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Abstract
Share frailty models are often used to model heterogeneity in survival analysis. In these

models, it is assumed that each individual from a group shares common frailty, but sometimes
it may be possible that some individuals will have zero susceptibility to an event. In such
cases, compound distributions are more proper to model shared frailty than usually preferred
distributions, gamma, lognormal etc. In this paper we have considered compound Poisson
and compound negative binomial frailty distributions with IDB as baseline distribution.
Since it has increasing, decreasing, constant and bathtub shaped hazard function. MCMC
approach have been used to estimate the parameters involved in the models. A real life data
analysis is also considered by applying the proposed models.. . .

Key words: Bayesian model comparison; Compound negative binomial distribution; Com-
pound Poisson distribution; IDB distribution; MCMC; Shared frailty.
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1. Introduction

In survival data, researchers are interested to study effect of covariates on life times of
individuals from a group. For example, medical practitioner in case of lung cancer patients,
may be interested to study how the factors such as age, health condition of the patient and
the type of tumor may affect the survival times. In experiments on the time to failure of
electrical insulation, engineer is interested to find the effect of the voltage, the insulation
is subject to. Also in clinical trials, the experimenter is interested to study effect of the
treatment assigned to a patient on the survival time. Unfortunately, many of the times it is
impossible to include all relevant covariates. May be because, we have little or no information
on the individual level. For example, it is known that excretion of small amounts of albumin
in the urine is a diagnostic marker for increased mortality, however we are unable to include
this variable, unless we actually obtain urine and analyze samples for each individual under
study. Furthermore, we may not aware the relevance of the risk factor or even that the factor
we ought to include in the analysis. For example, a genetic factor as we do not know all
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possible genes having influence on survival. In other cases, it may be impossible to measure
the risk factor without great financial cost or time effort. In such cases, the usual practice
is to ignore such covariates. The neglect of such covariates leads to heterogeneity into the
data. This heterogeneity is named as frailty by Vapuel et al. (1979). To address the frailty,
it is necessary to include random effect term into the model. Such models are well known as
frailty models.

Sometimes individuals from a group share a common frailty, for example, if we consider
data on twins then for monozygotic twins, sex, any other genetically based covariates, date
of birth and pre-birth environment is common. For the timings of failures of several paired
human organs like kidneys, lungs, eyes, ears etc. shares common frailty because they are of
same individual. In case of sequences of times of asthmatic attacks of asthma patients or
in tumor diagnosis, tumor recurrence times in individual patients also has common frailty
because occurrence time of an event is on same individual. In industrial applications, if we
consider the breakdown times of dual generator in a power plant or failure times of two
engines in a two engines airplane then common environment is shared by both the engines
and generators. In such situations, shared frailty models are suggested in the literature (see
Clayton (1978)).

Hanagal (2005) proposed a positive stable frailty model with bivariate exponential of
Marshall-Olkin (1967) as baseline distribution. Hanagal (2006) discussed the gamma frailty
regression model in the bivariate survival data and Hanagal (2007) also presented the gamma
frailty regression models in the mixture distributions. Hanagal and Sharma (2013, 2015a,
2015b, 2015c) analyzed diabetic retinopathy data, acute leukaemia data and kidney infection
data using shared gamma and inverse Gaussian frailty models.

In shared frailty models, it is assumed that, each individual from a group experiences
an event of interest but sometimes it may be possible that some individuals are immune to a
particular event i.e., they are non-susceptible or they have zero susceptibility. For example,
some cancer patients survive their cancer. In medicine, there are several examples of diseases
primarily attacking people with particular susceptibility, for instance, a genetic kind, other
people having virtually zero susceptibility of getting the disease. Another example is fertility,
some couples are unable to conceive children so that the time to have first child birth for
them have zero susceptibility. In case of marriages, some people never marry, some marriages
are not prone to dissolve so that time to divorce for such couples have zero susceptibility.
In such type of data, compound distribution having some positive mass at zero value can
be a suitable choice. For example, compound Poisson distribution or compound negative
binomial distribution.

Aalen (1992) considered a compound Poisson distribution as a mixture distribution in
survival analysis. Also, Moger and Aalen (2005), Hanagal (2010a), Hanagal (2010b), Hanagal
and Dabade (2012) and Hanagal and Kamble (2015) have considered compound Poisson
frailty models. Hanagal and Dabade (2013) and Hanagal and Kamble (2016) have introduced
compound negative binomial shared frailty model. Recently Hanagal (2023a, 2024a, 2024b)
introduced compound Poisson frailty models based on additive hazard, correlated compound
Poisson frailty models based on the hazard rate and reversed hazard rates to analyze kidney
infection data and Australian twin data. Hanagal (2023b) proposed correlated compound
geometric frailty models to analyze kidney infection data. More details on compound Poisson
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frailty models are available in Hanagal (2011, 2019).

