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Abstract
ROC curve is a useful tool in the assessment of the performance of a diagnostic test

over the range of possible values of a predictor variable and the sensitivity, specificity, optimal
threshold and Area under the curve (AUC) are its intrinsic measures to know the accuracy
of the diagnostic test. The area under the curve is a measure of accuracy which provides
the extent of correct classification of the test and also it is a measure of discrimination to
compare the performance of two or more diagnostic tests. Further, the optimal threshold is
a cut-off, which discriminates the populations into one of the two groups with a maximum of
accurate accuracy. The Youden’s Index method is the usual approach to identify the optimal
threshold. The alternate approaches to compute the optimal threshold have been provided
in this paper when the data is of skewed nature in the ROC context. For this purpose, ROC
model is considered to show how the discriminatory ability of a test changes on changing
the location and scale parameters by using a generalized half normal distribution. Further,
the simulation studies are conducted to study the proposed methodology and also compared
with the existing ROC models using both simulations and real datasets.

Key words: ROC Curve; Sensitivity; Specificity; AUC; Index of union; Concordance of
probability.

AMS Subject Classifications: 62P10.

1. Introduction

The ROC curve was first developed by radar engineers during World War II for truly
detecting enemy objects in battle fields starting in 1941 which led to its name “Receiver
Operating Characteristic” (ROC) curve. Now-a-days, this technique is being extensively
used in diverse areas of research such as banking, Finance, Engineering, Machine learning
and Medical Sciences, etc. ROC curve was introduced in medicine for analysis of radiographic
images (Lusted, 1971). This is an important tool applied in classification problems mostly
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associated with evaluating the performance of the diagnostic test(s) by means of the accuracy
or sensitivity measures, also to provide accuracy of the classifier/diagnostic test and helps
in determining the optimal cut-off of a diagnostic test or classifier. To define ROC curve,
there is a need of two intrinsic measures, such as, Sensitivity (True Positive Rate, TPR),
which is the probability of a positive test result conditioned on the individual truly being
positive and Specificity (True Negative Rate, TNR), which is the probability of a negative
test result conditioned on the individual truly being negative. Graphically, the ROC curve
can be achieved by using 1-TNR on x-axis and TPR on y-axis, resulting a smooth curve. This
smooth curve is embedded with various threshold points; we tend to choose such threshold
that attains minimum distance from the chance line. Though this approach is heuristic,
there are other established indices that helps in determining the optimal threshold, one
such index is the Youden’s Index. The portion under the ROC curve is termed as the area
under the curve (AUC), theoretically lies between 0 and 1. In a practical point of view, it is
interpreted as that higher value of AUC indicates that the performance of marker/diagnostic
test is better. Further, a test’s AUC should not lie below or close to 0.5, this result in random
classification and test is not considered for classification. Even though this technique’s role
is to classify the subjects into one of the predefined groups, it also allows allocating the new
subjects into one of those groups with a proper status label. Further, much theoretical work
has been done in the ROC context using different distributional assumptions and the formal
statistical definition of ROC curve in terms of cumulative distribution function (CDF) is

ROC = 1 − G
(
F −1(1 − t)

)
, 0 < t < 1

Here, F and G are the CDFs of two independent populations and the ROC model so generated
is referred to as bi-distributional ROC model. The test score derived from a marker or
diagnostic test do have some pattern and follows a particular distribution, then the ROC
curve be developed based on that particular distribution, by which one can gets the proper
fit of the data, and appropriate results with interpretation. In ROC literature, many models
have been proposed based upon bi-distributional assumption such as Bi-lognormal (Dorfman
and Alf, 1968, 1969), Bi-normal (Egan, 1975), Bi-gamma (Hussain, 2012), Bi-beta (Zou et
al., 1997), Bi-exponential (Tang and Balakrishnan, 2011), Hybrid ROC models (Balaswamy
et al., 2015) and many more. In the recent past, estimation of area under the ROC, for
non-normal data (Balaswamy and Vardhan, 2022), Bi-Generalised Exponential ROC curve
(Balaswamy and Vardhan, 2023), area under the ROC Curve in the framework of gamma
mixtures (Arunima and Vishnu Vardhan, 2022), area under the multi-class ROC statistics
and applications for non-normal data (Arunima and Vishnu Vardhan, 2023) are few to cite
in the ROC framework.

