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Abstract

We provide a distilled review of a relatively new prediction procedure for small area estimation
- observed best prediction (OBP) which can be effective under potential model misspecifications.
We bring together developments from some of our earlier papers to detail the development of OBP
under misspecification of the mean function or more generally, the mean and variance functions.
We also briefly review estimation of area-specific MSPEs for these estimators.

Key words. Fay-Herriot model, Mean squared prediction error (MSPE), Model misspecification,
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1 Introduction

The empirical best linear unbiased prediction, or EBLUP, is well-known in small area estima-
tion (SAE, e.g., Rao 2003, Jiang & Lahiri 2006). There are several ways of deriving the BLUP
(e.g., Jiang 2007, pp. 76), but at least one standard procedure is the following. First, one derives
the best predictor (BP) of the mixed effects of interests, such as the small area means. Then, one
replaces the vector β of the fixed effects by its maximum likelihood estimator (MLE), assuming
that the variance components are known (up to this stage one obtains the BLUP). Finally, one re-
places the unknown variance components by their ML or REML estimators. It follows that, under
the normality assumption, the EBLUP is the BP, in which the unknown fixed parameters, including
the fixed effects and variance components, are estimated either by ML or REML. The latter are
known to be asymptotically optimal under estimation considerations (e.g., Jiang 2007).

For example, the Fay-Herriot model (Fay and Herriot 1979) is widely used in SAE. The model
can be expressed in terms of a mixed effects model:

yi = x′iβ + vi + ei, i = 1, . . . ,m, (1.1)
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where xi is a vector of known covariates, β is a vector of unknown regression coefficients, vi’s
are area-specific random effects and ei’s are sampling errors. It is assumed that vi’s, ei’s are
independent with vi ∼ N(0, A) and ei ∼ N(0, Di). The variance A is unknown, but the sampling
variances Di’s are assumed known. The problem of interest is estimation of the small area means,
which, under the assumed model, are the mixed effects θi = x′iβ + vi, 1 ≤ i ≤ m.

From a practical point of view, any proposed model is subject to model misspecification. Jiang
et al. (2011) dealt with the case of potential misspecification of the mean function.

Regardless of potential model misspecification, the true small area means should not be de-
pendent on the assumed model. Note that θi = E(yi|vi), 1 ≤ i ≤ m. Now suppose that the true
underlying model can be expressed as

yi = µi + vi + ei, i = 1, . . . ,m, (1.2)

where µi’s are unknown means, and vi’s and ei’s are the same as in (1). Regardless of the unknown
means, E(yi) = µi, 1 ≤ i ≤ m. Therefore, under model (2), the small area means can be expressed
as

θi = µi + vi = E(yi) + vi, i = 1, . . . ,m. (1.3)

The last expression in (3) does not depend on the assumed model. Note that, hereafter, the nota-
tion E (without subscript) represents expectation under the true underlying distribution, which is
unknown but not model-dependent.

A well-known precision measure for a predictor is the mean squared prediction error (MSPE;
e.g., Prasad & Rao 1990, Das, Jiang & Rao 2004). Jiang et al. (2011) considered the vector of the
small area means θ = (θi)1≤i≤m and its (vector-valued) predictor θ̃ = (θ̃i)1≤i≤m, the MSPE of the
(vector-valued) predictor is defined as

MSPE(θ̃) = E(|θ̃ − θ|2) =
m∑
i=1

E(θ̃i − θi)2. (1.4)

Once again, the expectation in (4) is with respect to the true underlying distribution (of whatever
random quantities that are involved), which is unknown but not model-dependent. Under the MSPE
measure, the BP of θ is its conditional expectation, θ̃ = E(θ|y). Under the assumed model (1), and
given the parameters ψ = (β′, A)′, the BP can be expressed as

θ̃(ψ) = EM,ψ(θ|y) =

[
x′iβ +

A

A+Di

(yi − x′iβ)

]
1≤i≤m

, (1.5)

or, componentwisely, θ̃(ψ)i = x′iβ+Bi(yi−x′iβ), 1 ≤ i ≤ m, where Bi = A/(A+Di), and EM,ψ

represents (conditional) expectation under the assumed model with ψ being the true parameter
vector. Note that EM,ψ is different from E unless the assumed model is correct, and ψ is the true
parameter vector. Also note that the BP is the minimizer of the area-specific MSPE instead of the
overall MSPE (4). In other words, θ̃i(ψ) = x′iβ + Bi(yi − x′iβ) minimizes E(θ̃i − θi)