A random variable Z following a compound distribution is defined as,

Z =
{
Y1 + Y2 + · · · + YN ; N > 0
0 ; N = 0. (1)

where N is also random variable with some statistical distribution and Y1, Y2, · · · , YN are
independent, identically gamma distributed random variables with scale parameter ν and
shape parameter γ having density function,

f(y) =
{

νγ

Γ(γ)y
γ−1e−νy ; y > 0, ν > 0, γ > 0

0 ; otherwise.

Here, variable Yi represents length of ith failure. If N = 0 frailty is not at all affecting the
life times of an individual from a group and if N > 0 then frailty is cumulative effect of
heterogeneity due to N failures.

Aalen and Tretli (1999) modelled testis cancer data using compound Poisson frailty
model. A man receives damages during a critical period of their fetal development which may
develop testis cancer after the hormonal process of puberty has started. The damage may be a
result of the mother’s exposure to environmental factors, for example an excessive estrogenic
burden, and may also interact with genetic factors. Aalen and Tretli (1999) represented Yi

as size of the damage at ith occasion and N be the number of damages occurred. Thus Z is
now cumulative effect of damages occurred. Some other examples can be given as, in case of
marriage data, Z may represents cumulative heterogeneity for not getting a perfect partner
due to different unknown difficulties like, medical issues of an individual, hereditary problems
etc. In case of fertility, Z may be cumulative effect due to different unknown reasons such
as, effect of miss-carriages on health, male infertility, age related issues etc. However, Aalen
and Tretli (1999) says, this point of view should not be taken too literally as a description of
biological reality. The main reason for using compound frailty random variables is statistical
convenience. Compound Poisson and compound negative binomial distribution both have
simple and closed from expression of Laplace transform, which a requirement of any frailty
model.

To complete the parametric form of the model we now make assumption on baseline
distribution. Weibull distribution is one of the most widely used baseline distribution. Haz-
ard function for Weibull distribution is a monotone function, which increases with time to
infinity when shape parameter α is greater than one and it decreases up to the value zero for
α < 1. At time zero, it has a zero-failure rate implies that almost no failure will occur which
is hardly feasible in real life. Also, other usually preferred baseline distributions such as,
gamma, lognormal etc. has monotone hazard function. So, there is a need to have another
baseline distribution which is feasible to model increasing, decreasing and bathtub shape
hazard function. Hjort (1980) introduced Increasing, Decreasing, Constant and Bathtub-
shaped failure rate distribution (IDB) which has all the above shapes. Also at time zero,
failure rate is positive. So, we thought IDB distribution can be better than Weibull to model
as baseline distribution.

For estimation of parameters of the model, we have considered MCMC technique. To
check the performance of the model we have considered simulation study. Also, we have
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applied the proposed models to a bivariate survival data set of McGrilchrist and Aisbett
(1991) related to kidney infection and suggested the best model by using Bayesian model
comparison techniques. The remainder of the paper is organized as follows, in Section 2,
we provide introduction to general bivariate shared frailty model. In Section three, baseline
distribution IDB is discussed. Section four and five respectively considers compound Poison
and compound negative binomial shared frailty models. Section 6 is contributing to proposed
models. In section 7 estimation procedure is discussed followed by simulation study and data
analysis of kidney infection data in Section 8 and 9 respectively. Finally, paper concluded
with Conclusion.

2. General bivariate shared frailty model

Suppose n individuals are observed for the study and let a bivariate random variable
(T1j, T2j) be represent first and second survival time of jth individual (j = 1, 2, 3, . . . , n).
Also suppose that there are k observed covariates collected in a vector Xj = (X1j, . . . , Xkj)
for jth individual where Xaj (a = 1, 2, 3, . . . , k) represent the value of ath observed covariate
for jth individual. Here we assume that both the survival times for each individual share the
same value of the covariates.

Let Zj be represent shared frailty variable for jth individual. Assuming that the frailties
are acting multiplicatively on the baseline hazard function and both the survival times of
individuals are conditionally independent for given frailty, the conditional hazard function
and hence conditional survival function for jth individual at ith (i = 1, 2) survival time tij > 0
for given frailty Zj = zj has the form respectively,

h(tij | zj, Xj) = zjh0(tij)ηj (2)
S(tij | zj, Xj) = e−zjH0(tij)ηj (3)

where h0(tij) and H0(tij) are respectively baseline hazard and cumulative baseline hazard
functions at time tij > 0; ηj = eXjβ and β is a vector of order k, of regression coefficients.
Under the assumption of independence, bivariate conditional survival function for given
frailty Zj = zj at time t1j > 0 and t2j > 0 is,

S(t1j, t2j | zj, Xj) = e−zj(H01(t1j)+H02(t2j))ηj (4)

Unconditional bivariate survival function at time t1j > 0 and t2j > 0 is obtained by integrat-
ing over frailty variable Zj having the probability function f(zj), for jth individual.

