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Abstract 

In the context of ROC curve analysis, the most widely used ROC form is the Binormal 

ROC curve.  But due to the theoretical structures and distributional assumptions, many more 

bi-distributional ROC curve models have been proposed over the years.  In this paper, an 

attempt has been made to overcome few limitations of ROC curve that emanated from 

exponential distribution. To address this, we have considered different forms of Lindley 

distributions and taking its mathematical advantages and mathematical flexibility, three new 

ROC curves are proposed.  The proposed methodology is supported by simulation studies. 

Key words: ROC curves; Lindley distribution; Power Lindley; Extended Lindley distributions 

and AUC. 

1. Introduction 

 

In statistical theory and practice, classification problems have gained lot of attention by 

many researchers in solving problems that are trivial as well as complex.  Identification of class 

label is one of the major objectives in classification, for which several statistical techniques 

have been developed and proposed.  Basing on the prominence and demand to handle such 

problems, those varieties of statistical tools have emerged and were brought under the hub of 

Statistical Decision Theory (SDT). The common problem of interest in classification is in 

allocating an individual or object to one of the predefined groups (or populations) by using a 

threshold. These problems were addressed by using a performance tool namely, Receiver 

Operating Characteristic (ROC) Curve, which evolved during World War II. 

ROC Curve analysis was first presented to Psychologists by Tanner and Swets (1954), 

who brought out the concept from the Theory of Signal Detectability (TSD), which was 

introduced by Peterson et al. (1954) during World War II for analyzing the radar signals to 

detect enemy objects in battlefield i.e., identifying the signal as signal and noise as noise. Its 

expansion to other fields was prompt, for instance, in Psychology it was used to study the 

perceptual detection of stimuli (Swets, 1996). In medicine, one of the earliest applications was 

proposed by Lusted (1971), in which he postulated that to measure the worth of a diagnostic 

test, one must measure the performance of observers with the test and argued that ROC Curve 

provides an ideal means of studying observer performance.  
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Swets and Pickett (1982) noted two other key features of ROC Curves that make them 

ideal for studying diagnostic tests. First, the curves display all possible cut points and thus 

supply estimates of the frequency of various outcomes (i.e., true positives, true negatives, false 

positives, and false negatives) at each cut point. Second, the curve allows the use of previous 

probabilities of condition, as well as calculations for the benefits of correct and incorrect 

decisions, to determine the best cut point for a given test in a given set up. Suppose the outcome 

S of a medical test is a measurement on a continuous scale (score), then there exists a threshold 

t of the test score, which can be used to classify subjects. For instance, a person with S ≤ t may 

be classified as healthy (normal or benign), otherwise as diseased (abnormal or malignant). 

Basing on the above classification, a 2 × 2 contingency table, namely the “confusion matrix” 

can be generated with four possible states, viz., True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN). Relatively few diagnostic tests correctly classify all 

subjects tested as diseased “D” (abnormal) or healthy “H” (normal). Sometimes, the threshold 

considered for classification, classifies few healthy ones as diseased and vice versa. This wrong 

classification leads to the terminology of False Positive Rate (FPR) and False Negative Rate 

(FNR). The probabilistic definitions pertaining to four possible states are given below: 

i. The probability that an individual from D is correctly classified. 

 True Positive Rate, TPR = P(S > t | D)          (Sensitivity) 

ii. The probability that an individual from H is misclassified. 

 False Positive Rate, FPR = P(S > t | H)         (1-Specificity) 

iii. The probability that an individual from H is correctly classified. 

 True Negative Rate, TNR = P(S ≤ t | H)          (Specificity) 

iv. The probability that an individual from D is misclassified. 

 False Negative Rate, FNR = P(S ≤ t | D). (1-Sensitivity) 

 

These four probabilities describe the performance of the test at this cutoff. It is important 

to note that all the intrinsic measures correspond to a given value t. As t changes these measures 

change. One of the problems of interest is to determine such t which optimizes one or more 

intrinsic measures, usually referred as “optimal cutoff”. With these probabilistic definitions of 

intrinsic measures, the ROC Curve can be defined as ROC(t) = f(FPR(t), TPR(t)). This means 

that the ROC Curve is generated by a set of pairs of FPR and TPR, which are obtained at every 

threshold point, that are actually observed test scores. So, each test score will act as a cutoff, 

which in turn generates the co-ordinates (FPR, TPR). ROC Curve is a tradeoff between FPR 

and TPR at every t. A test is said to be a better one, if it has maximum TPR and a reasonably 

low FPR. 