2 over all
predictor θ̃i, if the assumed model (1) is correct and ψ is the true parameter vector. For simplicity,
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let us assume, for now, that A is known. Then, the precision of θ̃(ψ), which is now denoted by
θ̃(β), is measured by

MSPE{θ̃(β)} =
m∑
i=1

E{Biyi − θi + x′iβ(1−Bi)}2 = I1 + 2I2 + I3, (1.6)

where I1 =
∑m

i=1 E(Biyi− θi)2, I2 =
∑m

i=1 x′iβ(1−Bi)E(Biyi− θi), I3 =
∑m

i=1(x
′
iβ)2(1−Bi)

2.
Note that I1 does not depend on β. As for I2, by using the expression (3), we have E(Biyi − θi) =
(Bi − 1)E(yi). Thus, we have I2 = −

∑m
i=1(1 − Bi)

2x′iβE(yi). It follows that the left side of (6)
can be expressed as

MSPE{θ̃(β)} = E

{
I1 +

m∑
i=1

(1−Bi)
2(x′iβ)2 − 2

m∑
i=1

(1−Bi)
2x′iβyi

}
. (1.7)

The right side of (7) suggests a natural estimator of β, by minimizing the expression inside the
expectation, which is equivalent to minimizing

Q(β) =
m∑
i=1

(1−Bi)
2(x′iβ)2 − 2

m∑
i=1

(1−Bi)
2x′iβyi = β′X′Γ2Xβ − 2y′Γ2Xβ, (1.8)

where X = (x′i)1≤i≤m, y = (yi)1≤i≤m and Γ = diag(1− Bi, 1 ≤ i ≤ m). A closed-form solution
of the minimizer is obtained as

β̃ = (X′Γ2X)−1X′Γ2y =

{
m∑
i=1

(1−Bi)
2xix

′
i

}−1 m∑
i=1

(1−Bi)
2xiyi. (1.9)

Here we assume, without loss of generality, that X is of full column rank. Note that β̃ minimizes
the “observed” MSPE which is the expression inside the expectation on the right side of (7). Jiang
et al. (2011) called β̃ given by (9) the best predictive estimator, or BPE, of β. A predictor of
the mixed effects θ is then obtained by replacing β in the BP (5) by its BPE (note that here A is
assumed known). This predictor is known as the observed best predictor, or OBP.

1. Fay-Herriot model (A unknown). Let us now refer back to the Fay-Herriot model (1) but
with A unknown. Again, we begin with the left side of (4), and note that the expectations involved
are with respect to the true underlying distribution that is unknown, but not model-dependent. By
(5), we have, in matrix expression, θ̃(ψ) = y − Γ(y −Xβ), where Γ is defined below (8). By (2)
and (3), it can be shown that

MSPE{θ̃(ψ)} = E{(y −Xβ)′Γ2(y −Xβ) + 2Atr(Γ)− tr(D)}, (1.10)

where D = diag(Di, 1 ≤ i ≤ m). The BPE of ψ = (β′, A)′ is obtained by minimizing the
expression inside the E on the right side of (10), which is equivalent to minimizing

Q(ψ) = (y −Xβ)′Γ2(y −Xβ) + 2Atr(Γ). (1.11)

Let Q̃(A) beQ(ψ) with β = β̃ given by (9). It can be shown that Q̃(A) = y′ΓP(ΓX)⊥Γy+2Atr(Γ),
where for any matrix M, PM⊥ = I−PM with PM = M(M′M)−1M′ (assuming nonsingularity of
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M′M), hence, P(ΓX)⊥ = Im − ΓX(X′Γ2X)−1X′Γ and Im is the m-dimensional identity matrix.
The BPE of A is the minimizer of Q̃(A) with respect to A ≥ 0, denoted by Ã. Once Ã is obtained,
the BPE of β is given by (9) with A replaced by Ã. Given the BPE of ψ, ψ̃ = (β̃′, Ã)′, the OBP of
θ is given by the BP (5) with ψ = ψ̃.

