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Abstract 

Zheng (2013) provided the penalized maximum likelihood estimators (PMLEs) of the 
location and scale parameters of two-parametric exponential distribution and proved that 
these estimators are uniformly minimum variance unbiased estimators (UMVUE). In this 
paper, a test procedure has been proposed, on the basis of the PMLEs of the location and 
scale parameters of the two-parametric exponential distribution. The purpose of the proposed 
procedure is to construct the simultaneous confidence intervals (SCIs) for the ordered pair-
wise comparisons of location parameters of multi-sample two-parameter exponential 
distributions under the heteroscedasticity of scale parameters. A Monte Carlo simulation 
study has revealed that the proposed procedure is better than the existing procedure of Singh 
and Singh (2013) in terms of coverage probability, average volume, and power. 
Implementation of the proposed procedure is illustrated through real-life numerical data.  
 
Key words: Simultaneous confidence interval (SCIs); Penalized maximum likelihood 
estimators (PMLEs); Heteroscedasticity; Simulated power comparison. 
 
1.  Introduction 

Suppose the 𝑘	(≥ 3) independent populations are such that the statistical model for the 
observations from the 𝑖𝑡ℎ population is a two-parameter exponential distribution, denoted 
by		𝐸!(𝜇! , 𝜃!), with probability density function (pdf) 
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where 𝜇! and 𝜃!are the location and the scale parameters respectively, 𝑖 = 1,… , 𝑘. 
 

In some of the practical situations, there is prior information of the ordering among the 
location parameters. For example, in dose-response experiments, the effect of a treatment 
may be related monotonically to the increasing levels of dose of a drug. Similarly, in against 
accelerated life testing, the higher stress level may lead to lowering the guaranteed lifetime. 
Many researchers have proposed statistical tests to test the null hypothesis 𝐻(: 𝜇) = ⋯ =
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𝜇* the simple ordered alternative	𝐻):	𝜇) ≤ ⋯ ≤ 𝜇* , with at least one strict inequality, for  
normal and exponential probability models. This problem of simple ordered alternative is a 
member of the class of order restricted alternatives. A detailed discussion on order restricted 
statistical inferences can be found in Barlow et al. (1972) and Robertson and Dykstra (1988). 
Marcus (1976), Hayter (1990), Lee and Spurrier (1995), Liu et al. (2000) have also proposed 
tests for the simple ordered alternatives under normal probability model. Chen (1982) and 
Dhawan and Gill (1997) inverted the test procedures for testing homogeneity of the location 
parameters of 𝑘	(≥ 3)  two-parameter exponential distributions to construct simultaneous 
confidence intervals (SCIs) for the ordered pair-wise differences of location parameters under 
the assumption of homogeneity of scale parameters. Singh et al. (2006) proposed a procedure 
for successive comparisons of the location parameters of exponential distributions by 
assuming the equality of scale parameters. Maurya et al. (2011) came up with one-stage and 
two-stage multiple comparison procedures using Lam’s (1987,1988) technique and obtained 
the conservative simultaneous confidence intervals (SCIs) for successive differences of the 
location parameters of several exponential distributions under the heteroscedasticity of scale 
parameters, i.e., 𝜃! ≠ 𝜃+ , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . Later, Singh and Singh (2013) put forward less 
conservative SCIs by extending Maurya et al. (2011) procedure. Kharrati Kopaei (2014) 
introduced a new lemma and used the same to provide SCIs for the successive differences of 
the location parameters which were less conservative than the SCIs of Maurya et al. (2011).  
It may be noted that Maurya et al. (2011), Singh and Singh (2013) and Kharrati Kopaei 
(2014) used the maximum likelihood estimator (MLE) of the location parameter. Although, 
the MLEs have a few desirable properties like efficiency and consistency but may not be 
unbiased. Zheng (2013) provided the penalized maximum likelihood estimators (PMLEs) of 
the location and scale parameters of two-parameter exponential distribution which are 
uniformly minimum variance unbiased estimators (UMVUEs). In this article, we have 
proposed one-stage and two-stage multiple comparison procedures to construct SCIs using 
the PMLEs of the location parameters for the ordered pair-wise differences of location 
parameters under heteroscedasticity of scale parameters. The layout of the paper is as 
follows. 