 

An assumption in ROC curve is that the test scores of diseased populations will be greater 

than that of the healthy populations. For instance, if the Creatinine (one of the indicators of 

severe kidney impairment) levels are 5.0 or more in adults, then those adults are classified as 

risk group and the rest are non-risk group.  Similar examples are HbA1c, LDL, Cholesterol, 

etc., The bi-distributional ROC curves namely Bi-Normal, Bi-Exponential, Bi-Gamma etc., 

will fit to the above situation.  But, these ROC forms do not fit to deal with situation where 

lower values of variables indicate risk and higher indicate non-risk group. For example, if the 

HDL is less than 40mg/dL (for men aged more than 20), then such individuals are considered 

as at risk and may be prone to cardiac issues and higher values relates to non-risk group.  Few 

more variables that take similar phenomena as that of HDL are copper, iron, etc. Thus, it is 

important to address the problem of defining an ROC curve and also the corresponding intrinsic 

measures that can fit for the situation of lower test scores indicating risk group and higher 

scores indicate non-risk group.   
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With this background, we have considered Lindley (L) (Lindley, 1958; Ghitany et al., 

2008), Power Lindley (PL) (Ghitany et al., 2013) and Extended Power Lindley (EPL) 

distributions (Said, 2015) to propose new ROC forms. The parameter combinations of these 

distributions have some interesting points that help us in constructing the ROC forms of the 

required nature.  Another main reason to consider variant forms of Lindley is that it has a better 

fit than the exponential distribution (Ghitany et al., 2008). It is also known that the power 

transformation and having additional parameter for basic Lindley form provides a lot of 

mathematical flexibility in explaining the shape and dispersion of heavy tail. 

 

2. Family of Some Lindley Distributions 

 

In this section, we start with the probability density functions and cumulative distribution 

function of the three distributions i.e., Lindley, Power Lindley and Extended Power Lindley 

respectively.   

 

2.1. Lindley distribution 

     𝑓(𝑥, 𝜃) =
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥     ;  𝜃, 𝑥 > 0                                        (1) 

     𝐹(𝑥) = 1 − (1 +
𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥     ;  𝜃, 𝑥 > 0                                      (2) 

where 𝜃 ∈ (0,1), is a scale parameter. 

2.2. Power Lindley distribution 

      𝑓(𝑥; 𝜃, 𝛼) =
𝛼𝜃2

𝜃+1
(1 + 𝑥𝛼)𝑥𝛼−1𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛼, 𝑥 > 0       (3) 

                 𝐹(𝑥; 𝜃, 𝛼) = 1 − (1 +
𝜃

𝜃+1
𝑥𝛼) 𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛼, 𝑥 > 0                   (4) 

where θ is a scale parameter and α is a shape parameter.  The purpose and reason to work on 

Power Lindley distribution is to overcome the theoretical and practical limitations of Lindley 

distribution.  PL distribution is more flexible and this can be viewed as mixture of Weibull 

distribution due to the power transformation (shape α and scale θ), and a generalized gamma 

distribution (with shape parameters 2, α and scale θ), with mixing proportion p = θ/(θ + 1) 

(Ghitany et al. 2013).  For the values of α between 0 and 1, and with θ >0, we can have the 

increasing and decreasing nature of the density function. 

2.3. Extended Power Lindley distribution 

      𝑓(𝑥; 𝜃, 𝛽, 𝛼) =
𝛼𝜃2

𝜃+𝛽
(1 + 𝛽𝑥𝛼)𝑥𝛼−1𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛽, 𝛼, 𝑥 > 0                    (5) 
 

𝐹(𝑥; 𝜃, 𝛽, 𝛼) = 1 − (1 +
𝜃𝛽

𝜃+𝛽
𝑥𝛼) 𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛽, 𝛼, 𝑥 > 0    (6) 

EPL distribution can be shown as the mixture of Weibull distribution (with shape  and 

scale ), and a generalized gamma distribution (with shape parameters 2,  and scale ), with 

mixing proportion p  θ/(θ + 𝛽).  

3. Family of Three Lindley ROC Curves 

In this section, we have developed a family of Lindley ROC Curves based on the 

considered Lindley distributions. 
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3.1. Bi-Lindley (L) ROC curve 

It is assumed that the test scores (S, which is attributed as random variable) of 

normal/population I (denoted with “0”) and abnormal/population II (denoted with “1”) follow 

Lindley Distribution and the expression for the FPR (1- specificity) is defined as 

                                𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0

𝜃0+1
𝑡) 𝑒−𝜃0𝑡   (7) 

The threshold values can be obtained using the following formula 

𝑡 = [(
𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]     (8) 

Here, an approximation of the type log(1+x) ≈ x is used in driving the expression of “t”, since 

our interest is only involved in the first order term in ROC form and the TPR (sensitivity) is obtained 

as 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
𝑡) 𝑒−𝜃1𝑡    (9) 

on substituting the “t” value in above expression, the Lindley ROC Curve can be estimated as 

   𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

             (10) 

Further, the Area under the Lindley ROC Curve can be estimated as 

                        𝐴𝑈𝐶 = ∫ (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]1

0
𝑑𝑥(𝑡)            (11) 

on further simplification, the expression for AUC is 

     𝐴𝑈𝐶 =
𝜃0

2

𝜃0
2+𝜃1(𝜃0+1)

[
𝜃1(𝜃0+1)(𝜃1+1)+𝜃0

2(𝜃1+1)+𝜃1(𝜃0+1)

(𝜃1+1)(𝜃0
2+𝜃1(𝜃0+1))

]               (12) 

 

3.2. Bi-Power Lindley (PL) ROC curve 

The FPR for the Power Lindley distribution can be derived as follows 

𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0

𝜃0+1
𝑡𝛼0) 𝑒−𝜃0𝑡𝛼0

                  (13) 

From the above expression, the threshold value can be found at each and every test score as 

𝑡 = [(
𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

1

𝛼0               (14) 

Further, the expression for the TPR under Power Lindley distribution is derived as 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
𝑡𝛼1) 𝑒−𝜃1𝑡𝛼1

            (15) 

on substituting the expression for “t” in the above equation, the Power Lindley ROC Curve can 

be obtained as 
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 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

                   (16) 

Further, the Area under the Power Lindley ROC Curve can be estimated as follows 

      𝐴𝑈𝐶 = ∫ (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

1

0
𝑑𝑥(𝑡)             (17) 

The above expression does not have a closed form solution and has to be evaluated by 

numerical integration method. 

3.3. Bi- Extended Power Lindley (EPL) ROC curve 

ROC Curve based on the EPL distribution is constructed as follows. The False Positive 

Rate is given by 

𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0𝛽0

𝜃0+𝛽0
𝑡𝛼0) 𝑒−𝜃0𝑡𝛼0

                            (18) 

on further simplification, the expression for the threshold ‘t’ is given by 

𝑡 = [(
𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

1

𝛼0                           (19) 

The True Positive Rate is given by 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1𝛽1

𝜃1+𝛽1
𝑡𝛼1) 𝑒−𝜃1𝑡𝛼1

              (20) 

The Extended Power Lindley ROC (EPLROC) Curve can be defined on substituting the 

expression for “t” in the above equation as follows. 

𝑦(𝑡) = (1 +
𝜃1𝛽1

𝜃1+𝛽1
[(

𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+𝛽0

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

             (21) 

 

Further, the Area under the EPLROC Curve can be derived as follows, 

𝐴𝑈𝐶 = ∫ (1 +
𝜃1𝛽1

𝜃1+𝛽1
[(

𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+𝛽0

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

1

0
𝑑𝑥(𝑡)           (22) 

 

The above expression does not have a closed form solution and has to be evaluated by 

numerical integration method. 

4. Simulation Studies 

 

The application of the proposed three new ROC forms is demonstrated using simulated 

data.  For each ROC type, that is L, PL and EPL, the random numbers (RNs) are generated 

according to their distribution functionalities.  With respect to Lindley distribution, the RNs 

are generated using quantile function. For Power Lindley and Extended Power Lindley forms, 

the RNs are generated using mixture of Weibull and Generalized Gamma distributions 

(Ghitany et al. (2013) and Said (2015)). 
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To demonstrate different forms of ROC curves (worst, moderate and best), simulations 

are carried out with different parameter combinations and the optimal threshold is deduced 

using Youden’s index (J) for each of the combinations.  In table 1, the results pertaining to all 

the three ROC curves are reported and the figures (ROC Curves) are depicted in Figure 1, 

which shows the comparison between the proposed ROC curves.  The ROC curves are in the 

order of the parameter combination which is displayed as in Table 1. 

 
Table 1: AUC and J values of L, PL and EPL ROC curves 

 
θ0 θ1 AUCL JL 

0.6 0.5 0.4530 0.095 

0.9 0.5 0.6265 0.2958 

1 0.5 0.6675 0.3442 

1.3 0.5 0.7567 0.4564 

1.8 0.5 0.8396 0.5765 

 

 

θ0 θ1 α0 α1 AUCPL JPL 

0.6 0.5 2 0.5 0.7486 0.6438 

0.9 0.5 2 0.5 0.786 0.6784 

1 0.5 2 0.5 0.795 0.6870 

1.3 0.5 2 0.5 0.8148 0.7077 

1.8 0.5 2 0.5 0.8357 0.7318 

 

 