2. Nested-error regression model. Consider sampling from finite subpopulations Pi = {Yik, k =
1, . . . , Ni}, i = 1, . . . ,m. Suppose that auxiliary data Xikl, k = 1, . . . , Ni, l = 1, . . . , p are avail-
able for each Pi. We assume that the following super-population nested-error regression model
(Battese, Harter & Fuller 1988) holds:

Yik = X′ikβ + vi + eik, i = 1, . . . ,m, k = 1, . . . , Ni, (1.12)

where Xik = (Xikl)1≤l≤p, the vi’s are small-area specific random effects, and eik’s are additional
errors, such that the random effects and errors are independent with vi ∼ N(0, σ2

v) and eik ∼
N(0, σ2

e). The small area mean for Pi is then µi = N−1i
∑Ni

k=1 Yik.

Suppose that yij, j = 1, . . . , ni are observed for the ith subpopulation, i = 1, . . . ,m. Let
the corresponding auxiliary data be xij, j = 1, . . . , ni, i = 1, . . . ,m. Write yi = (yij)1≤j≤ni

,
y = (yi)1≤i≤m, ȳi· = n−1i

∑ni

j=1 yij and x̄i· = n−1i
∑ni

j=1 xij . Let ψ = (β′, σ2
v , σ

2
e)
′ denote the

vector of parameters under the nested-error regression model (12). Under this model with ψ being
the true parameter vector, the BP for µi is EM,ψ(µi|y) = N−1i {

∑ni

j=1 yij +
∑

k/∈Ii EM,ψ(Yik|yi)},
which can be expressed as

µ̃i(ψ) = X̄′iβ +

{
ni
Ni

+

(
1− ni

Ni

)
niσ

2
v

σ2
e + niσ2

v

}
(ȳi· − x̄′i·β), (1.13)

where EM,ψ denotes the model-based conditional expectation given that ψ is the true parame-
ter vector, Ii is the set of sampled indexes such that Yik is in the sample iff k ∈ Ii, and X̄i =
N−1i

∑Ni

k=1 Xik is the subpopulation mean of the Xik’s for the ith subpopulation (which is known).

Note that (13) is a model-based BP, which is not strictly design-unbiased, even under the correct
model. Still, the model-based BP is routinely used for SAE under the nested-error regression
model due to the anticipated connection between the response and the available covariates (e.g.,
Rao 2003). Therefore, there is an interest in obtaining estimators of the model parameters that has
the best performance in estimating the small area means under the BP operation. The performance
of the model-based BP is evaluated by the design-based MSPE. The design-based MSPE is given
by

MSPE{µ̃(ψ)} = Ed{|µ̃(ψ)− µ|2} =
m∑
i=1

Ed{µ̃i(ψ)− µi}2, (1.14)

where µ̃(ψ) = [µ̃i(ψ)]1≤i≤m, µ = (µi)1≤i≤m and Ed denotes the design-based expectation. It can
be shown that, assuming simple random sampling within each subpopulation Pi, the MSPE can be
expressed as

MSPE{µ̃(ψ)} = Ed

[
m∑
i=1

{µ̃2
i (ψ)− 2ai(σ

2
v , σ

2
e)X̄

′
iβȳi· + bi(σ

2
v , σ

2
e)µ̂

2
i }

]
, (1.15)
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where ai(σ2
v , σ

2
e) = (1 − ri)σ2

e/(σ
2
e + niσ

2
v), bi(σ2

v , σ
2
e) = 1 − 2{ri + (niσ

2
v/σ

2
e)ai(σ

2
v , σ

2
e)} with

ri = ni/Ni, and µ̂2
i is a design-unbiased estimator of µ2

i given by

µ̂2
i =

1

ni

ni∑
j=1

y2ij −
Ni − 1

Ni(ni − 1)

ni∑
j=1

(yij − ȳi·)2 (1.16)

Thus, the BPE of ψ is obtained by minimizing

Q(ψ) =
m∑
i=1

{µ̃2
i (ψ)− 2ai(σ

2
v , σ

2
e)X̄

′
iβȳi· + bi(σ

2
v , σ

2
e)µ̂

2
i }.