 
In this paper, Sections 2 and 3 respectively contain the proposed one-stage and two-

stage multiple comparison procedures to construct the simultaneous confidence intervals 
(SCIs) for the ordered pair-wise differences of location parameters. In Section 4, the results 
of Monte Carlo simulation studies conducted to compare the power, coverage probabilities 
(CP), and average volume (AV) of the proposed procedures with the procedure of Singh and 
Singh (2013), are presented. The implementation and the better performance ability of the 
proposed procedures over the more conservative procedure of Singh and Singh (2013), is 
demonstrated by taking a real-life example in Section 5. Finally, a brief conclusion is 
presented in Section 6.  

 
2.  One-Stage Procedure for the Simultaneous Testing of the Ordered Differences of 

Location Parameters  
 

Let there be 𝑘  independent exponential populations and that 𝑋!), 𝑋!,, … , 𝑋!- be a 
random sample of size 𝑚	(> 2)  from the 𝑖𝑡ℎ  population 𝐸!(𝜇! , 𝜃!), 𝑖 = 1,… , 𝑘 . The 
maximum likelihood estimators (MLEs) of 𝜇!and 𝜃! are 𝑋! = min(𝑋!), 𝑋!,, … , 𝑋!-)	and 𝑉! =
∑ (𝑋!+ − 𝑋!)/𝑚-
+ , respectively and these MLEs are not unbiased estimators. In literature, an 

approach exists in which a penalty is added to the regular likelihood function so that the new 
function no longer remains a monotone function of the location parameter. Let 𝑋![)] ≤
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𝑋![,]… ≤ 𝑋![-]  be the ordered values corresponding to the above random sample. Zheng 
(2013) used the penalty term 𝑥![)] − 𝜇! in the regular likelihood function, where 𝑥![)] is the 
realized value of	𝑋![)], and gave the penalized maximum likelihood function as follows: 

𝐿(𝜇! , 𝜃!) = Q𝑥![)] − 𝜇!RS𝑓Q𝑥![)]T𝜇! , 𝜃!R
-

+0)

= Q𝑥![)] − 𝜇!R
1
𝜃!-

𝑒"
)
& ∑ 2$!""%!3#

"$% , 𝑥![)] ≥ 𝜇! 

The penalized maximum likelihood estimators (PMLEs) of  𝜇! and 𝜃! obtained from the 
above likelihood function are 𝑌! =

-4![%]"45

(-"))
 and 𝑆! =

-(45"4![%])
(-"))

 respectively, where 𝑋W =
∑ 𝑋!+-
+0) /𝑚, is the sample mean. It is also proven that these estimators of the location and 

scale parameters are unique minimum variance unbiased estimators (UMVUEs). Previously, 
the same estimators have also been obtained by Cohen and Helm (1973) and Sarhan (1954) 
using different methods of estimation such as modified moment and least square, 
respectively.  

 
Consider the family of hypotheses for the ordered location parameters 
 

(i) 	𝐻(!: 𝜇+ − 𝜇! = 0		against	𝐻)!: 𝜇+ − 𝜇! > 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘   (One-sided problem) 
(ii) 	𝐻(!: 𝜇+ − 𝜇! = 0		against	𝐻,!: 𝜇+ − 𝜇! ≠ 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘    (Two-sided problem) 

 
For the testing of these hypotheses, we can use the one-stage multiple comparison 

procedure given by Lam (1987, 1988) to construct simultaneous confidence intervals (SCIs) 
for the one-sided and two-sided sets of pair-wise differences of the ordered location 
parameters when the scale parameters are unknown and 𝜃! ≠ 𝜃+ , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,  i.e., 
heteroscedasticity of scale parameters exists. One-stage multiple comparison procedure has 
the merit over a two-stage procedure (as described in detail in Section 3) in practical 
situations where the second stage of sampling is not possible due to the shortage of time, 
budget, and destructive type of experiments or some other factors.  
 