S(t1j, t2j | Xj) =
ˆ

Zj

S(t1j, t2j | zj)f(zj)dzj = LZj
[(H01(t1j) +H02(t2j))ηj]

where LZj
(.) is Laplace transform of frailty variable of Zj for jth individual. Thus, uncondi-

tional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 is,

S(t1j, t2j | Xj) = LZj
[(H01(t1j) +H02(t2j))ηj] (5)

Here onwards we represent S(t1j, t2j | Xj) as S(t1j, t2j).

Once we have unconditional survival function of bivariate random variable (T1j, T2j)
we can obtain likelihood function and estimate the parameters of the model.
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3. Baseline distribution

A continuous random variable T is said to follow three parameters Increasing, De-
creasing, Constant and Bathtub-shaped (IDB) distribution if its survival function is given
by,

S0(t) =


e− λt2

2

(1 + αt)
θ
α

; t > 0, α > 0, λ > 0, θ > 0

1 ; otherwise.

(6)

Corresponding density function, hazard function and cumulative hazard function are
respectively;

f0(t) =


θ + λt (1 + αt)
(1 + αt)1+θ/α

exp
(
−λt2

2

)
; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(7)

h0(t) =


λt+ θ

1 + αt
; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(8)

H0(t) =


λt2

2 + θ

α
log (1 + αt) ; t > 0, α > 0, λ > 0, θ > 0

0 ; otherwise.
(9)

It is easy to observe that, first term of hazard function increases and second term
decreases with increase in time. So, if λ is 0 then hazard function is decreasing function and
for θ = 0 it is increasing in nature. From the difference between hazard function for two

different time points 0 < t1 < t2, h0(t1) −h0(t2) = (t2 − t1)
[

αθ

(1 + αt1)(1 + αt2)
− λ

]
, we can

observe that, for λ ≥ αθ hazard function is increasing function and for 0 < λ < αθ hazard
function will have bathtub shape. For λ = 0 = α it has a constant hazard function.

4. Compound Poison shared frailty model

A random variable defined in (1) is said to follow compound Poisson distribution if N
is Poisson distributed with mean ρ. The distribution of Z consists of two parts; a discrete
part which corresponds to the probability of zero susceptibility, and a continuous part on
the positive real line. The discrete part is, P (Z = 0) = e−ρ, which decreases as ρ increases
and the distribution of the continuous part can be found by conditioning N and using the
fact that the Y ‘

i s are gamma distributed. It can be written as

f(z; γ, ν, ρ) =


1
z
e−(ρ+νz)

∞∑
n=1

ρn(νz)nγ

Γ(nγ)n! ; z > 0, ρ > 0, ν > 0, γ > 0
0 ; otherwise
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The parameter set for the compound Poisson distribution is ρ > 0, ν > 0, γ > 0. The
moments; mean, variance and Laplace transform of compound Poisson distribution are given
by,

LZ(s) = exp
{

−ρ
[
1 −

(
ν

ν + s

)γ]}
(10)

E(Z) = ργ

ν
; V ar(Z) = ργ(γ + 1)

ν2 . (11)

The shared frailty models are suffering from non-identifiability. To resolve the issue, as
usual, we assume Z has expected value equal, which imposes the restriction ν = ργ on the
parameters of compound Poisson distribution. Under the restriction Laplace transformation
of compound Poisson distribution reduces to,

LZ(s) = exp

−ρ

1 −
(

1 + s

ργ

)−γ
 (12)

with variance γ + 1
ργ

. Replacing Laplace transformation in equation (5), we get the uncon-

ditional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j, t2j) = exp

−ρ

1 −
(

1 + (H01(t1j) +H02(t2j))ηj

ργ

)−γ
 (13)

Clayton (1978) defined a cross-ratio function given by,

θ∗(t1, t2) = λ1(t1 | T2 = t2)
λ1(t1 | T2 > t2)

= λ2(t2 | T1 = t1)
λ2(t2 | T1 > t1)

=
S(t1, t2)

∂2S(t1, t2)
∂t1∂t2

∂S(t1, t2)
∂t1

∂S(t1, t2)
∂t2

where λ1(.) and λ2(.) are conditional hazard functions of T1 and T2. It is an association
function such that,

θ∗(t1, t2)


> 1 ; positive association
= 1 ; no association
< 1 ; negative association

For compound Poisson shared frailty model cross-ratio function is given by,

θ∗(t1, t2) = 1 + σ2
[
1 + lnS(t1, t2)