A computational procedure for the BPE similar to that for the Fay-Herriot model can be derived
as in Jiang et al. (2011). Given the BPE ψ̃ = (β̃′, σ̃2

v , σ̃
2
e)
′, the OBP of µi is given by µ̃i = µ̃i(ψ̃),

1 ≤ i ≤ m, where µ̃i(ψ) is given by (13).

2 OBP for Unit Level Model under Misspecification in both the Mean and Variance

Jiang et al. (2011) considers misspecification of the mean function, while assuming that the
variance-covariance structure of the data is correctly specified. However, the latter, too, may be
misspecified in a practical situation. Jiang et al. (2015) extend the potential model misspecification
to both the mean function and the variance-covariance structure for the unit level model.

Suppose that the subpopulations of responses {Yik, k = 1, . . . , Ni} and auxiliary data {Xikl, k =
1, . . . , Ni}, l = 1, . . . , p are realizations from corresponding super-populations that are assumed to
satisfy the NER model. It follows that

Yik = X ′ikβ + vi + eik, i = 1, . . . ,m, k = 1, . . . , Ni, (2.1)

where β, vi and eik satisfy the same assumptions as in (12). Under the finite-population setting, the
true small area mean is θi = Ȳi = N−1i

∑Ni

k=1 Yik (as opposed to θi = X̄i + vi under the infinite-
population setting) for 1 ≤ i ≤ m. Furthermore, write ri = ni/Ni. Then, the finite-population
version of the BP is

θ̃i = X̄ ′iβ +

{
ri + (1− ri)

niγ

1 + niγ

}
(ȳi· − x̄′i·β), (2.2)

where β and γ = σ2
v/σ

2
e are the true parameters. The BPE of ψ is the minimizer of

Q(ψ) =
m∑
i=1

{
θ̃2i (ψ)− 2

1− ri
1 + niγ

ȳi·X̄
′
iβ + bi(γ)µ̂2

i

}
=

m∑
i=1

Qi, (2.3)

where θ̃i(ψ) is θ̃i with ψ being considered as a parameter vector, bi(γ) = 1− 2ai(γ) with ai(γ) =
ri + (1− ri)niγ(1 + niγ)−1, and µ̂2

i is a design-unbiased estimator of Ȳ 2
i given by

µ̂2
i =

1

ni

ni∑
j=1

y2ij −
Ni − 1

Ni(ni − 1)

ni∑
j=1

(yij − ȳi·)2 (2.4)

(see Jiang et al. 2011, sec. 3.2).
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3 Estimation of Area-specific MSPE

3.1 Case 1: Misspecification in only the Mean Function

The Prasad-Rao method is well-known in deriving second-order unbiased MSPE estimator for
the EBLUP. It is known that the naive estimator of the MSPE (of the EBLUP), which simply
replaces the unknown variance components in the (analytic) expression of the MSPE of BLUP
by their estimators, underestimates the MSPE of the EBLUP, and is only first-order unbiased if
the parameter estimators are consistent. Prasad & Rao (1990) used Taylor expansions to obtain a
second-order approximation to the MSPE, and then bias-corrected the plug-in estimator based on
the approximation, again to the second-order, to obtain an estimator of the MSPE whose bias is
o(m−1), where m is the number of small areas. The method has since been used extensively in
SAE and several extensions have been given (e.g., Lahiri & Rao 1995, Datta & Lahiri 2000, Jiang
& Lahiri 2001, Datta, Rao & Smith 2005). The Prasad-Rao method is based on the assumption that
the underlying model is correct, hence the existence of the true parameters. In our case, however,
such an assumption is not made, which makes estimation of the area-specific MSPE much more
difficult.

Jiang et al. (2011) derived a second-order unbiased estimator of the MSPE of θ̃i but unlike the
P-R MSPE estimator, their estimator was not guaranteed to be nonnegative. As an alternative, they
used the following bootstrap method to obtain an MSPE estimator that is guaranteed nonnegative.
The development in Jiang et al. (2011) focused on the F-H model. Let θ̃ = (θ̃i)1≤i≤m denote the
vector of OBP. First generate y(1), . . . ,y(L) independently from the N(θ̃,D) distribution, where
D = diag(Di, 1 ≤ i ≤ m). Let θ̃(l)i be the OBP for θi based on y(l), 1 ≤ i ≤ m, 1 ≤ l ≤ L. Then,
the bootstrap estimator of MSPE(θ̃i) is given by

