0.7814]
WC [-0.8216, 0.3976] [-0.5984, 1.0244] [-1.3308, 0.4568] [0.1175, 0.8505]

ρ

CS NC ·
WC [0.0976, 0.9564]

AR NC ·
WC [0.0988, 0.9652]

Scenario ID1: When there is no carryover effect, LOD ζ∗ assigns the optimal proportions
p∗ = (0.1288, 0.1154, 0.1289, 0.1203, 0.1356, 0.1202, 0.1155, 0.1354)′. Thus, ζ∗ utilizes all the
treatment sequences. Observing the box-plots depicted in Figure 3 (a), it is concluded that
ζ∗ is as efficient as D(3)

i , for i = 1, 2, 3.

Scenario ID2: The vector of the optimal proportions is p∗ = (0.3716, 0, 0.0428, 0.3398, 0.0791,
0, 0.0751, 0.0916)′. More than 70% observations are assigned the sequence ABB and its dual.
In terms of efficiency, design D

(3)
2 is as efficient as ζ∗ followed by D

(3)
1 (see Figure 3 (b)).

Design D
(3)
3 performs worst.

Scenario ID3: The optimal proportions are p∗ = (0, 0.2558, 0, 0.2458, 0, 0.2549, 0.2435, 0)′.
In this case, the conclusion is same as in scenario ID2 (see Figure 3 (c)).

(a) (b) (c)

Figure 3: Binary 3 × 2 crossover trials with independent correlation structure.
The efficiencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are

denoted by ”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line
indicates the median and the red dots the outliers. (a) Scenario ID1 (b) Scenario
ID2 (c) Scenario ID3
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Scenario CS1: LOD ζ∗ chooses the treatment sequences with weights p∗ = (0.0319, 0.4553, 0,
0, 0.4980, 0.0145, 0, 0)′. Thus, more than 95% of subjects are assigned to the sequence ABA
and its dual BAB. In terms of efficiency, ζ∗ is as efficient as D(3)

3 (less wider spread of the
box–plot) followed by D(3)

1 and D
(3)
2 (see Figure 4 (a)).

Scenario CS2: The optimal proportions are p∗ = (0.3344, 0, 0.1891, 0.3588, 0, 0.1177, 0, 0)′.
Thus, LOD is positively supported only on the treatment sequences ABB, ABA and their
duals BAA and BAB with more than 68% proportion only to ABB and its dual. For normal
responses, optimal design equally assigns subjects to ABB and its dual. From Figure 4 (b),
it is observed that D(3)

2 is best in terms of the efficiency closely followed by D(3)
1 . Design D(3)

3
performs worst.

Scenario CS3: LOD ζ∗ is consist of the optimal proportions p∗ = (0.4219, 0.0845, 0, 0.4441, 0,
0.0223, 0, 0.0272)′. Thus ζ∗ assigns more than 85% subjects to the sequence ABB and its
dual. The efficiency plot (Figure 4 (c)) shows that only D(3)

1 has satisfactory performance.

(a) (b) (c)

(d) (e) (f)

Figure 4: Binary 3 × 2 crossover trials with CS correlation structure. The effi-
ciencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are denoted by

”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b)
Scenario CS2 with α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with
α = 0.4 (e) Scenario CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

The above three scenarios (CS1, CS2 and CS3) are done based on the correlation
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parameter α = 0.1. We have repeated the above exercise with α = 0.4 and computed the
efficiencies. The efficiency plots are depicted in Figure 4 (d), (e) and (f) for scenarios CS1,
CS2 and CS3 respectively. From these plots it is observed that the ranking of designs based
on the efficiency remain unchanged for the higher correlation expect in scenario CS3. In
Scenario CS3 an increase in α worsen the the performance of D(3)

2 .

Scenario AR1: In this case LOD utilizes only two treatment sequences ABA and BAB with
approximately equal proportion of subjects. A design with equal proportions of subjects in
ABA and BAB is optimal for normal responses. The efficiencies of all designs D(3)

i , i = 1, 2, 3
compared with LOD are less than 1 (see Figure 5 (a)). Thus, the performances of any of
D

(3)
i ’s are not satisfactory.

Scenario AR2: Optimal proportions are obtained as p∗ = (0.3922, 0, 0.1012, 0.4153, 0.0229, 0,
0, 0.0684)′. LOD ζ∗ assigns more than 80% subjects to the sequence ABB and its dual. De-
sign D(3)

2 is comparably as efficient as ζ∗ followed by D(3)
1 (see Figure 5 (b)). The performance

of design D
(3)
3 is not satisfactory.