This paper focuses on different procedure to obtain an optimal threshold other than
the method of Youden’s index. This provides the better and easiest way of calculating the
optimal threshold. In order to demonstrate this methodology, a new ROC model is considered
based upon a skewed distribution. To illustrate this skewed nature, let us consider a practical
illustration. In assessing the subject’s life status (alive or dead), a marker by name Acute
Physiology and Chronic Health Evaluation (APACHE II) will be used. Mostly, the APACHE
II score do not satisfy the normality assumption and possesses a skewed pattern. In such
case, the conventional bi-normal ROC model may not suitable to assess the performance
and threshold of APACHE II. So, there is a need to find a suitable statistical distribution
that can meet the requirements of ROC model. Another marker that has similar kind of
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non-normality is the Simplified Acute Physiology Score (SAPS III). Hence, there is a need to
look into the influence of measures of location, scale and shape to model a newer version of
ROC. The present work addresses the above practical situations using the data of APACHE
II and SAPS III. Along with these, simulations are also carried out to demonstrate the
worst, moderate and better classification scenarios from the proposed ROC model. It is
understood that these two datasets follow Generalized Half Normal distribution and for
comparison purpose, two other distributions namely, the Normal and the Half-Normal are
also considered.

2. Methodology

Let (x1, x2) ∈ S be the test scores which are observed in healthy(0) and diseased
(1) populations respectively. It is assumed that ‘0’ and ‘1’ population follow Generalized
Half Normal Distribution with α > 0, σ > 0 as shape and scale parameters, respectively.
The probability density function and cumulative distribution function of Generalized Half
Normal Distribution are given as follows:

g(x, α, σ) =
√

2
π

(
α

x

)(
x

σ

)α

exp

(
−1

2

(
x

σ

)2α
)

; x ≥ 0

G(x, α, σ) = 1 − 2Φ
[
−
(

x

σ

)α]
where Φ(·) is the c.d.f. of the standard normal distribution. As the ROC curve is a trade-off
between False Positive Rate (FPR) and True Positive Rate (TPR). Therefore, the FPR is
derived by using probabilistic definition as follows

FPR = x(t) = P (S > t|0) = 2
[
1 − Φ

(
t

σ0

)α0]
(1)

on further simplification, the expression for t can be obtained as

t = σ0

[
Φ−1

(
1 − x(t)

2

)] 1
α0

(2)

where Φ−1(·) is the inverse cumulative standard normal distribution function. Similarly,
TPR expression is derived by using its probabilistic definition as follows

TPR = y(t) = P (S > t|1) = 2
[
1 − Φ

(
t

σ1

)α1]
(3)

substituting (2) in (3),

y(t) = 2
1 − Φ

(σ0

σ1

)α1
[
Φ−1

(
1 − x(t)

2

)]α1
α0


Let, Φ−1

(
1 − x(t)

2

)
= Zx and on further simplification,

y(t) = 2
[
1 − Φ

((
σ0

σ1

)α1

[Zx]
α1
α0

)]
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Let, β = σ0
σ1

and α = α1
α0

. Then

y(t) = 2
[
1 − Φ

(
βα1 [Zx]

α1
α0

)]
(4)

on further simplification, the expression for ROC curve is

y(t) = 1 − erf

(
βα1 [Zx]α√

2

)
(5)

The expression in (5) can be referred to as Generalized Half Normal ROC curve. In ROC
methodology AUC measures the entire two dimensional area underneath the ROC curve.

AUC =
� 1

0
y(t)dt

AUC =
� 1

0
1 − erf

βα1
[
Φ−1

(
1 − x(t)

2

)]α
√

2

 dx(t) (6)

The above expression has no closed form solution; therefore it needs to be evaluated nu-
merically. The numerical evaluations have been carried out using Simpson’s method in the
results section. Let α = 1, i.e.α1 = α0 = 1 in equation (5) and on further simplification,

AUC = 2 − 2
[
Φ
((

σ0

σ1

) [
Φ−1

(
1 − x(t)

2

)])]
(7)

The equation (7) is known as ROC curve for Half Normal Distribution (HN ROC curve) and
the AUC for the HN ROC is given by

AUC = 1 − 2
π

(
σ0

σ1

)
(8)

3. Optimal threshold

The optimal threshold is very important in classification to obtain the good accuracy
and to minimize the misclassification rate. Therefore, the four different methods to determine
the optimal threshold that are in this paper are as follows.

Youden’s index (J): This Index is a single statistic that captures the performance
of a dichotomous diagnostic test. J is a function of sensitivity and specificity, such that

J(c) = {Sensitivity(c) + Specificity(c) − 1}

Over all cut point c; “optimal t” denotes the cut-point corresponding to J. When the value
of J is maximum, optimal t is the optimum cut point value.

The closest to (0,1) criterion (ER): In this criteria, the optimal cut point is
defined as the point closest to the point (0, 1) on the ROC curve.

ER(c) =
√

(1 − TPR(c))2 + (FPR(c))2
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Mathematically, the point CER minimising the ER(c) function is called the optimal cut point
value.

Concordance probability method (CZ): The concordance probability method
defines the optimal cut point as the point maximizing the product of sensitivity and speci-
ficity.

