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Abstract
In this paper, we present some possible ways to perform estimation and testing for

cubic smoothing splines. Special emphasis is placed on the analysis of correlated data, when
using semi-parametric regression models (Schimek, 2000), and the so-called spline growth
model (Nummi and Koskela, 2008; Nummi et al., 2017), an extension of the basic growth
curve model (Potthoff and Roy, 1964; Rao, 1965). Furthermore, practical applications in
fields such as medicine and animal breeding are introduced, highlighting the versatility and
efficacy of cubic smoothing splines in real-world applications.
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1. Introduction

In our paper, we specifically delve into the intricacies of cubic smoothing splines.
One of the standout advantages inherent in smoothing splines is their adaptability, granting
precise control over the delicate balance between interpolating data points and maintaining
the overall smoothness of the curve. This control is facilitated by a smoothing parameter,
empowering researchers to fine-tune the model for optimal performance. For statistical
inference with smoothing splines and semi-parametric regression we can refer to the books
by Eubank and Spiegelman (1990), Green and Silverman (1993), Ruppert et al. (2003), Wu
and Zhang (2006), Harezlak et al. (2018) and Stasinopoulos et al. (2017), for example.

The notable flexibility of smoothing splines extends beyond their ability to capture
intricate data patterns. They also boast a range of theoretical properties that significantly
enhance their utility. In various scenarios, smoothing splines emerge as a compelling alter-
native to parametric models. This preference arises from the inherent challenge of justifying

Corresponding Author: Tapio Nummi
Email: tapio.nummi@tuni.fi

http://www.ssca.org.in/journal.html


212
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

TAPIO NUMMI, JYRKI MOTTONEN AND JIANXIN PAN [Vol. 22, No. 3

the choice of a parametric function, which often lacks a clear rationale or relies on a rough
approximation of the true underlying function form.

Characterized by their high flexibility, splines offer an advantageous choice by pro-
viding a flexible and accurate approximation of the true function form. This is particularly
valuable in situations where a clear parametric alternative may prove elusive or is based on a
rough approximation. The limitations of parametric models become especially evident when
testing different competing models against each other, as they typically also provide a lim-
ited set of possible alternative hypotheses. In contrast, cubic smoothing splines offer a very
broad family of alternative model choices. When pitted against corresponding parametric
models, they not only showcase their adaptability but also present a more comprehensive
and versatile set of alternatives for a more robust model comparison. In this context papers
by Speckman (1988), Eubank and Hart (1992), Azzalini and Bowman (1993), Cantoni and
Hastie (2002), Härdle et al. (1998), Lin and Zhang (1999), Verbyla et al. (1999), Schimek
(2000),Zhang and Lin (2003), Liu and Wang (2004), Nummi et al. (2011), and Nummi et al.
(2013) serve as valuable references. This paper concentrates on the inference of cubic smooth-
ing splines and semi-parametric regression. Our methods exhibits flexibility also in the sense
that they apply also under correlated data, further extending its utility for testing growth
curves (Koskela et al., 2006; Nummi and Mesue, 2013; Nummi et al., 2017), for example.

In Section 2.1, we present some methods used to estimate cubic smoothing splines and
corresponding semi-parametric regression models. Subsequently, in Section 3, we elucidate
techniques for accurately approximating the spline fit, and introduce a comprehensive set
of hypotheses and tests relevant to semi-parametric regression models. Furthermore, we
illustrate these methods with an example of medical testing, demonstrating their practical
application potential. In Sections 4 and 5, we focus on estimation and testing in a spline
growth model and its multivariate extension. These methods are illustrated with a practical
application on animal breeding. In Section 6, some concluding remarks are provided.

2. Cubic smoothing splines and semi-parametric regression

2.1. Cubic smoothing splines

Consider the vector y = (y1, y2, . . . , yn)⊤, observed at measuring points
x = (x1, x2, . . . , xn)⊤ on the interval [a, b], where a < x1 < x2 < · · · < xn < b. A cu-
bic smoothing spline can be expressed as

y = g + ϵ, (1)

where g = (g(x1), g(x2), . . . , g(xn))⊤ represents a vector of the smooth, twice-differentiable
curve g(·). The term ϵ = (ϵ1, . . . , ϵn)⊤ ∼ Nn(0, σ2R) accounts for normally distributed
errors, where R is a covariance matrix characterized by parameters within the vector θ.