ρ

]−1

(14)

It is easy to observe that, cross ratio function is greater than one and is a function of t1, t2.
This implies there is always positive association between the survival times t1 and t2. Also,
it is decreasing function of t1 > 0, t2 > 0 and decreases from 1 + σ2 to 1.
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5. Compound Negative Binomial shared frailty model

A random variable of (1) is said to follow compound negative binomial distribution if N
is negative binomial variate with parameters; the number of successes, r and the probability
of success, p. The probability function of N is given by,

P (x) =


(
x+ r − 1

x

)
prqx ; x = 0, 1, · · · ; 0 < p < 1; q = 1 − p, r = 1, 2, · · ·

0 ; otherwise

Discrete part of probability function of Z is, P (Z = 0) = pr and the continuous part is given
by,

f(z) =


pr 1

z
e−νz

∞∑
N=1

(
N + r − 1

N

)
qN (νz)Nγ

Γ(Nγ) ; z > 0, ν > 0, γ > 0, 0 < p < 1;

q = 1 − p, r = 1, 2, · · ·

0 ; otherwise.

The parameter set for the compound negative binomial distribution is, r = 1, 2, · · · ; 0 <
p < 1; ν > 0 and γ > 0. The Laplace transform, mean and variance of compound negative
binomial variate are respectively given by,

LZ(s) =


p

1 − q
[
1 + s

ν

]−γ


r

(15)

E(Z) = rqγ

pν
;V ar(Z) = rqγ(p+ γ)

p2ν2 (16)

Under the identifiability condition, EZ = 1, the restriction on parameters is ν = rqγ

p
. Under

this restriction, Laplace transform of compound negative binomial distribution reduces to,

LZ(s) =

 p

1 − q
[
1 + d ps

rqγ

]−γ


r

(17)

with variance σ2 = p+ γ

rqγ
. Replacing Laplace transform in equation (5), we get the uncon-

ditional bivariate survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j, t2j) =


p

1 − q

[
1 + p(H01(t1j) +H02(t2j))η

rqγ

]−γ



r

(18)
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For negative binomial shared frailty model cross-ratio function is given by,

θ∗(t1, t2) = 1 −

1 − (γ + 1)

1 − pS(t1, t2)
−

1
r


−1

rγ

We can easily observe that, cross-ratio function is always positive and decreasing function of
t1, t2. It decreases between 1− 1

rγ
+γ + 1

rqγ
to 1− 1

rγ
. This implies that there is always positive

association between the survival times t1 and t2 and it decreases as time t1, t2 increases.

6. Proposed models

The unconditional bivariate survival functions for compound Poisson and compound
negative binomial models at time t1j > 0 and t2j > 0 after substituting cumulative hazard
function for IDB distribution in equations (13) and (18) are,

S(t1j, t2j) = exp

−ρ

1 −
(

1 + ϕ(t1j, t2j)ηj

ργ

)−γ
 (19)

S(t1j, t2j) = pr

1 − q

(
1 + pϕ(t1j, t2j)ηj

rqγ

)−γ
−r

(20)

where ϕ(t1j, t2j) =
λ1t

2
1j

2 +
λ2t

2
2j

2 + θ1

α1
log(1 + α1t1j) + θ2

α2
log(1 + α2t2j). Here onwards we

call equation (19) and (20) as model CP and CNB respectively.

7. Likelihood specification and bayesian estimation of parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for jth

individual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. Here we
assume the independence between censoring scheme and life times of individuals.

The contribution of bivariate life time random variable of jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j < c1j, t2j < c2j,
f2(t1j, c2j), ; t1j < c1j, t2j > c2j,
f3(c1j, t2j), ; t1j > c1j, t2j < c2j,
f4(c1j, c2j), ; t1j > c1j, t2j > c2j.

and likelihood function is,

L(θ, β, τ) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (21)



2023] MODELING BIVARIATE SURVIVAL DATA 307

where τ , θ = (α1, λ1, θ1, α2, λ2, θ2) and β are respectively vector of frailty parameters, vector
of baseline parameters and vector of regression coefficients. In compound Poisson model
τ = (ρ, γ) and in compound negative binomial model τ = (r, p, γ). Let n1, n2, n3 and n4
be the number of pairs for which first and second failure times (t1j, t2j) lie in the ranges
t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and t1j > c1j, t2j > c2j respectively
and

f1(t1j, t2j) = ∂2S(t1j, t2j)
∂t1j∂t2j

, f2(t1j, c2j) = −∂2S(t1j, c2j)
∂t1j

f3(c1j, t2j) = −∂2S(c1j, t2j)
∂t2j

, f4(c1j, c2j) = S(c1j, c2j)