CZ(c) = TPR(c) × TNR(c)
The product gets value between 0 and 1. The concordance probability of dichotomized
measure at cut point c can be expressed as the area of a rectangle associated with the ROC
curve. Cut point ĉz maximizing CZ(c) actually maximizes the area of the rectangle.

Index of union (IU): The optimal cut point should be chosen as the point which
classifies most of individuals correctly and thus least of them incorrectly. From this point of
view, Ilker (2017) proposed the index of union (IU) method to obtain the optimal threshold.
This method provides an “optimal” cut point which has maximum sensitivity and specificity
values at the same time. In order to find the highest sensitivity and specificity values at
the same time, the AUC value is taken as the starting value of them. The above criteria
correspond to the following equation,

IU(c) = (|TPR(c) − AUC| + |TNR(c) − AUC|)

The cut-point optimal t which minimizes the IU(C) function and the |TPR(c) − TNR(c)|
difference will be “optimal” cut point value.

Among these four methods of optimal threshold identification, choosing a one optimal
threshold with good accuracy is a question. In order to answer this, Ilker (2017) compared
these four methods with the mathematical optimal threshold (equating both density curves
of healthy/ normal and diseased/abnormal populations and solve for the threshold). But
this is not possible in all the cases of distributions, just like the case of proposed GHN ROC
curve, here the closed form solution for the threshold is not possible. Therefore, keeping this
in mind, we have used TPR value and their corresponding specificity values are considered
to be higher. Wherever, these values are higher, that particular threshold will be of good
choice with greater accuracy. Further, these four methods are tested at various sample
sizes and different classification scenarios. In the next subsection, the inferential aspects of
proposed ROC curve are discussed. For which, the variance of AUC is estimated through
bootstrapping method as follows.

3.1. Bootstrap estimate of AUC

Since there is no closed form for AUC, its variance can be obtained using bootstrap
technique. Let ‘B’ be the number of bootstraps obtained from the data with the sample
sizes n0 and n1 respectively from normal and abnormal populations. Then the bootstrapped
AUC estimate and its variance are given as

ÂUCB = 1
B

B∑
b=1

AUCb (9)

V ar
(
ÂUCB

)
= 1

B − 1

B∑
b=1

(
AUCb − ÂUC

)2
(10)



308 SANDHYA SINGH, S. BALASWAMY AND R. VISHNU VARDHAN [Vol. 23, No. 1

3.2. Confidence intervals for AUC

Let ÂUC denote the sample AUC value. For large samples, the distribution of AUC is
approximately normal. Hence, a 100(1−α)% confidence interval for AUC may be computed
using the standard normal distribution as follows

ÂUCB ± Zα
2

√
V ar

(
ÂUCB

)
(11)

where Zα
2

is the α
2 standard normal percentile.

3.3. Test statistic

A test with AUC0 = 0.5 is considered useless as it classifies only 50% of individuals
correctly. For this test, the ROC curve coincides with the chance line and TPR = FPR.
Hence, the null and alternative hypothesis are defined as H0 : AUC = AUC0andH1 : AUC >
AUC0. Then the test statistic is defined as

Z = ÂUCB − AUC0√
V ar

(
ÂUCB

) (12)

The next subsection deals with the construction of confidence intervals for the proposed
ROC Curve to explain the variability of the curve at each and every threshold value.

3.4. Confidence intervals for FPR and TPR

The 100(1 − α)% confidence intervals for FPR and TPR, which in turn help in pro-
ducing the confidence interval for GHN ROC curve. Therefore, the 100(1 − α)% confidence
intervals for FPR and TPR are as follows,

F̂PR ± Zα
2

√
V ar(F̂PR); T̂PR ± Zα

2

√
V ar(T̂PR)

where variance of false positive rate and true positive rate are estimated through Delta
method. The expression for V ar(F̂PR and V ar(T̂PR are

V ar(F̂PR) =
(

∂FPR

∂σ0

)2

V ar(σ̂0) +
(

∂FPR

∂α0

)2

V ar(α̂0) (13a)

V ar(T̂PR) =
(

∂TPR

∂σ1

)2

V ar(σ̂1) +
(

∂TPR

∂α1

)2

V ar(α̂1) (13b)
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Further, the partial differentiations of FPR and TPR with respect to their parameters are
as follows,

∂FPR

∂σ0
= ∂

∂σ0

{
2
[
1 − Φ

[(
t

σ0

)α0]]}
∂FPR

∂σ0
= 2α0t

α0

σα0+1
0

ϕ
(

t

σ0

)α0

∂FPR

∂α0
= ∂

∂α0

{
2
[
1 − Φ

[(
t

σ0

)α0]]}
∂FPR

∂α0
= −2ϕ
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t

σ0

)α0 ( t

σ0

)α0

log
(

t

σ0

)
∂TPR

∂σ1
= ∂

∂σ1

{
2
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1 − Φ
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t