The estimation of cubic smoothing splines g can be achieved through a penalized
least squares criterion (PLS). This process commences by defining the roughness matrix
K = ∇∆−1∇⊤, wherein the non-zero elements of the banded n × (n − 2) matrix ∇ and the
(n − 2) × (n − 2) matrix ∆ are given by

∇k,k = 1
hk

, ∇k+1,k = −
(

1
hk

+ 1
hk+1

)
, ∇k+2,k = 1

hk+1
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and
∆k,k+1 = ∆k+1,k = hk+1

6 , ∆k,k = hk + hk+1

3 ,

where k = 1, 2, . . . , (n − 2) and hj = xj+1 − xj, with j = 1, 2, . . . , (n − 1). The penalized
least squares criterion at points x1, x2, . . . , xn is then expressed as

Q1 = (y − g)⊤R−1(y − g) + αg⊤Kg (2)

The minimum with a fixed positive smoothing parameter α is a cubic smoothing spline (e.g.
Green and Silverman (1993))

g̃ = (H + αK)−1Hy = Sαy, (3)

where we denote H = R−1 and Sα = (H + αK)−1H is the so-called smoother matrix. It is
easily seen that if the covariance matrix R satisfies the equation

RK = K, or equivalently, K = HK, (4)

the smoother matrix reduces to the form Sα = (I + αK)−1. The resulting spline estimator
in this case becomes as Nummi and Koskela (2008),

ĝ = (I + αK)−1y. (5)

It can be seen that this estimator does not depend on the covariance matrix R. It is
demonstrated in Nummi et al. (2011) that certain important covariance structures used in
the analysis of repeated measures or longitudinal data satisfy condition (4). These structures
include the uniform covariance structure R = I + d211⊤ and the linear structure R =
I + XDX⊤, where d2 > 0, D is positive definite, and X = (1, x), for example. It is worth
noting that in this scenario, when the smoothing parameter α is fixed, the estimated splines
become simple linear functions of the observations y1, y2, . . . , yn, and further this offers also
the possibility to use the methodology in the case of correlated data, which will be tackled
in particular in Section 4.

2.2. Semi-parametric regression

The spline model in (1) seamlessly extends into a semi-parametric regression model

y = Ub + g + ϵ, (6)

where Ub represents the linear component, with U being a full-rank n × k matrix of values
of k explanatory variables (excluding the constant term), and b a k-vector of unknown
parameters. Semi-parametric regression models have been considered in Nummi et al. (2013),
Green and Silverman (1993), Schimek (2000), and Wu and Zhang (2006), for example. The
PLS criterion for this case is expressed as

Q2 = [y − (Ub + g)]⊤H[y − (Ub + g)] + αg⊤Kg. (7)

Minimizing with respect to b and g leads to the following estimates (Green and Silverman,
1993)

b̃ = [U⊤H(I − Sα)U]−1U⊤H(I − Sα)y (8)
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and
g̃ = Sα(y − Ub̃), (9)

where Sα = (H + αK)−1H. It can be shown that if the condition (4) holds, the estimates
simplify to (Nummi et al., 2013)

b̂ = [U⊤(I − Sα)U]−1U⊤(I − Sα)y, (10)

where ĝ = Sα(y − Ub̂), Sα = (I + αK)−1 and the fitted semi-parametric curve can be
obtained as

µ̂ = My, (11)
where M = Sα + Ũ[Ũ⊤U]−1Ũ⊤ and Ũ = (I − Sα)U, respectively. It appears that, once the
smoothing parameter α is fixed, the estimation process for both the cubic smoothing spline
and the semi-parametric model becomes quite straightforward. In the upcoming chapter, we
will delve into the methodologies employed for hypothesis testing.

3. Testing

3.1. Approximate fit

Testing in the context of cubic splines poses challenges, primarily because the smoother
matrix inherently lacks the properties of a projector matrix. Consequently, established meth-
ods, such as those developed for linear models, do not seamlessly apply to cubic splines. Here
we outline a few potential avenues and methodologies for conducting tests related to various
hypotheses.