These functions for CP and CNB model respectively are given by,
CP model:

f1(t1j, t2j) =
[
λ1t1j + θ1

1 + α1t1j

] [
λ2t2j + θ2

1 + α2t2j

] [
1 + ϕ(t1j, t2j)ηj

ργ

]−(γ+2)

γ + 1
ργ

+
[
1 + ϕ(t1j, t2j)ηj

ργ

]−γ
S(t1j, t2j)η2

j

f2(t1j, c2j) =
[
λ1t1j + θ1

1 + α1t1j

] [
1 + ϕ(t1j, c2j)ηj

ργ

]−(γ+1)

S(t1j, t2j)ηj

f3(c1j, t2j) =
[
λ2t2j + θ2

1 + α2t2j

] [
1 + ϕ(c1j, t2j)ηj

ργ

]−(γ+1)

S(t1j, t2j)ηj

f4(c1j, c2j) = S(t1j, t2j)

CNB model:

f1(t1j, t2j) =
pr+2η2

j

rqγ

[
λ1t1j + θ1

1 + α1t1j

] [
λ2t2j + θ2

1 + α2t2j

]
Φ1(t1j, t2j)[

1 + pϕ(t1j, t2j)ηj

rqγ

]2(γ+1)
1 − q

[
1 + pϕ(t1j, t2j)ηj

rqγ

]−γ


r+2

f2(t1j, c2j) = pr+1ηj

λ1t1j + θ1

1 + α1t1j[
1 + pϕ(t1j, c2j)ηj

rqγ

](γ+1)
1 − q

[
1 + pϕ(t1j, c2j)ηj

rqγ

]−γ


r+1

f3(c1j, t2j) = pr+1ηj

λ2t2j + θ2

1 + α2t2j[
1 + pϕ(c1j, t2j)ηj

rqγ

](γ+1)
1 − q

[
1 + pϕ(c1j, t2j)ηj

rqγ

]−γ


r+1

f4(c1j, c2j) = pr

1 − q

(
1 + pϕ(c1j, c2j)ηj

rqγ

)−γ
−r
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where Φ1(t1j, t2j) = qγ(r + 1) + (γ + 1)
[
1 + pϕ(t1j, t2j)ηj

rqγ

]γ {
1 − q

[
1 + pϕ(t1j, t2j)ηj

rqγ

]}

In our study, the likelihood function (21), due to censoring, is not in a simple form and
so the first order derivatives. Hence, to estimate the parameters we have to use Newton-
Raphson iterative procedure, but may be due to large number of parameters MLE’s are not
converging. So, we moved to computational Bayesian approach which does not suffer from
these difficulties.

The joint posterior density function of parameters for given failure times is given by,

π(α1, λ1, θ1, α2, λ2, θ2, τ , β) ∝ L(α1, λ1, θ1, α2, λ2, θ2, τ , β) ∗ g1(α1)g2(λ1)g3(θ1)g4(α2)

g5(λ2)g6(θ2)
f∏

i=1
hi(τi)

k∏
i=1

pi(βi)

where gi(.) (i = 1, 2, · · · , 6), hi(.) (i = 1, 2, · · · , f) and pi(.) (i = 1, 2, · · · , k) are prior
density functions with known hyper parameters of corresponding arguments for baseline,
frailty parameters and regression coefficients. Likelihood function L(.) is given by equation
(21). Here we assume that all the parameters are independently distributed.

A widely used prior for frailty parameter is the gamma distribution with mean one and
large variance, G(ϕ, ϕ), say with a small choice of ϕ and the prior for regression coefficient
is the normal with mean zero and large variance say ϵ2. Similar types of prior distributions
were used in Ibrahim et al. (2001), Sahu etal. (1997) and Santos et al. (2010). So, in
our study also we have used same noninformative prior for frailty parameters and regression
coefficients. We have considered two different noninformative prior distributions for baseline
parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters ϕ, ϵ2, a1, a2, b1
and b2 are known. Here G(a1, a2) is gamma distribution with shape parameter a1 and scale
parameter a2 and U(b1, b2) represents uniform distribution over the interval b1 to b2. We set
hyper-parameters ϕ = 0.0001, ϵ2 = 1000, a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 100.

We have fitted the Bayesian model with the above prior density functions and likeli-
hood function (21) using Metropolis-Hastings algorithm. We have monitored convergence
of Markov chain to a stationary distribution by Gelman-Rubin convergence statistic and
Geweke test. Trace plots, coupling from the past plots and sample autocorrelation function
plots have been used, to check the behaviour of the chain, to decide burn-in period and
sample autocorrelation lag respectively.