M̃SPEb(θ̃i) =
1

L

L∑
l=1

{θ̃(l)i − θ̃i}2. (3.1)

3.2 Case 2: Misspecification in both the Mean and Variance Functions

Jiang et al. (2015) used a technique known as partial derivation to derived M̂SPE(θ̂i), a second-
order unbiased estimate but showed that it is not guaranteed nonnegative (for technical details, the
reader is referred to the above reference). Note that the problem of negative MSPE estimates
is also encountered in Jiang et al. (2011), where the authors propose to substitute the negative
estimate with a bootstrap MSPE estimate, which is guaranteed nonnegative. Jiang et al. (2011)
used a parametric bootstrap method to obtain the MSPE estimator, although the justification is
questionable given the potential model misspecification. In Jiang et al. (2015), they proposed to
use the nonparametric bootstrap following Efron’s original idea (Efron 1979). The method does
not rely on the NER model, hence is not affected by the model misspecification.

Suppose that the small area subpopulations, or the Ni’s, are large enough, so that the sam-
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pling from the subpopulations can be treated approximately as with replacement. Let zij =
(x′ij, yij)

′, j = 1, . . . , ni denote the samples from the ith small area, 1 ≤ i ≤ m. We then draw
samples, z(b)ij = [{x(b)ij }′, y

(b)
ij ]′, j = 1, . . . , ni, with replacement, from {zij, j = 1, . . . , ni}, inde-

pendently for 1 ≤ i ≤ m. Suppose that B bootstrap samples are drawn, resulting z(b) = {z(b)ij , 1 ≤
j ≤ ni, 1 ≤ i ≤ m}, 1 ≤ b ≤ B. Let θ̂(b)i denote the OBP of θ(b)i = ȳi· based on z(b). For example,
the bootstrap version of (18) is

θ̃
(b)
i = x̄′i·β +

{
ri + (1− ri)

niγ

1 + niγ

}
[ȳ

(b)
i· − {x̄

(b)
i· }′β].

Then, the bootstrap estimator of MSPE(θ̂i) = E(θ̂i − Ȳi)2 is

M̂SPEb(θ̂i) =
1

B

B∑
b=1

{θ̂(b)i − ȳi·}2. (3.2)

It is clear that M̂SPEb(θ̂i) is always nonnegative. On the other hand, the bootstrap MSPE estimator
is not second-order unbiased.

4 Television School and Family Smoking Prevention and Cessation Project (TVSFP)

To illustrate the performance of the OBP and it’s MSPE estimation, we review an analysis
of the TVSFP data as done in Jiang et al. (2015). The original study was designed to test indepen-
dent and combined effects of a school-based social-resistance curriculum and a television-based
program in terms of tobacco use prevention and cessation. The subjects were seventh-grade stu-
dents from the Los Angeles (LA) and San Diego, California, areas. The students were pretested
in January 1986 in an initial study. The same students completed an immediate postintervention
questionnaire in April 1986, a one-year follow-up questionnaire (in April 1987), and a two-year
follow-up (in April 1988). Jiang et al. (2015) considered a subset of the TVSFP data involving
students from 28 LA schools, where the schools were randomized to one of four study conditions:
(a) a social-resistance classroom curriculum (CC); (b) a media (television) intervention (TV); (c)
a combination of CC and TV conditions; and (d) a no-treatment control. A tobacco and health
knowledge scale (THKS) score was one of the primary study outcome variables, and the one used
for this analysis. Only data from the pretest and post-intervention are available for the current
analysis. More specifically, the data only involved subjects who had completed the THKS at both
of these time points. In all, there were 1,600 students from the 28 schools, with the number of
students from each school ranging from 18 to 137.