Our approach is centered around approximating the smoother matrix Sα with a ma-
trix possessing the properties of a projector matrix. This approximation not only yields
a highly accurate representation of a cubic smoothing spline fit but also generates a cubic
spline itself, as it is rooted in a linear combination of cubic splines (Nummi et al., 2011). It
can be demonstrated that Sα can be decomposed as (see also Hastie (1996))

Sα = T(I + αΛ)−1T⊤, (12)

where the matrix of eigenvectors T = (t1, . . . , tn) can be directly calculated from the rough-
ness matrix K, and the eigenvalues Λ = diag(λ1, . . . , λn) of K are interrelated with Sα such
that the eigenvalues of Sα are given by γj = 1/(1 + αλi), indicating a reverse order of eigen-
vectors of K and Sα. Intriguingly, the sequence of eigenvectors of Sα appears to increase in
complexity like a sequence of orthogonal polynomials (see e.g., Ruppert et al. (2003)), and
the eigenvalues γj ∈ (0, 1) show how much dumping is made for each tj when the smoother
is applied. We can effectively approximate Sα by

Mc = TcT⊤
c , (13)

where Tc = (t1, t2, . . . , tc) denotes the first c eigenvectors of T, which can be chosen using
modified generalized cross-validation criteria (Nummi and Mesue, 2013)

GCV1(c) =
1
n

∑n
i=i[yi − ȳi]2

(1 − c
n
)2 , (14)
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where ȳi is now computed using the formula (5) with Sα replaced by Mc, for instance.
It was demonstrated in Nummi et al. (2011) that this yields a pretty good approximation
especially if the number of effective degrees of freedom is not unreasonably large. Further
decomposition of Tc (c > 2) takes the form Tc = (T2, Tc−2), where T2 encompasses the first
two eigenvectors, and Tc−2 comprises the remaining eigenvectors. Note that we can take
T2 = (t1, t2), where t1 = 1/

√
n and t2 is given by t2i = (xi − x̄)/S2

x, where x̄ is the mean
of xis and S2

x = ∑n
i=1(xi − x̄)2 (Nummi et al., 2011). It is easy to see that t1 and t2 span a

straight-line model.

We can now approximate ĝ for model (1) by

µ̃ = Mcy = (M1 + M2)y, (15)

where M1 = T2T⊤
2 and M2 = Tc−2T⊤

c−2 and further for the model (11) we have

µ̃ = M̃y = (Mc + M3)y, (16)

where M3 = Ū[Ū⊤U]−1Ū⊤ and Ū = (I − Mc)U, respectively.

3.2. Hypotheses and test statistics

Testing is based on sums of squares as defined in this paragraph. It is first noted that
if we have the correlation model R = I + XDX⊤, for example, we have M̃XDX⊤ = XDX⊤

and therefore
(I − M̃)(I + XDX⊤)(I − M̃) = (I − M̃). (17)

We can further note that, under normality and the assumed correlation model, the following
relationships hold (Nummi et al., 2013)

σ−2y⊤(I − M̃)y = σ−2Smin ∼ χ2
n−c−k. (18)

Similarly, we can define

σ−2y⊤(I − Mc)y = σ−2Sspl ∼ χ2
n−c, (19)

σ−2y⊤(I − M1)y = σ−2Slin ∼ χ2
n−2 (20)

and
σ−2y⊤(I − Pi)y = σ−2Sreg,i ∼ χ2

n−k−i, i = 1, 2, (21)

where Pi = Ui(U⊤
i Ui)−1Ui, where for i = 1, U1 = (1, U) and i = 2, U2 = (X, U), and

where X = (1, X), respectively. These sum-of-squares expressions can now be utilized for
the hypothesis testing of different special cases of the basic semi-parametric model. We can
now formulate a set of compelling hypotheses each designed to assess various aspects of the
models introduced. Note that the tests introduced in this section are applicable also to
correlated data, provided an appropriate form of covariance matrix is employed.
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3.2.1. Test 1: Cubic smoothing spline

The first test introduced here aims to scrutinize whether the basic linear model is
applicable when compared to the assumed cubic smoothing spline alternative (model (1)).
The hypotheses are formulated as follows

H0: µ = Xb2,

where X = [1, x] and b2 is a vector of two regression coefficients. The alternative hypothesis
is

Ha: µ = g,

where g represents the assumed spline model. Since McM1 = M1 (columns M1 are in the
span of Mc) it is observed that (I − Mc)(Mc − M1) = 0 and therefore Sspl and Slin − Sspl

are independent and

F1 = (Slin − Sspl)/(c − 2)
Sspl/(n − c) ∼ F (c − 2, n − c). (22)

Then observing a larger F1 than quantile F1−α(c − 2, n − c) yields the rejection of the null
hypothesis. It was shown in a power study of Nummi et al. (2011) that this test performed
very well when compared to other alternatives.