In order to compare the proposed models, we have used Akaike Information crite-
ria (AIC), Bayesian Information Criterion (BIC), Deviance Information Criteria (DIC) and
Conditional Predictive Ordinate (CPO) plot (see Gelfand (1996)). Also, we have used the
Bayes factor Buv for comparison of the models Mu against Mv. To compute Bayes factor,
we have considered MCMC approach given in Kass and Raftery (1995).

8. Simulation study

To evaluate the performance of the Bayesian estimation procedure we have carried out
a simulation study. For the simulation purpose we have considered only one covariate X1. It
is assumed to follow normal distribution. As the Bayesian methods are time consuming, we
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have generated only fifty pairs of life times. According to the assumption, for given frailty
Z, life times of individuals are independent. So, the conditional survival function for an
individual for given frailty Z = z and a covariate X1 at time t > 0 is,

S(t | z,X1) = e−zH0(t)η

Equating S(t | z,X1) to a random number say R (0 < R < 1) over t > 0 we get,

ψ(t) = λt2

2 + θ

α
log(1 + αt) + log(R)

zη
(22)

It is not possible to express explicitly as function of t, so to generate life times we have used
bisection method. Exact step-wise procedure to generate sample is:

1. Generate a random sample of size 50 from frailty distribution as shared frailty for jth

(j = 1, 2, · · · , 50) individual. Firstly, generate a random observation N = n from
Poisson distribution for CP model and from negative binomial for CNB model. If
n = 0 then assign frailty Z = 0 and if n > 0 then generate n gamma variables Xi and
assign Z =

n∑
i=1

Xi.

2. Generate 50 covariate values for X1 from normal distribution and compute ηj = eX1jβ1

for jth individual.

3. Generate 50 pairs of life times (t1j, t2j) for given frailty zj obtained in step 1 by solving
equation (22) using bisection method.

4. Generate censoring times c1j and c2j from exponential distribution and observe survival
time for ith time t∗ij = min(tij, cij) and censoring indicator δij for jth individual (i = 1, 2
and j = 1, 2, . . . , 100), where

δij =
{

1, ; tij ≤ cij

0, ; tij > cij

To estimate parameters of the model using simulated data, we have generated two parallel
chains for both the models using two sets of prior distributions with the different starting
points using Metropolis-Hastings algorithm based on normal transition kernels. We have
iterated both the chains for 10000 times. There is no effect of prior distribution on posterior
summaries because estimates of parameters are nearly same and convergence rate of chains
for both the prior sets is also not greatly different. Also, for both the chains the results are
somewhat similar, so we present here the analysis for only one chain with G(a1, a2) as prior
for baseline parameters, for both the models.

To check the effect of sample size of chain on the posterior summary, we have generated
different samples and obtained posterior summary with small, moderate and large sample
sizes. We have considered sample of size 7 as small, 16 as moderate and maximum possible
sample size allowed by number of iterations and autocorrelation lag as large sample size.
Gelman-Rubin convergence statistic values are nearly equal to one and Geweke test values are
quite small and corresponding p-values are large enough to say the chain attains stationary
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Table 1: Posterior summary for simulation study of CP model

Parameter α1 λ1 θ1 α2 λ2 θ2 ρ γ β1 |Bias|
True values 2.2 4.5 0.5 2.2 4.5 0.5 5 0.5 0.5 -

Sample size = 7;
Estimates 2.0370 4.3470 0.5149 2.2999 4.4598 0.3534 4.5035 0.2865 0.6043

Standard error 0.4637 0.3185 0.2442 0.4083 0.2336 0.2108 0.2601 0.1310 0.1080
Bias 0.1630 0.1530 0.0149 0.0999 0.0402 0.1466 0.4965 0.2135 0.1043 0.6215

Sample size = 16;
Estimates 2.2739 4.3950 0.4292 2.2676 4.5015 0.3621 4.5087 0.3225 0.6281

Standard error 0.4414 0.3094 0.1980 0.4130 0.2098 0.2310 0.2846 0.1591 0.1283
Bias 0.0739 0.1050 0.0708 0.0676 0.0015 0.1379 0.4913 0.1775 0.1281 0.5783

Sample size = 85;
Estimates 2.2268 4.4535 0.4643 2.1980 4.5278 0.4838 4.7066 0.4804 0.5494

Standard error 0.4192 0.2878 0.2458 0.3284 0.2035 0.2277 0.2659 0.2124 0.1494
Bias 0.0268 0.0465 0.0357 0.0020 0.0278 0.0162 0.2934 0.0196 0.0494 0.3068

Table 2: Posterior summary for simulation study of CNB model

Parameter α1 λ1 θ1 α2 λ2 θ2 p γ β1 |Bias|
True values 2.2 4.5 0.5 2.2 4.5 0.5 0.5 0.5 0.5 -