σ1

)α1]]}
∂TPR

∂σ1
= 2α1t

α1

σα1+1
1

ϕ
(

t

σ1

)α1

∂TPR

∂α1
= ∂

∂α1

{
2
[
1 − Φ
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t

σ1
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∂TPR

∂α1
= −2ϕ
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t

σ1

)α1 ( t

σ1

)α1

log
(

t

σ1

)

Now, by substituting the above expressions in equations (13a) and (13b), we obtain the
variances of FPR and TPR as,

V ar
(
F̂PR

)
=
[

2α0t
α0

σα0+1
0

ϕ
(

t

σ0

)α0
]2

V ar(σ̂0)

+
[
−2ϕ

(
t

σ0

)α0 ( t

σ0

)α0

log
(

t

σ0

)]2
V ar(α̂0) (14a)

V ar
(
T̂PR

)
=
[

2α1t
α1

σα1+1
1

ϕ
(

t

σ1

)α1
]2

V ar(σ̂1)

+
[
−2ϕ

(
t

σ1

)α1 ( t

σ1

)α1

log
(

t

σ1

)]2
V ar(α̂1) (14b)

The variances of the parameters can be estimated through their asymptotic distributions,
but in the present context the maximum likelihood estimators of the Generalized Half Nor-
mal distribution do not have closed form expressions. Therefore, the maximum likelihood
parameters of these distributions can be obtained by direct maximization of log-likelihood
function using the Newton-Raphson method in R. The asymptotic variances of the parame-
ters are estimated using the Bootstrap method. Hence, the bootstrapped estimates of σ0&α0
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and their variance are

σ̂0 = 1
B

B∑
b=1

σ0b

V ar (σ̂0) = 1
B − 1

B∑
b=1

(σ0b − σ̂0)2

α̂0 = 1
B

B∑
b=1

α0b

V ar (α̂0) = 1
B − 1

B∑
b=1

(α0b − α̂0)2

In a similar manner, we can obtain the bootstrap estimate of σ1&α1 as follows,

σ̂1 = 1
B

B∑
b=1

σ1b

V ar (σ̂1) = 1
B − 1

B∑
b=1

(σ1b − σ̂1)2

α̂1 = 1
B

B∑
b=1

α1b

V ar (α̂1) = 1
B − 1

B∑
b=1

(α1b − α̂1)2

Now, using the above variances for the parameters of Generalized Half Normal distribution
along with equations (14a) and (14b), the confidence intervals for FPR and TPR are ob-
tained. By using these confidence intervals, the confidence interval lines can be plotted along
with the GHN ROC curve to show the variability of the proposed ROC Curve at each and
every point on the ROC space.

In the next section, the results are carried out using simulation studies and real
datasets to explain the proposed methodology and the confidence intervals are also evaluated
for the summary measure AUC and the proposed ROC Curve.

4. Results and discussions

Different simulation studies have been carried out to study the behaviour of the
proposed ROC curve and also compared with the existing ROC models in literature. In
this results and discussions sections, there are different subsections which will explain the
necessity and importance of the proposed ROC curve in detail. The results reported in the
tables are given in the appendix.

4.1. Comparison of ROC Curves - simulated datasets

In this section different situations (Better, Moderate and Worst cases) of simulation
studies in classification are considered and the results are given in Table 1, which consists of
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optimal threshold, AUC, J and One sample KS test for testing the reliability of the simulated
data (from GHN distribution) with GHN, Half Normal and Normal distributions. The GHN
ROC model is compared with the existing ROC models like HN ROC and Binormal ROC
model in all the three different situations of classification.
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(b) Moderate case of Classification
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(c) Worst case of Classification

Figure 1: Comparison of ROC curves for different cases of classification using
simulated datasets

Table 1 shows the differences and the importance of proposed GHN ROC model as
compared to the existing ROC models with different simulation studies. The first case is
better case of classification and the accuracy measure AUC is found to be 90% for the GHN
ROC Curve when the data of both populations follows a generalized half normal distribution
(KS test statistic values are given in the table). Whereas, when the shape parameter is
suppressed, the proposed ROC model reduces to the half normal ROC model and this case
has an accuracy of 74% and the data follows half normal distribution. The interesting
fact observed is that even though the data of healthy (D = 0.5631, p − value < 2.2e−16) and
diseased (D = 0.8461, p−value < 2.2e−16) populations do not follow the normal distribution,
the accuracy is found to be 92%. This means that the Binormal ROC model is over estimating
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the accuracy when the data does not satisfy the distributional properties. This is the reason
that one must check for the distributional assumptions when you have the data in hand first
(This type of situation can be seen in the next section with APACHE II score). Further,
the corresponding ROC Curves are drawn in Figure 1a with better accuracy of classification
where the curves are nearer to the top right corner of the ROC plot.