3.2.2. Tests 2: Semi-parametric model

A) Testing the significance of linear covariates in the full model

Suppose the full semi-parametric model may include a set of linear covariates, denoted
as U. We first test the significance of this set in the full model. The null hypothesis is

H0: µ = g,

and the alternative hypothesis, a full semi-parametric model, is

Ha: µ = Ub + g,

where Ub is a linear term and g is a smoothing spline term. Using similar arguments as
before, we get

F2A = (Sspl − Smin)/k

Smin/(n − k − c) ∼ F (k, n − k − c). (23)

If the observed F2A is larger than the critical value F1−α(k, n − k − c), we reject the null
hypothesis.
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B) Assessing the fit of the model with linear model

This test evaluates whether the assumed linear model provides a better fit compared
to a semi-parametric alternative. The hypotheses are defined as follows

H0: µ = Uk+2bk+2,

where Uk+2 = [X, U], X = [1, x], and bk+2 is a vector of k + 2 regression coefficients. The
alternative hypothesis remains the same as in part A. The test statistic for this hypothesis
becomes

F2B = (Sreg,2 − Smin)/(c − 2)
Smin/(n − k − c) ∼ F (c − 2, n − k − c). (24)

If the observed F2B exceeds the critical value F1−α(c − 2, n − k − c), we reject the null
hypothesis. According to Nummi et al. (2013), the power of this test was investigated
through a simulation study. The study found that estimating c from the observed data
results in only a minimal loss of power compared to the scenario where c is known.

3.2.3. Test 3: Linear model

Ultimately, we can explore the need to include the variable x, which was initially
presumed to be a smooth term (c > 2), as a linear term alongside other linear terms within
a full linear model. The hypotheses are formulated as

H0: µ = Uk+1bk+1,

where Uk+1 = [1, U], and bk+1 is a k + 1 vector of regression coefficients. The alternative
hypothesis is

Ha: µ = Uk+2bk+2,

where Uk+2 = [X, U] and this can be tested as

F3 = (Sreg,1 − Sreg,2)
Sreg,2/(n − k − 2) ∼ F (1, n − k − 2). (25)

Then observing a larger F3 than quantile F1−α(1, n − k − 2) yields the rejection of the null
hypothesis.

Example 1: PSA testing

As an illustration, we utilized part of the dataset gathered for the Finnprostate Study
VII conducted by Professor Teuvo L. J. Tammela in Finland in 1990-2000 at Tampere Univer-
sity. The primary objective of this study was to examine individuals susceptible to prostate
cancer. It is important to note that in this article, we will refrain from delving into the med-
ical intricacies of the subject matter. Instead, our focus is solely on employing this dataset
to exemplify the methodologies presented.
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Figure 1: Plot of approximated spline fit for the values of prostate-specific anti-
gen (log(ng/mL) as a function of values of alkaline phosphatase test (U/L).

In this instance, our examination of 537 individuals is centered on the variables
Prostate-Specific Antigen (PSA, ng/mL), Body Mass Index (BMI, kg/m2), Prostate Length
(Length, cm), and Alkaline Phosphatase test (AFOS, U/L). The primary aim of our study is
to construct a model for the log(PSA) value utilizing the variables AFOS, BMI, and Length.
To commence, we explore the relationship between PSA and AFOS, assuming that a suitable
spline model would best describe this connection. Employing the criteria GCV ∗(c), where c
ranges from 1 to 6, we obtain the values 6.3152, 0.9808, 0.9042, 0.8791, 0.8755, and 0.8769.
Consequently, our preferred choice is c = 5. It should be noted that for some measuring
points x1, . . . , xn, we have multiple values and therefore we need to replace the smoother
matrix Sα by

Sα = N(N⊤N + αK)−1N⊤, (26)

where N is an incidence matrix of corresponding measuring times. The approximated spline
fit is depicted in Figure 1. Upon subjecting this to a linear model test (Test 1), we obtain
F1 = 22.45, with the corresponding quantile F0.95(3, 532) = 2.622. This unequivocally rejects
the null hypothesis concerning a linear association.