Sample size = 7;
Estimates 2.0312 4.6471 0.5990 2.1994 4.4922 0.4522 0.4821 0.8097 0.4954

Standard error 0.4799 0.1739 0.2175 0.3917 0.2917 0.1978 0.0081 0.1558 0.0569
Bias 0.1688 0.1471 0.0990 0.0006 0.0078 0.0478 0.0179 0.3097 0.0046 0.3982

Sample size = 16;
Estimates 2.3001 4.5286 0.5976 2.2886 4.6000 0.4931 4.4826 0.7890 0.4963

Standard error 0.4100 0.2626 0.1993 0.4110 0.3012 0.1229 0.0112 0.1358 0.0786
Bias 0.1001 0.0286 0.0976 0.0886 0.1000 0.0069 0.0174 0.2890 0.0037 0.3494

Sample size = 85;
Estimates 2.2169 4.4515 0.5234 2.1933 4.5115 0.4980 0.4827 0.7582 0.4923

Standard error 0.4866 0.2707 0.1999 0.3694 0.2571 0.2114 0.0111 0.1457 0.0797
Bias 0.0169 0.0484 0.0234 0.0067 0.0115 0.0020 0.0173 0.2582 0.0077 0.2653

distribution. Simulated values of parameters have autocorrelation of lag k, so every kth

iteration is selected as a sample from posterior distribution. The posterior mean and standard
error with absolute bias for different sample sizes are reported in Table 1 and Table 2 for
model CP and model CNB respectively. Last column of these Tables gives norm of bias which

is calculated as
√

n∑
i=1

(true parameteri − estimated valuei)2. From these Tables, it can be

observed that the estimates become closer and closer to true values as sample size increases.
Also, the standard error reduces as sample size increases.

9. Analysis of kidney infection data

We fit the proposed models to kidney infection data of McGrilchrist and Aisbett (1991).
The data is related to recurrence times to infection at point of insertion of the catheter for
38 kidney patients using portable dialysis equipment. For each patient, first and second
recurrence times (in days) of infection from the time of insertion of the catheter until it has to
be removed owing to infection is recorded. The catheter may have to be removed for reasons
other than kidney infection and this regard as censoring. So, survival time for a patient given
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may be first or second infection time or censoring time. After the occurrence or censoring of
the first infection sufficient (ten weeks interval) time was allowed for the infection to be cured
before the second time the catheter was inserted. So, the first and second recurrence times
are taken to be independent apart from the common frailty component. The data consists
of three risk variables age, sex and disease type GN, AN and PKD where GN, AN and PKD
are short forms of Glomerulo Nephritis, Acute Nephritis and Polycystic Kidney Disease. Let
T1 and T2 be represents first and second recurrence time to infection. Five covariates age,
sex and presence or absence of disease type GN, AN and PKD are represented by X1, X2,
X3, X4, and X5. To analyze kidney infection data, success is defined as getting infection
first time, so we set r = 1.

First, we check goodness of fit of the data for both baseline distributions and then
apply the Bayesian estimation procedure. To check goodness of fit for kidney data set, we
have considered Kolmogorove-Smirnov test, we have applied the test to T1 and T2 separately.
The p-values for CP and CNB models for T1 are 0.9996, 0.4935 and for T2 are 0.5111, 0.3225
respectively.

Table 3: Posterior summary for kidney infection data set for CP model

Parameter Estimates S.E. L.C.L U.C.L
n = 250, B = 1400, k = 390

α1 0.721066 0.125690 0.555642 0.962101
λ1 0.000386 0.000361 0.000068 0.001358
θ1 0.091341 0.047561 0.026447 0.213807
α2 0.759945 0.116958 0.570522 0.982734
λ2 0.000329 0.000300 0.000054 0.001263
θ2 0.050038 0.028556 0.012666 0.128006
ρ 3.455383 0.805696 2.012911 4.910539
γ 2.440900 1.195852 1.032547 5.256461
β1 0.007370 0.116010 -0.013778 0.029776
β2 -1.885846 0.639941 -3.153641 -0.677762
β3 0.168584 0.547786 -0.898598 1.244601
β4 0.786868 0.544851 -0.298998 1.820400
β5 -0.499750 0.980033 -2.549072 1.433960