θ0 θ1 β0 β1 α0 α1 AUCEPL JEPL 

0.6 0.5 3 2.5 2 0.5 0.7487 0.7006 

0.9 0.5 3.2 2.5 2 0.5 0.7945 0.7335 

1 0.5 3.5 2.5 2 0.5 0.8016 0.7413 

1.3 0.5 3.8 2.5 2 0.5 0.8243 0.7604 

1.8 0.5 4 2.5 2 0.5 0.8504 0.7826 
 

 

 

In Figure 1, the advantage of power transformation to Lindley and its extension by having 

additional parameter can be seen clearly.  That is, the ROC curve of Lindley is very close to 

the chance line, which is not a preferable form for a better classification, whereas with 

additional shape parameter, the ROC forms of PL and EPL have shifted towards the top left 

corner of the unit square plot.  In the context of ROC methodology, any test’s or procedure’s 

ROC curve should be far away from the chance line indicating that the test/procedure can 

classify the subjects with greater accuracy.  Here, with these simulations, the advantage of 

having additional shape parameter has boosted the performance of a classifier witnessing a 

better ROC curve.  However, with increase in the scale parameter values of population I, the 

ROC curve of Lindley distribution gradually shifted towards the top left corner of unit square 

plot.  The gradual improvement in ROC curve of each L, PL and EPL ROC curves can be seen 

in Figure 2. 
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Figure 1: Graphical Comparison between L, PL and EPL ROC curves 

 

 

Figure 2: L, PL and EPL ROC curves with different parameter combinations 

 

One more illustration is also carried out to address the question; “what happens to the 

nature of the ROC curve if the parameter combinations of population I are kept constant and 

varying parameter values in population II?”. In the previous illustration, the simulations and 

ROC curves are exhibited for the case where the parameter values of population II are fixed.  

With the second illustration, it is observed that it affects the performance of the classifier and 

will not have impact in having a better accuracy (Table 2).  With a large difference of scale and 

shape values between the populations I and II, some sort of improvement in ROC curves can 

be witnessed (Figures 3 and 4).  This is due to the basic nature of the distribution forms that 

the values of population I should be at the higher side than that of population II, which is a very 

rare phenomenon in the general context of ROC methodology.  Hence, the distributional forms 

of L, PL and EPL distributions has a very rare functionality of having higher values on 

population I (Normal or Healthy) than that of population II (Abnormal or Diseased), and these 

proposed ROC forms can be applied to such situations to explain the accuracy and other 

measures. 
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Table 2: AUC and J values of L, PL and EPL ROC curves 

 

 

 

 

 

 

 

 

 

θ0 θ1 AUCL JL 

1.8 1.8 0.4766 0.0000 

1.8 1.5 0.5342 0.0871 

1.8 1.2 0.6052 0.1942 

1.8 0.9 0.6929 0.3295 

1.8 0.6 0.8001 0.5057 

 

 

 

 

 

 

 

 

θ0 θ1 α0 α1 AUCPL JPL 

1.8 1.8 2 2 0.4766 0.0000 

1.8 1.5 2 1.7 0.5201 0.0916 

1.8 1.2 2 1.4 0.5858 0.2183 

1.8 0.9 2 1.1 0.6788 0.3927 

1.8 0.6 2 0.8 0.7974 0.6201 

 

θ0 θ1 β0 β1 α0 α1 AUCEPL JEPL 

1.8 1.8 4 4 2 2 0.3615 0.0000 

1.8 1.5 4 3.7 2 1.7 0.4167 0.1094 

1.8 1.2 4 3.4 2 1.4 0.5052 0.2558 

1.8 0.9 4 3.1 2 1.1 0.6350 0.4470 

1.8 0.6 4 2.8 2 0.8 0.7924 0.6769 

 

 

Figure 3: Graphical Comparison between L, PL and EPL ROC curves 
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Figure 4: L, PL and EPL ROC curves with different parameter combinations 

 

5. Conclusion 

 

Different ROC curves have been studied in this paper by taking into consideration the 

three variant forms of Lindley distribution. The reason being certain mathematical and 

functional advantages such as superiority of Lindley over Exponential, the ease of Power 

transformation to the basic Lindley form and having additional shape parameter to the Power 

Lindley distribution.  These considerations have been the support and motivation to propose 

three ROC curves namely, L, PL and EPL ROC forms.  The advantages and flexibility of having 

power transformation and additional parameter is well demonstrated through simulation studies 

and also using graphical comparisons. Further, from the simulations and parameter 

combinations, an interesting fact that the ROC pattern and assumption of scores in population 

I and population II are in reverse pattern than that of the usual assumption made in several bi-

distributional ROC forms such as Bi-Normal, Bi-Gamma and Bi-Exponential ROC curves etc., 

was revealed.  At most attention to the type of data is needed before fitting the proposed ROC 

Curves.  The three L, PL and EPL ROC curves are quite applicable and apt to the practical 

contexts where the above said situation is witnessed.  
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