Subsequently, we delve into semi-parametric model 6. Our preliminary analysis sug-
gests that BMI, Length, and the interaction term Alkaline×OI can be utilized as explanatory
variables in the U-matrix, where OI is the obesity indicator (OI = 1 if BMI > 30, and
0 otherwise). Alkaline with c = 5 is used in (16) for model fitting and testing. Using the
test statistic F2A, we evaluated the significance of this set of covariates within the full semi-
parametric model. The resulting value,F2A = 17.06, exceeds the corresponding critical value
F0.95(3, 529) = 2.62, indicating clear significance. Additionally, the value of the test statistic
F2B is 28.63, which also surpasses the critical value F0.95(3, 529) = 2.62. Consequently, the
null hypothesis is firmly rejected, confirming that the model is semi-parametric rather than
fully linear. Test 3 is not executed in this scenario, as it only becomes relevant if the null
hypothesis from Test 2B is accepted.
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4. Testing for growth data

In certain cases, growth modeling can be grounded in a theoretical framework, en-
abling the derivation of a parametric model for developmental processes. However, more
frequently, such a theoretical foundation may be lacking, necessitating the adoption of al-
ternative approximations. We found that cubic smoothing splines for many cases provide a
well justified alternative since they quite accurately follow the true growth function. In the
following, we outline the methodology for testing some relevant hypotheses when employing
cubic smoothing splines to model the growth function.

The growth curve model of Potthoff and Roy (Potthoff and Roy, 1964) can be written
as

Y = TBA⊤ + E, (27)
where Y = (y1, y2, . . . , yn) is the q × n matrix of independent q × 1 response vectors, T is a
q × p within-individual design matrix, A is an n × m between-individual design matrix, B
is an unknown p × m parameter matrix to be estimated and E is a q × n matrix of random
errors. It is assumed that the columns e1, . . . , en of E are independently normally distributed
as ei ∼ Nq(000,ΣΣΣ), i = 1, . . . , n.

We can write model (27) in a more general way by using cubic smoothing splines.
Let

Y = GA⊤ + E, (28)
where G = (g1, . . . , gm) is the matrix of smooth mean growth curves at time points t1, t2, . . . , tq.
We further assume that ΣΣΣ is a parsimonious covariance structure ΣΣΣ = σ2R(θθθ) with covari-
ance parameters θθθ. Model (28) is referred to as the spline growth model (SGM). Note that
we get the Potthoff and Roy model as a special case by setting G = TB. The smooth solu-
tion for the matrix of mean growth curves G can be obtained by minimizing the following
penalized least squares (PLS) objective function

Q = tr[(Y − GA⊤)⊤R−1(Y − GA⊤) + αAG⊤KGA⊤], (29)

where α is a fixed smoothing parameter and K is the roughness matrix defined in Section
2.1. It can be easily seen that Q can be rewritten n the form

Q = tr[(GA⊤ − (H + αK)−1HY)⊤(H + αK)(GA⊤ − (H + αK)−1HY)] + w, (30)

where H = R−1, (H+αK) is a positive definite matrix and w = tr[Y⊤H−1(H+αK)−1H−1Y−
Y⊤HY] does not depend on G. The function Q is minimized for fixed values of α and H
when GA⊤ = (H + αK)−1HY. Multiplying both sides of the equation on the right by
A(A⊤A)−1 gives the spline estimator

G̃ = (H + αK)−1HYA(A⊤A)−1. (31)

The estimator G̃ has one drawback when thinking about practical applications. The matrix
H is unknown, so it should be estimated from the data. However, in some special cases the
estimator is simplified to a form that does not depend on the covariance matrix. Suppose
that the matrix H fulfills the condition K = HK (or equivalently R fulfills the condition
K = RK). Then the spline estimator (31) simplifies to

Ĝ = (Iq + αK)−1YA(A⊤A)−1 = SYA(A⊤A)−1, (32)
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where S = (Iq + αK)−1 is the smoother matrix. The smoothing parameter α can be chosen
by using the generalized cross-validation criteria

GCV2(α) =
1

nq
tr[(Y − Ŷ)(Y − Ŷ)⊤]

(1 − m·edf
nq

)2
, (33)

where Ŷ = ĜA⊤ and edf = tr(S) is the effective degrees of freedom of the smoother matrix
S.