Table 4: Posterior summary for kidney infection data set for CNB model

Parameter Estimates S.E. L.C.L U.C.L
n = 242, B = 2000, k = 390

α1 0.748220 0.130669 0.555915 0.982400
λ1 0.000875 0.000742 0.000134 0.002706
θ1 0.075700 0.053959 0.018796 0.217971
α2 0.767938 0.124498 0.562309 0.979487
λ2 0.000658 0.000502 0.000128 0.001859
θ2 0.041461 0.024286 0.011405 0.099163
p 0.065639 0.021011 0.041000 0.118163
γ 0.496327 0.049441 0.406921 0.591675
β1 0.009677 0.014753 -0.016473 0.040842
β2 -2.368412 0.662620 -3.736769 -1.133544
β3 0.221596 0.681551 -1.067240 1.394427
β4 0.829265 0.645573 -0.526464 1.853952
β5 -0.426339 1.044975 -2.423081 1.464310
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As in case of simulation, here also we have got same conclusion. So, we present the
analysis for only one chain with G(a1, a2) as prior for baseline parameters, for both the
models. In this case we iterated chains for 99000 times. The posterior summaries for CP
and CNB models are presented in Table 3 and Table 4 respectively. In these Tables, second
and third column represents estimate (posterior mean) and standard error whereas last two
columns represent 95% lower and upper credible limits. The notations n,B and k respec-
tively represent sample size, burn in period and auto-correlation lag.

Table 5: AIC, BIC and DIC values for kidney infection data set

Model WOF CP CNB
AIC 712.3857 711.7692 709.3664
BIC 733.6743 732.7827 730.6550
DIC 708.4433 702.7835 698.9031

Table 5 provides AIC, BIC and DIC values for three models, CP, CNB and the model
with ignoring frailty, which we call as without frailty (WOF) model. AIC and BIC values
for CP and WOF models are nearly same, so cannot be used for comparing models, these
values for CNB model are definitely smaller amongst other models. Further, if we rank DIC
values from smallest to largest then CNB model will get first rank then CP and finally WOF
model. This suggest that, CP and CNB models both are better than WOF model and CNB
is better than CP.

Now consider comparison criteria Duv = 2 log(Buv) for comparing uth numerator model
against vth denominator model, where Buv is Bayes factor. Negative value of Duv favours
denominator model. These values are provided in Table 6.

Table 6: Duv values for comparing CP and CNB models

Numerator Model
WOF CP

Denominator CP -0.7609 -
Model CNB -1.9194 -2.6804

From the Table 6 we can observe that, Duv values for CP against WOF and CNB
against WOF models are negative indicating CP and CNB models are better than WOF
model. This is also confirmed with CPO plot presented in Figures 1 and 2. Large number
of positive points in plot favour CP and CNB models. This implies if we ignore frailty then
we may lose more informative model.

Thus, all the comparison criteria indicate that CNB model is better than CP model.
We are now in a position to say that, both the proposed models, CP and CNB are more
informative than ignoring frailty and CNB model is the best model then CP for modelling
frailty in kidney infection data.
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Figure 1: CPO plot for CP against
WOF model

Figure 2: CPO plot for CNB against
WOF model

10. Discussions

In the present paper, we have discussed compound Poisson and compound negative
binomial shared frailty models. The main advantages of these models in comparison with
other share frailty models is that they deal with the zero susceptibility. Further, the cross-
ratio function is decreasing function of time unlike the other share frailty models, gamma
and inverse Gaussian. Here we have considered IDB as baseline distribution. Even though it
is an old distribution but it is more useful to model life times as it has increasing, decreasing,
constant and bathtub shaped hazard function.

We have used Metropolis-Hastings algorithm to fit all the models. We analysed kidney
infection data using our proposed models and the best model is suggested. We have used
self-written programs in R statistical Environment to perform analysis.

The estimated frailty variances (0.4080) and (1.2118) for compound Poisson and com-
pound negative binomial models respectively indicate that there is heterogeneity in the
population of patients. Some patients are expected to be very prone to infection compared
to others with the same covariate values. In continuation to this, all the model comparison
criteria suggested that compound Poisson and compound negative binomial models are bet-
ter than without frailty model. This indicates importance of frailty component in modelling
of kidney infection data. Further comparing compound Poisson and compound negative
binomial models, compound negative binomial shared frailty model is performing well for
modelling of kidney infection data than compound Poisson model.

In compound negative binomial share frailty model, only one regression coefficient, β2 is
having larger ratio of its estimate to standard error and the value zero is not a credible value
for the credible interval. This means, only covariate X2 i.e., Gender is significantly affecting
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Figure 3: CPO plot for CNB against CP model

on infection rate. Negative value of β2 indicate that the female patients have a lower risk for
infection as compared to male patients. Same conclusion holds for compound Poisson share
frailty models also. The estimated probability of non-susceptibility for compound negative
binomial shared frailty model is 0.0656 indicating almost 6% of patients in the population
are non-susceptible for kidney infection. In case of compound Poisson share frailty model,
it is 3%.

In summary, this paper discussed modelling of survival times using compound frailty
distributions when population consists of non-susceptible individuals.
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