(a) (b) (c)

(d) (e) (f)

Figure 5: Binary 3 × 2 crossover trials with AR correlation structure. The
efficiencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are denoted

by ”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario AR1 with α = 0.1 (b)
Scenario AR2 with α = 0.1 (c) Scenario AR3 with α = 0.1 (d) Scenario AR1 with
α = 0.4 (e) Scenario AR2 with α = 0.4 (f) Scenario AR3 with α = 0.4

Scenario AR3: LOD ζ∗ is consist of the optimal proportions p∗ = (0.4663, 0.0370, 0, 0.4349, 0,
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0.0217, 0, 0.0401)′. LOD assigns more than 90% subjects to the sequence ABB and its dual
BAA. Efficiency plots (see Figure 5 (c)) shows that only D(3)

1 is as efficient as ζ∗.

When α = 0.4, the efficiency plots are depicted in Figure 5 (d), (e) and (f) for scenarios
AR1, AR2 and AR3 respectively. It is observed that the efficiency wise ranking of designs
remain unchanged.

3.4.3. Four periods two treatment (4× 2) crossover trials

We analyse the two treatment double blinded crossover data reported in McKnight and Van
Den Eeden (1993). The study was designed to examine whether aspartame causes headaches
in subjects who believe they experience aspartame-induced headaches. The run-in period
was 7 days followed by a wash-out day repeated for 4 periods. Three doses per day of Both
aspartame (A) 30 mg/kg/day, and placebo (B) were given to the subjects. There were four
possible ordering of the treatments (ABAB, ABBA, BABA, BAAB). The response y
takes values 0 if the number of days with headache is less than 2 and is equal to 1 if the
number of days with headache is greater than or equal to 2.After removing the dropouts,
the data for 21 subjects is given in Table 3.

The reparameterized version of model (1) for a 4× 2 crossover trial is written as

logit(µij) = µ+ β1P1 + β2P2 + β3P3 + τΦd(i,j) + ρΦd(i−1,j),

where where (P1, P2, P3) takes values (0,0,0), (1,0,0), (0,1,0) and (0,0,1) for the period 1, 2,
3 and 4 respectively.

The estimated confidence intervals and the point estimates based on the data from Table 3
are presented in Table 4. LODs are calculated based on the point estimates of the parameters
reported in 4. Optimal proportions (p∗) for all scenarios are reported in Table 5. In the
computation of the efficiency, the parameter space is made of the Cartesian products of the
confidence intervals of the parameters given in Table 4.
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Table 3: Treatment order and corresponding Response of each period

Treatment order period 1 period 2 period 3 period 4
ABAB 0 1 0 0
ABAB 1 1 1 1
ABAB 0 0 0 0
ABAB 1 1 1 1
ABAB 1 0 1 0

ABBA 0 1 0 0
ABBA 1 1 1 1
ABBA 0 0 1 0
ABBA 0 0 0 0
ABBA 1 1 1 1
ABBA 0 0 0 0

BABA 0 1 1 1
BABA 0 0 0 0
BABA 1 0 0 0
BABA 1 0 0 1
BABA 0 0 0 1
BABA 1 1 0 1

BAAB 0 0 0 0
BAAB 0 0 0 0
BAAB 0 1 0 0
BAAB 1 1 0 0
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Table 4: Estimated 95% confidence intervals of the model parameters in a 4×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Correlation Model ν β1 β2 β3

CS NC [-1.160, 0.570] [-0.683, 1.453] [-1.381 , 0.615] [-1.050, 0.640]
WC [-1.129, 0.623] [-0.684, 1.492] [-1.518, 0.466] [-1.133, 0.603]

AR NC [-1.161, 0.563] [-0.685, 1.455] [-1.374, 0.618] [-1.057, 0.641]
WC [-1.141, 0.615] [-0.671, 1.493] [-1.498, 0.462] [-1.117, 0.615]

τ ρ

CS NC [-0.227, 0.447] ·
WC [-0.566, 0.280] [-1.012, 0.045]

AR NC [-0.242, 0.498] ·
WC [-0.638, 0.318] [-1.047, 0.109]

Scenario ID1: In this case LOD ζ∗ utilizes all the treatment sequences except AAAA and
its dual (see Table 5). Observing Figure 6 (a) it is concluded that all designs are equally
efficient.