The moderate case of classification is considered (Table 1) and the GHN ROC curve
(78% of accuracy) is clearly superior than the other two models half normal (72%) and
Binormal ROC models (68%). Here also, the distributional properties are verified with
the help of KS test statistic and found that when the data follows generalized half normal
distribution, the accuracy is higher than the other two models when the data do not follow
normality. Similar kind of phenomenon can be seen in Figure 1b, where the curves explain
the moderate case of classification.

Finally, the worst case of classification is also considered where the parameters have
the higher values in healthy population than the diseased population and the results are
placed in Table 1 and Figure 1c. In this experiment also, it is found that the proposed
ROC model is better than the Binormal ROC model when the data deviates from normality
(Healthy : D = 0.7160, p−value < 2.2e−16 & Diseased : D = 0.6176, p−value < 2.2e−16).

Further, the optimal threshold, Youden’s index,false positive rate and true positive
rate at the corresponding optimal threshold are also computed and depicted in the Table
1. The optimal threshold is the value or score which divides the data into one of the two
possible cases with a good amount of accuracy with lesser misclassification rate. These are
computed for all the cases of classification along with the FPR and TPR at that particular
optimal threshold.

4.2. Comparison of ROC Curves - real dataset

In this section, two real datasets are used to illustrate the proposed methodology
and comparison is made with the existing ROC models and the results are as follows. The
APACHE II (Acute Physiology and chronic Health Evaluation II) and SAPS III (Simplified
Acute Physiology Score) datasets are considered to explain the proposed methodology and
its significance over other ROC models like Binormal and HNROC models. The Tables 2 &
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Figure 2: Comparison of ROC curves - APACHE II dataset
3 consists of optimal threshold, FPR, TPR, J and AUC along with the KS test statistics and
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their significance values. The real data set is about the ICU scoring system namely APACHE
II (Balaswamy and Vardhan, 2015) which is used to predict the status of the patient i.e.
dead or alive. This is commonly used score which is derived from 11 physiological variables,
the Glasgow coma (scores) and the patient’s age and chronic health status. A total of
111 patients of which 66(59.46%) are alive and 45(40.54%) dead are present in this study.
Further, the GHN ROC curve is plotted and the computations are done with respect to the
proposed ROC model and compared with the existing ROC models like Binormal and HN
ROC curves. When this data of both alive (D = 0.11785, p-value = 0.3185) and dead (D =
0.089239, p-value = 0.8661) populations follows Generalized Half Normal distribution, the
accuracy of the test is 68.3% with the optimal threshold of 26, which classifies the data as
abnormal as abnormal about 65% (TPR). Further, it is noticed that the accuracy is lesser in
other models like Binormal (67.2%) and HN ROC curve (58.9%) than the GHN ROC model,
which means the proposed GHN ROC model is performing better than the existing ROC
models when the data follows generalized half normal distribution other than the normal and
half normal distributions. Finally, the ROC curves are plotted to show the discrimination
ability of the proposed ROC curve with the existing ROC models and is depicted in the Figure
2. The real data set is about the ICU scoring system SAPS III (Balaswamy and Vardhan,
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Figure 3: Comparison of ROC curves - SAPS III dataset

2022) III and issued to predict the life status of a subject who is admitted to ICU. The data
consists of a total of 111 respondents of which 66(59.46%) are alive and 45(40.54%) dead.
In above Table 3, comparison of three ROC curve have been done, when the data follows
GHN distribution for both the populations (normal population : D = 0.11431, p − value =
0.3544 & abnormal population : D = 0.13555, p − value = 0.38) and it is also seen that the
data do not follow the normal distribution (normal population : D = 0.99997, p − value <
2.2e−16 & abnormal population : D = 0.97778, p − value < 2.2e−16). Using the proposed
methodology we have used this scoring variable to predict the mortality of patients in ICU.
From the obtained result, it is observed that discriminatory ability of generalized half normal
distribution (63.07%), and Binormal distribution (63.03%) is almost same i.e. 63% whereas
when data follow half normal distribution discriminatory ability of the diagnostic test is less
i.e. 56%. The interesting fact observed is that even though the data doesn’t follow the
normal distribution, the Binormal ROC curve is providing the similar accuracy with the
proposed GHN ROC curve, this means that the Binormal ROC curve is over estimating the
accuracy with the optimal threshold of 30, which provides only of 58.5% of true positive
rates whereas the GHN ROC curve provides the optimal threshold of 26 with the higher
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true positive rates of 63.6%, i.e., the GHN ROC curve is more accurately classifying the
data than the existing models when the data follows that particular generalized half normal
distribution.