Jiang et al. (2015) considered the problem of estimating the small area means for the difference
between the post-intervention and pretest THKS scores (the response). Here the “small area” was
understood to be the number of major characteristics (e.g., residential area, teach/student ratio) that
affect the response, but are not captured by the covariates in the model (i.e., linear combination
of the CC, TV and CCTV indicators). Thus, a small area is the seventh graders in all of the
U.S. schools that share the similar major characteristics as a LA school involved in the data over
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a reasonable period of time (e.g., 5 years). There were 28 LA schools in the TVSFP data that
correspond to 28 sets of characteristics, so that the data are considered random samples from the
28 small areas defined as above. As such, each small area population is large enough so that
ni/Ni ≈ 0, 1 ≤ i ≤ 28. Recall that the ni’s in the TVSFP sample range from 18 to 137, while the
Ni’s are expected to be at least tens of thousands. Note that the only place in the OBP where the
knowledge ofNi is required is through the ratio ni/Ni. The proposed NER model can be expressed
with x′ijβ = β0 + β1xi,1 + β2xi,2 + β3xi,1xi,2, where xi,1 = 1 if CC, and 0 otherwise; xi,2 = 1 if
TV, and 0 otherwise. It follows that all the auxiliary data xi are at the area level; as a result, the
value of X̄i is known for every i.

It should be noted that the response, yij , is difference in the THKS scores, whose possible
values are integers between 0 and 7. Clearly, such data is not normal. The potential impact of the
non-normality is two-fold. On the one hand, it is likely that the original NER model, as proposed
by Hedeker et al. (1994), is misspecified. On the other hand, even without the normality, the
best linear predictor can still be justified (BLP; e.g., Searle, Casella & McCulloch 1992, sec. 7.3).
Furthermore, the Gaussian ML (REML) estimators are consistent and asymptotically normal even
without the normality assumption (Jiang 1996; also see Jiang 2007, ch. 1). Other aspects of the
NER model include homoscedasticity of the error variance across the small areas. Jiang et al.
(2015) showed that a bimodal shape suggesting potential heteroscedasticity in the error variance.

The OBP analysis for the first 14 of the 28 school small areas are presented in Table 1. Jiang
et al. (2015) also report results for the remainder of the school small areas. Also presented are the
corresponding M̂SPE and M̂SPEb, and their square roots as the measures of uncertainty. Out of
the 14 small areas, the value of M̂SPE is negative for 4 of them; hence the square roots are not
available. However, the values of M̂SPEb are all positive. It is seen that the OBPs are all positive,
even for the small areas in the control group. There were 7, 8, 7 and 7 small areas in the (0,0),
(0,1), (1,0) and (1,1) groups, respectively.

In conclusion, Jiang et al. (2015) concluded in spite of the potential difference in the small
area characteristics, the CC and TV programs appears to be successful in terms of improving the
students’ THKS scores It also seems apparent that the CC program was relatively more effective
than the TV program. Without the intervention of any of these programs, the THKS score did not
seem to improve in terms of the small area means.

5 Discussion

The idea of OBP may be viewed more broadly as dealing with two models. The first is a
broader model under no or very weak assumptions. Such models are robust against model misspec-
ifications. However, the broader model is less useful in terms of addressing the practical interest.
For example, it is often desirable to make use of covariate data that are available from the surveys,
and such information would be more useful if the association between the response and covariates
is relatively simple. This brings in the second model which is more restrictive, but relatively simple
and explores the explicit associations in variables. The OBP approach is to develop a prediction
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Table 1: OBP, Measures of Uncertainty: Schools 1–14

ID CC TV OBP
√

M̂SPEb

√
M̂SPE

403 1 0 .886 .171 .137
404 1 1 .844 .296 *
193 0 0 .215 .207 .268
194 0 0 .221 .137 .332
196 1 0 .878 .171 .298
197 0 0 .225 .158 .337
198 1 1 .771 .220 *
199 0 1 .426 .142 *
401 1 1 .826 .133 *
402 0 0 .188 .171 .358
405 0 1 .394 .147 .143
407 0 1 .508 .300 .364
408 1 0 .871 .240 .344
409 0 0 .230 .125 .344

method based on the second model that is more robust against misspecification of the underlying
model, and we do this by measuring the performance of the predictor based on the first model.
The OBP idea has continued to see further developments. For instance, Chen et al. (2015) have
extended OBP for small area count data. Jiang et al. (2018) have also used OBP in a new mixed
model prediction paradigm known as classified mixed model prediction (CMMP) which is in-
tended for situations where the group membership of future areas is not known. More work needs
to be done on further improving area-specific MSPE estimates - in particular the bootstrapping
strategies that we have summarized here.
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