As in Section 3, for testing we need to approximate the smoother matrix with a matrix
that has the properties of a projection matrix. We can approximate the spline estimate (32)
with

Ğ = McYA(A⊤A)−1, (34)

where Mc = TcT⊤
c and Tc contains the c first eigenvectors of the smoother matrix S. The

number of eigenvectors c can be easily estimated using a modified generalized cross-validation
criterion obtained by replacing Ŷ and edf in formula (14) with Y̆ = ĞA⊤ and c, respectively.
We can now approximate the fitted spline curves with

Y̆ = ĞA⊤ = TcT⊤
c YA(A⊤A)−1A⊤ = TcΩ̂A⊤, (35)

where Ω̂ = T⊤
c YA(A⊤A)−1. The matrix Ω̂ contains all the relevant information for testing

mean curves and it is also an unbiased estimate of the parameter matrix Ω of the statistical
model Y = TcΩA⊤ + E. Therefore, we will henceforth focus on testing linear hypotheses of
the form

H0 : CΩΩΩD = 0,

where C and D are known ν × c and m × g matrices with ranks ν and g respectively. It is
shown in Nummi and Mesue (2013) that testing can be based on

F = Q∗/νg

σ̂2 ∼ F [νg, n(q − c)], (36)

where
Q∗ = tr([D⊤(A⊤A)−1D]−1[CΩ̂ΩΩD]⊤[CT⊤

c RTcC⊤]−1[CΩ̂ΩΩD]) (37)
and

σ̂2 = 1
n(q − c)tr[Y⊤(Iq − Mc)Y]. (38)

In real-life applications, the matrix R contains parameters to be estimated and there-
fore the distribution of the F -statistic is only approximate. However, if we are only interested
in progression in time we can drop the constant term by using C = [0, Ic−1], and if the uni-
form covariance model R = d21q1⊤

q + Iq is assumed, the test statistic Q∗ simplifies to

Q∗∗ = tr([CΩ̂ΩΩD][D⊤(A⊤A)−1D]−1[CΩ̂ΩΩD]⊤). (39)

It can be shown that the distribution of the test statistics Q∗∗ is exact. This is an important
result since the uniform covariance model is quite common and a good approximation in
many situations. In Nummi and Mesue (2013) other kinds of situations are discussed, that
give an exact version of the F -test introduced here.
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Figure 2: Plot of approximated spline fits for Finncattle bulls (solid curve) and
Ayrshire bulls (dashed curve).

Example 2: Testing bulls at a research station in Finland

In this example, we present our methodology using a subset of data pertaining to
2712 bulls tested at an experimental station in Finland during the years 1965 to 1977. The
original dataset comprised three breeds: Ayrshire, Finncattle, and Frisian. However, for the
purposes of this illustration, we focused on a specific subset consisting of 208 bulls born
in 1966, with 168 Ayrshire and 40 Finncattle bulls. The bulls underwent regular weighing,
conducted every 30 days starting from the age of 30 days. For more comprehensive details,
see the references Lindström and Maijala (1970) and Liski (1987).

To set up the spline growth model the between-individual design matrix A was defined
as follows. For the Finncattle bulls, the rows of A are (1, 0) and for the Ayrshire bulls the
rows of A are (0, 1). Using the generalized cross-validation criteria (33), we got the smoothing
parameter α = 4142. The number of eigenvectors c was then estimated using the modified
generalized cross-validation criteria (33). The function GCV2(c) was minimized at c = 7.
Figure 2 gives the approximated spline fits for the Finncattle bulls (solid curve) and the
Ayrshire bulls (dashed curve).

To test if the progression is the same in both groups, we used the 6 × 7 matrix
C = (0, I6) and 2 × 1 vector D = (1, −1)⊤. The value of the F-test statistic is

F = 102.1803,
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which gives the P-value P(F6,1040 ≥ 102.1803) ≈ 0. Therefore, the null hypothesis of equal
progression of the response variable in the two test groups (Finncattle and Ayrshire) is clearly
rejected. We also calculated the P-value of the permutation test. We randomly permuted the
rows of matrix A and re-calculated the value of the F-statistic using the permuted matrix A.
After permuting A and re-calculating F -statistic N = 100, 000 times, we got the estimated
permutation test P-value

#{Fi ≥ 102.1803}
N

= 0.00086.