Figure 3, depicts the three ROC models for SAPS III dataset and the GHN ROC
curve is slightly higher than the Binormal Roc curve and better than the HN ROC curve
with the accuracy of 63%.

4.3. Optimal thresholds and confidence intervals for the ROC curve

In this section, the optimal thresholds are estimated by using different methods and
are explained for the ease of medical practitioner. Further, the confidence intervals are
also constructed for the proposed GHN ROC curve along with the Z test statistic for the
area under the curve (AUC). Here, the effect of sample size on the proposed ROC curve is
also be discussed. Three different classification situations (better, moderate and worst) are
considered over different sample sizes. The entire simulations and the results are carried
out using R programming and a bootstrap methodology is also used for the proposed ROC
methodology. The results are as follows. Table4 (Better case) consists of optimal thresholds;
FPR and TPR at that particular optimal threshold along with the confidence intervals of
AUC and its Z statistic for testing the hypothesis. These optimal thresholds are evaluated
using four different methods (J, ER, CZ and IU) and the results are also evaluated at various
sample sizes. From these four methods of obtaining an optimal threshold at each and every
sample size, the Youden’s index method and IU methods are almost same with respect
to the better classification scenario with AUC of more than 90%. The optimal threshold
can be considered either from method J or IU, since their corresponding true positive rate
(sensitivity) is higher than compared to the other methods, which means misclassification
rate can be reduced using these methods with higher accuracy. Further, the Z statistic is
found to be higher (Z > 1.96), i.e., the curves obtained at this combination are significant
enough to explain the accuracy of a test.

The confidence intervals are constructed for the considered combination of parameters
(Better case) at various sample sizes and are depicted in Figure 4. The optimal threshold
identified by method J and IU are also highlighted in the diagram with its corresponding
FPR and TPR. Here, one can see the effect of sample sizes clearly, i.e., as the sample size
increase, the confidence intervals become closer to each other. Therefore, the accurate results
may be obtained with the higher sample sizes.

The moderate case of classification scenario is also considered with σ0 = 1.5, σ1 =
2.4, α0 = 0.9andα1 = 2.5 and the results with respect to the optimal threshold and AUC
with its confidence intervals are also reported (Table 5). In this situation also, the optimal
threshold can be identified by the methods of J and IU, since their sensitivity is higher than
the other methods at each and every sample size. The AUC is observed to be more than
70% and the Z value is found be rejected (Z > 1.96), this means that the ROC curves are
good enough to explain the extent of correct classification with the corresponding optimal
thresholds. Further, it is to note that the optimal threshold can be obtained from method
J or IU in both the cases of better and moderate case of classification scenarios. The
confidence intervals are constructed for the considered moderate case at various sample sizes
and are depicted in Figure 5. The optimal threshold identified by method J and IU are
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Figure 4: Confidence intervals for GHN ROC curve with its optimal threshold
- better case

also highlighted in the diagram with its corresponding FPR and TPR. Here, as the sample
size increase, the confidence intervals become closer to each other.Finally, the worst case
classification scenario is considered (Table 6) to obtain the optimal threshold and thereby
its accuracy. Though this scenario is of not at all useful in reality; the results are carried
out to check the methods of obtaining optimal thresholds at various sample sizes. The very
interesting factor observed here is that the ER method is found to be better with moderate
amount of TPR and reasonably FPR as compared to the other methods. Even though,
the sensitivity of method J is higher, but the corresponding FPR is also higher, where it
should be minimum. Further, the accuracy is below 50% with the hypothesis is found to
be insignificant stating that the curve obtained at this combination is not useful for future
classification.

The confidence intervals are constructed for the considered worst case at various
sample sizes and are depicted in Figure 6. The optimal threshold identified by method ER
is highlighted in the diagram with its corresponding FPR and TPR.
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Figure 5: Confidence intervals for GHN ROC curve with its optimal threshold
- moderate case

5. Conclusion

The Receiver Operating Characteristic (ROC) curves are useful in detecting the op-
timal threshold of medical diagnostic test with good extent of correct classification and
accuracy. Therefore, on working with real datasets, the knowledge on distributional based
ROC curves will be quite useful. Keeping this in mind, the ROC curve for generalized half
normal distribution is proposed and the properties are verified. Further, extensive simulation
studies are done with respect to the proposed ROC model and this model is also compared
with the existing ROC models like Binormal and HN ROC models to show the proposed ROC
model is better with skewed data of generalized half normal distribution. The real datasets
(APACHE II and SAPS III) are used to demonstrate the behaviour of the proposed ROC
curve in the results section. The accuracy measure for the proposed method using SAPS III
dataset is higher (63%) than the AUC of SAPS III dataset (56%) proposed by Dashina and
Vishnu Vardhan (2023) and that ROC model has incorrect mathematical expressions, which
misleads the results. Therefore, this model is more useful than any other when the data is
of generalized half normal distribution.