Scenario ID2: LOD ζ∗ assigns more than 80% observations to the sequences AABB,
AABA and their duals. Design D

(4)
1 is as efficient as ζ∗ whereas D(4)

4 perform worst (see
Figure 6 (b)).

Scenario ID3: More than 85% observations are assigned to the sequences BAAB and
ABBB. Design D

(4)
1 is as efficient as LOD (see Figure 6 (c)). Performance of D(4)

4 is worst.

(a) (b) (c)

Figure 6: Binary 4 × 2 crossover trials with independent correlation structure.
The efficiencies of design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are

denoted by ”Γ1”, ”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The
red line indicates the median and the red dots the outliers. (a) Scenario ID1 (b)
Scenario ID2 (c) Scenario ID3
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Scenario CS1: LOD ζ∗ equally assigns more than 94% observations to the sequence ABBA
and its dual. When α = 0.4, then also, LOD utilizes ABBA and its dual with more 96%
observations assigned to them. Design D

(4)
3 is as efficient as ζ∗ (see Figures 7 (a) and (d)).

Scenario CS2: In this case LOD assigns more than 90% observations to the sequences
AABB, ABAB and their duals. LOD is not affected by change in α from 0.1 to 0.4. Design
D

(4)
1 is most efficient when compared to others with respect to LOD (see Figure 7 (b) and

(e)). Note that D(4)
1 is an optimal design for normal responses.

Scenario CS3: LOD ζ∗ utilizes only the following sequences {AABB,BAAB,ABBB,BAAA}.
SImilar to scenario CS2, in this case D(4)

1 is as efficient as ζ∗ (see Figure 7 (c) and (f)).

(a) (b) (c)

(d) (e) (f)

Figure 7: Binary 4 × 2 crossover trials with CS structure. The efficiencies of
design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are denoted by ”Γ1”,

”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b)
Scenario CS2 with α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with
α = 0.4 (e) Scenario CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

Scenario AR1: LOD assigns approximately equal observations only to the sequence ABAB
and its dual. LOD is as efficient as D(4)

4 (see Figure 8 (a) and (d)) which is an optimal design
for normal responses.

Scenario AR2: When α = 0.1, LOD assigns more than 80% observations to the sequences
AABB, BABB and their duals. However, when α = 0.4, ζ∗ utilizes AABB, ABBA and
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their duals with approximately all the observations assigned to them. Design D
(4)
1 is as

efficient as ζ∗ (see Figure 8 (b) and (e)).

Scenario AR3: Approximately all the observations assigned to AABB, BABB and their
duals. Design D

(4)
1 is as efficient as ζ∗ (see Figure 8 (c) and (f)).

(a) (b) (c)

(d) (e) (f)

Figure 8: Binary 4 × 2 crossover trials with AR structure. The efficiencies of
design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are denoted by ”Γ1”,

”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario AR1 with α = 0.1 (b)
Scenario AR2 with α = 0.1 (c) Scenario AR3 with α = 0.1 (d) Scenario AR1 with
α = 0.4 (e) Scenario AR2 with α = 0.4 (f) Scenario AR3 with α = 0.4
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Table 5: Optimal proportion (p∗) for 4× 2 crossover trials

α = 0.1

Sequence ID1 ID2 ID3 CS1 CS2 CS3 AR1 AR2 AR3
AABB 0.0730 0.2251 0.0219 0.0081 0.3530 0.0614 0 0.2096 0.2015
BBAA 0.0698 0.1363 0 0 0.3415 0 0 0.2427 0.2007
ABBA 0.0710 0.0152 0 0.4771 0.0884 0 0 0.1235 0
BAAB 0.0717 0 0.4503 0.4786 0 0.4338 0 0 0
ABAB 0.0704 0.0168 0 0.0153 0.0930 0 0.4977 0 0
BABA 0.0723 0 0 0.0189 0.1240 0 0.5023 0.0021 0
ABBB 0.0739 0.0153 0.4153 0 0 0.4302 0 0 0
BABB 0.0754 0 0.0310 0 0 0 0 0.2427 0.2772
BBAB 0.0726 0.2490 0 0 0 0 0 0 0
BBBA 0.0732 0.1027 0.0139 0 0 0 0 0 0
BAAA 0.0690 0 0 0 0 0.0744 0 0 0.0290
ABAA 0.0679 0.0158 0 0 0 0 0 0.1771 0.2917
AABA 0.0702 0.2235 0 0 0 0 0 0.0021 0
AAAB 0.0696 0 0.0670 0 0 0 0 0 0
AAAA 0 0 0 0 0 0 0 0 0
BBBB 0 0 0 0 0 0 0 0 0