Therefore, it can be affirmed that testing of the growth curves against each other can be
readily implemented also using computational methods.

5. Testing in the multivariate spline growth model

The testing of the spline growth model can be generalized straightforwardly to a
multivariate response case. The multivariate spline growth curve model can be written as

Y = GA⊤ + E, (40)

where

Y = (y1, . . . , yn) =


y11 y21 · · · yn1
y12 y22 · · · yn2
... ... . . . ...

y1s y2s · · · yns


is a qs × n matrix of the vectors of measurements of s responses and

G = (g1, . . . , gm) =


g11 g21 · · · gm1
g12 g22 · · · gm2
... ... . . . ...

g1s g2s · · · gms


is the corresponding qs × m matrix of smooth mean curves. See Nummi et al. (2017) for
more details. For the covariance matrix R we can take, for example, a multivariate version
of the uniform structure

R = (Is ⊗ 1q)D(Is ⊗ 1q)⊤ + Iqs

=


d2

11q1⊤
q + Iq d121q1⊤

q · · · d1s1q1⊤
q

d211q1⊤
q d2

21q1⊤
q + Iq · · · d2s1q1⊤

q
... ... . . . ...

ds11q1⊤
q ds21q1⊤

q · · · d2
s1q1⊤

q + Iq

 . (41)

If we now define the roughness part of the fitting criteria as

Ks = W ⊗ K,

where W = diag(α1, . . . , αs) is a diagonal matrix of smoothing parameters α1, . . . , αs and K
is the roughness matrix computed using the time points t1, . . . , tq, then the roughness matrix
Ks meets the condition

RKs = Ks (42)
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and the unweighted spline estimator becomes

Ĝ = (Iqs + W ⊗ K)−1YA(A⊤A)−1

=


S(α1) O O . . . O

O S(α2) O . . . O
... . . . ...

O O O . . . S(αs)

YA(A⊤A)−1, (43)

where S(αj) = (Iq + αjK)−1, for j = 1, . . . , s. If we use the approximation technique
introduced earlier we get

Ĝ =


M•1M⊤

•1 O O . . . O
O M•2M⊤

•2 O . . . O
... ... . . . ...

O O O . . . M•sM⊤
•s

YA(A⊤A)−1, (44)

where M•jM⊤
•j = Pj is an approximation matrix for the jth variable. Note that the dimen-

sions needed can be estimated using the generalized cross-validation criteria introduced in
33. A straightforward generalization of the earlier considerations gives us an estimator

Ω̂ΩΩ = M⊤
• YA(A⊤A)−1, (45)

where M• = diag(M•1, M•2, . . . , M•s), of the multivariate growth curve model

Y = M•ΩA⊤. (46)

Testing can be based on the linear hypothesis

H0 : CΩΩΩD = 0,

where C and D are known ν × c and m × g matrices with ranks ν and g, respectively, with

F = Q∗/νg

σ̂2 ∼ F [νg, n(sq − ctot)], (47)

where ctot = c1 + · · · + cs and

Q∗ = tr{[D⊤(A⊤A)−1D]−1[CΩ̂D]⊤[CM⊤
• RM•C⊤]−1[CΩ̂D]} (48)

and
σ̂2 =

s∑
l=1

1
n(q − cl)

tr[Y⊤
l (Iq − Pl)Yl]. (49)

If we are interested in testing the equality of the progression of spline curves, then we can
choose

C = diag([0, Ic1−1], . . . , [0, Ics−1]) and D = [1m−1, −Im−1]⊤

and, furthermore, if we assume that the covariance matrix has a uniform structure (41), the
test statistic simplifies to the form

Q∗∗ = tr{[CΩ̂D][D⊤(A⊤A)−1D]−1[CΩ̂D]⊤}, (50)

which does not depend on the covariance matrix R. The F statistic is then distributed as
F [df1, df2] with degrees of freedoms df1 = (ctot − s)(m − 1) and df2 = n(sq − ctot).
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6. Concluding remarks

In this paper, we explored various methodologies for estimating and testing cubic
smoothing splines. We place particular emphasis on analyzing correlated data within semi-
parametric regression models, as well as the spline growth model, an extension of the basic
growth curve model. Additionally, we introduced practical applications including medicine
and animal breeding. These examples underscore the versatility and effectiveness of cubic
smoothing splines in real-world scenarios.
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