As, the optimal threshold identification is most important in classification, therefore
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Figure 6: Confidence intervals for GHN ROC curve with its optimal threshold
- worst case

four different methods are used to identify the optimal threshold with better accuracy. The
interesting results observed is that the methods J and IU are found to be similar though their
mathematical formulae are different at various sample sizes (Better and Moderate cases of
classification scenario). But, the ER method is found to be good in case of worst classification
situation, though this case is not at all considerable. Further, the proposed GHN ROC curve
is found to be better with respect to the existing ROC curves when the data is of skewed in
nature and follow the generalized half normal distribution.Further, the confidence intervals
are also constructed for the ROC curve at various sample sizes and the AUC is also tested
with the chance line 50%. Also, it is suggested that among the four methods of optimal
threshold, one can consider J or IU methods with equal importance. In order to obtain the
best optimal threshold, the usual method of equating densities is always not possible as in
this case (no closed form solution). Therefore, we have suggested considering the sensitivity
value and their corresponding specificity values to be higher. Wherever, these values are
higher, that particular threshold will be of good choice with greater accuracy.
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Appendix

Table 1: Comparison of ROC curves for different cases of classification using
simulated datasets

Experiment ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

Better Case
GHN ROC Curve 1.4463 3.5406 1.4888 2.5065 - - 2.0457 0.0938 0.8004 0.7066 0.9053 D = 0.0364, p=0.5183 D = 0.0302, p=0.7517
HNROC Curve 1.4848 3.7447 - - - - 2.2148 0.1339 0.5524 0.4186 0.7481 D = 0.0403, p=0.3887 D = 0.0465, p=0.2287

Binormal ROC Curve 0.6242 1.0603 - - 1.1661 2.9710 2.0183 0.0861 0.8155 0.7295 0.9288 D = 0.5631, p < 2.2e−16 D = 0.8461, p < 2.2e−16

Moderate Case
GHN ROC Curve 0.7587 1.8173 0.4911 1.5118 - - 0.6257 0.3630 0.8419 0.4789 0.7816 D = 0.0356, p=0.5485 D = 0.0215, p=0.9745
HNROC Curve 0.7931 1.8117 - - - - 1.1346 0.1531 0.5300 0.3769 0.7283 D = 0.0245, p=0.9234 D = 0.0260, p=0.8854

Binormal ROC Curve 1.1596 0.7860 - - 0.7691 1.4589 0.7693 0.4999 0.8099 0.3099 0.6888 D = 0.5, p < 2.2e−16 D = 0.5836, p < 2.2e−16

Worst Case
GHN ROC Curve 1.9976 1.4890 2.4662 2.0943 - - 3.2434 0.0010 0.0000 -0.0010 0.2864 D = 0.0225, p=0.9607 D = 0.0326, p=0.6619
HNROC Curve 1.9358 1.4847 - - - - 6.4408 0.0010 0.0000 -0.0009 0.4162 D = 0.0364,p=0.5187 D = 0.0369, p=0.501

Binormal ROC Curve 0.5952 0.5047 - - 1.6822 1.2250 3.2434 0.0044 0.0000 -0.0043 0.2790 D = 0.7160, p < 2.2e−16 D = 0.6176, p < 2.2e−16

Table 2: Results of ROC curves for the APACHE II dataset
ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

GHN ROC Curve 29.411 42.9109 1.0555 1.5772 - - 26 0.3799 0.6500 0.2700 0.6836 D = 0.11785, p = 0.3185 D = 0.089239, p = 0.8661
HNROC Curve 28.8184 38.4924 - - - - 33 0.2521 0.3912 0.1391 0.5896 D = 0.13462, p = 0.1827 D = 0.20792, p = 0.0408

Binormal ROC Curve 17.0215 17.6888 - - 23.3486 34.2889 28 0.3923 0.6389 0.2465 0.6720 D = 0.98485, p < 2.2e−16 D = 1, p < 2.2e−16

Table 3: Results of ROC curves for the SAPS III dataset
ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

GHN ROC Curve 32.6943 41.9543 1.1832 1.5636 - - 26.0000 0.4457 0.6360 0.1903 0.6307 D = 0.11431, p = 0.3544 D = 0.13555, p = 0.38
HNROC Curve 30.9450 38.0462 - - - - 34.0000 0.2719 0.3715 0.0996 0.5646 D = 0.10829, p = 0.4213 D = 0.2031, p = 0.04883