α = 0.4

CS1 CS2 CS3 AR1 AR2 AR3

AABB 0.0072 0.3538 0.0592 0 0.1253 0.1999
BBAA 0.0012 0.3423 0 0 0.1119 0.2240
ABBA 0.4842 0.0889 0 0 0.3732 0
BAAB 0.4857 0 0.3696 0 0.3644 0
ABAB 0.0091 0.0918 0 0.4973 0 0
BABA 0.0127 0.1232 0 0.5027 0 0
ABBB 0 0 0.4311 0 0 0
BABB 0 0 0 0 0 0.2838
BBAB 0 0 0 0 0.0251 0
BBBA 0 0 0 0 0 0
BAAA 0 0 0.1400 0 0 0
ABAA 0 0 0 0 0 0.2923
AABA 0 0 0 0 0 0
AAAB 0 0 0 0 0 0
AAAA 0 0 0 0 0 0
BBBB 0 0 0 0 0 0
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3.5. An equivalence theorem

For the linear regression models equivalence theorems were developed by Whittle (1973)
and Kiefer (1974). For the GLMs, equivalence theorem for the Bayesian setup was discussed
in Chaloner and Larntz (1989). Optimality of min–max crossover designs for the binary
response model was verified by an equivalence theorem discussed in Singh et al. (2020).
Singh and Mukhopadhyay (2016) provided an equivalence theorem to confirm the optimality
of numerically obtained crossover designs for the GLMs. In this section we provide an
equivalence theorem which can be utilized to verify the optimality of the LODs obtained in
this article.

Let the design space be defined as a unit simplex Ξ = {p′ = (pω1 , . . . , pωs) : ∑s
i=1 pωi

=
1, and 0 ≤ pωi

≤ 1}. Note that V arζ(θ̂) given in (5) depends on p via ζ. Therefore, V arζ(θ̂)
can be represented as V arζ(p)(τ̂ ). Suppose the interest is in estimating a estimable linear
function of the parameters say λ = L′θ, where L is a m × s matrix, m is the length of the
vector θ, and s ≤ m. The information matrix of λ is given by C = (L′V arζ(p)(θ̂)L)−1.

Theorem 1: A locally optimal design ζ∗ ≡ ζ(p∗) at θ = θ0 obtained as

ζ∗ = min
p∈Ξ

log(Det(L′V arζ(p)(θ̂)L))

satisfies the condition

trace{V arζ∗(θ̂)LCL′V arζ∗(θ̂)(V arζω(θ̂))−1} ≤ s, for all ω ∈ Ω, (9)

where V arζω(θ̂) is the variance with respect to the design ζω having unit mass at single
treatment sequence ω. Equality holds in (9) if the treatment sequence ω is included in ζ∗

with positive probability.

The proof of Theorem 1 follows from Theorem 1 of Pettersson, H. (2005) and Theorem
2.1 of Müller, C. H. and Pázman, A. (1998).

4. Summary

Crossover designs for two treatments and binary responses are determined for p =
2, 3, 4. Since these designs depend on the model parameters, various intervals estimated
from the data sets based on the historical studies are considered and LODs are found in each
case. Within subject correlation is modelled using working correlation matrix assuming:
independent, compound symmetric and auto–regressive structures. LODs are compared
with designs optimal for normal responses in each case.

In Table 6 we list designs optimal for normal responses which are as efficient as locally
optimal designs obtained in this article under various scenarios.
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Table 6: Efficient designs

Periods ID1 ID2 ID3 CS1 CS2 CS3 AR1 AR2 AR3

2 {D(2)
i : i = 1, 2} D

(2)
2 D

(2)
2 D

(2)
1 D

(2)
2 D

(2)
2

3 {D(3)
i : i = 1, 2, 3} D

(3)
2 D

(3)
2 {D(3)

i : i = 1, 2} D
(3)
2 D

(3)
1 D

(3)
3 D

(3)
2 D

(3)
1

4 {D(4)
i : i = 1, . . . , 4} D

(4)
1 D

(4)
1 {D(4)

i : i = 1, 2, 3, 4} D
(4)
1 D

(4)
1 D

(4)
4 D

(4)
4 D

(4)
1

In conclusion it clear from the numerical studies that the results in the logistic re-
gression case are quite similar to the available results in the continuous case in most of the
scenarios.
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