Binormal ROC Curve 17.6210 17.6201 - - 25.5303 33.8222 30.0000 0.3999 0.5859 0.1860 0.6303 D = 0.99997, p < 2.2e−16 D = 0.97778, p < 2.2e−16

Table 4: Intrinsic measures of GHN ROC curve using the methods of optimal
threshold at different sample sizes - better case (σ0 = 0.5, σ1 = 1.8, α0 = 0.5 and α1 =
2.5)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 1 0.9182 0.1414 0.9481 0.8067 0.9443
19.397ER 25 1 0.9828 0.1286 0.9343 0.1444

CZ 25 0 0.9493 0.1351 0.9418 0.8145 (0.8994, 0.9892)IU 25 1 0.9182 0.1414 0.9481 0.0919
J 50 0 0.7885 0.1463 0.8990 0.7528 0.9339

24.2761ER 50 1 0.8231 0.1365 0.8879 0.1766
CZ 50 0 0.7885 0.1463 0.8990 0.7675 (0.8989, 0.9690)IU 50 0 0.7885 0.1463 0.8990 0.1182
J 100 1 0.7911 0.1640 0.8988 0.7348 0.9249

30.8472ER 100 0 0.8641 0.1428 0.8744 0.1902
CZ 100 0 0.8180 0.1559 0.8902 0.7514 (0.8979, 0.9519)IU 100 1 0.7911 0.1640 0.8988 0.1238
J 500 1 0.7808 0.2196 0.9122 0.6926 0.900

37.7962ER 500 1 0.8920 0.1899 0.8763 0.2266
CZ 500 0 0.8185 0.2090 0.9009 0.7126 (0.8793, 0.9208)IU 500 0 0.8185 0.2090 0.9009 0.1100
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Table 5: Intrinsic measures of GHN ROC curve using the methods of opti-
mal threshold at different sample sizes - moderate case (σ0 = 1.5, σ1 = 2.4, α0 =
0.9 and α1 = 2.5)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 1 0.8663 0.4521 0.8067 0.3547 0.7153
2.948ER 25 1 1.1190 0.3592 0.7003 0.4678

CZ 25 0 0.9501 0.4192 0.7733 0.4491 (0.5721, 0.8585)IU 25 1 1.1190 0.3592 0.7003 0.0818
J 50 0 1.3075 0.4000 0.8266 0.4267 0.7539

4.4455ER 50 1 1.5305 0.3263 0.7418 0.4161
CZ 50 1 1.4413 0.3546 0.7779 0.5021 (0.6419, 0.8659)IU 50 1 1.5305 0.3263 0.7418 0.0951
J 100 1 1.2725 0.3614 0.8359 0.4745 0.7766

7.2527ER 100 1 1.4658 0.3064 0.7695 0.3834
CZ 100 1 1.3689 0.3331 0.8043 0.5364 (0.7019, 0.8514)IU 100 1 1.4658 0.3064 0.7695 0.0956
J 500 1 1.3112 0.3975 0.8157 0.4182 0.7497

14.3671ER 500 0 1.5022 0.3380 0.7470 0.4222
CZ 500 1 1.4373 0.3575 0.7716 0.4958 (0.7156, 0.7837)IU 500 1 1.4968 0.3396 0.7491 0.0900

Table 6: Intrinsic measures of GHN ROC curve using the methods of optimal
threshold at different sample sizes - worst case (σ0 = 2, σ1 = 1.5, α0 = 2.3 and α1 = 3)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 0 2.5139 0.0348 0.0000 -0.0347 0.2693
-3.8058ER 25 0 1.2409 0.8241 0.5999 0.9161

CZ 25 1 1.4317 0.7258 0.4258 0.1168 (0.1505, 0.3881)IU 25 0 1.5985 0.6182 0.2719 0.1162
J 50 1 0.4999 0.9500 0.9646 0.0146 0.2997

-3.7384ER 50 1 1.1321 0.7349 0.6224 0.8263
CZ 50 0 1.1972 0.7040 0.5615 0.1662 (0.2246, 0.4140)IU 50 0 1.4125 0.5931 0.3449 0.0856
J 100 1 0.5197 0.9601 0.9688 0.0087 0.3126

-4.7832ER 100 1 1.1877 0.7459 0.6142 0.8397
CZ 100 1 1.2497 0.7161 0.5551 0.1576 (0.2358, 0.3894)IU 100 0 1.4805 0.5938 0.3190 0.0872
J 500 1 0.3895 0.9786 0.9836 0.0050 0.3081

-11.498ER 500 1 1.1557 0.7647 0.6210 0.8535
CZ 500 1 1.2344 0.7291 0.5488 0.1487 (0.2753, 0.3408)IU 500 0 1.4827 0.6032 0.3056 0.0912
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