The PMLEs of the location and scale parameters have been utilized instead of the 
MLEs for the simultaneous testing of the ordered location parameters. It is easy to verify that 
the PMLEs of the location and scale parameter can be written 𝑌! = 𝑋! − 𝑆! 𝑚⁄  and 𝑆! =
∑ (𝑋!+ − 𝑋!)/(𝑚 − 1)-
+ . Define a constant		𝑑 = max)6!6*(𝑆!/𝑚). The random variables 𝑇! =

(𝑋! − 𝜇!)/𝜃!and 2(𝑚 − 1)𝑆! 𝜃!⁄  are stochastically independently distributed as 𝐸(0,1) and 
Chi-square with	2(𝑚 − 1) degree of freedom (d.f.), respectively. Hence, the statistic 𝑊!

∗ =
𝑚(𝑋! − 𝜇!)/𝑆! is distributed as Snedecor		𝐹 with (2, 2𝑚 − 2)	degree of freedom (d.f.). Using 
a one-stage procedure on the similar lines of Lam’s (1987, 1988), the proposed one-sided and 
two-sided simultaneous confidence intervals (SCIs) for the ordered pair-wise differences of 
location parameters under heteroscedasticity of scale parameters are given in the following 
theorem. 

 
Theorem 1: Let 𝑞*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1  and 		𝑟*,-,9 = 𝐹,,,-",") (1 − 𝛼))/* − 1 , 
for given 0 < 𝛼 < 1 
 

(i) 𝑃Q𝜇+ − 𝜇! ≥	𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
Then Q𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , ∞R  is the set of one-sided simultaneous confidence 
intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼).  

(ii) 𝑃Q𝑌+ − 𝑌! − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
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Then ( 𝑌+ − 𝑌! − 𝑑𝑟*,-,9 , 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 ) is the set of two-sided simultaneous 
confidence intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 

We applied the following lemma of Lam (1987, 1988) to prove Theorem 1. 
 
Lemma 1: Suppose X and Y are two random variables, and a and b are two positive 
constants; then 
 

[𝑎𝑋 ≥ 𝑏𝑌 − 𝑑𝑚𝑎𝑥(𝑎, 𝑏)] ⊇ [𝑋 ≥ −𝑑, 𝑌 ≤ 𝑑	𝑎𝑛𝑑	𝑋 ≥ 𝑌 − 𝑑]. 
  
The proofs of the part (i) and (ii) of Theorem 1 on the basis of Lemma 1 are as follow 
 
Proof of part (i): 𝑃Q𝜇+ − 𝜇! ≥	𝑌+ − 𝑌! − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
=𝑃Q𝑋! − 𝜇! − 𝑆!/𝑚 ≥	𝑋+ − 𝜇+ − 𝑆+/𝑚 − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑆!/𝑚(𝑊!

∗ − 1)) ≥ 	𝑆+/𝑚Q𝑊+∗ − 1R − 𝑑𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑊+∗ − 1 ≤ 𝑞*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 1 − 𝛼 QSince	𝑞*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1	R. 
 
Proof of part (ii): 𝑃Q𝑌+ − 𝑌! − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌+ − 𝑌! + 𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃Q𝑋+ − 𝑆+/𝑚 − 𝑋! + 𝑆!/𝑚 − 𝑑𝑟*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑋+ − 𝑆+/𝑚 − 𝑋! + 𝑆!/𝑚 + 𝑑𝑟*,-,9 , 1

≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 𝑃(𝑆! 𝑚⁄ (𝑊!

∗ − 1) ≥ 𝑆+/𝑚Q𝑊+∗ − 1R − 𝑑𝑟*,-,9 ∩ 𝑆+/𝑚Q𝑊+∗ − 1R
≥ 𝑆!/𝑚(𝑊!

∗ − 1) − 	𝑑𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘
= 𝑃Q𝑊+∗ − 1 ≤ 𝑟*,-,9 ∩𝑊!

∗ − 1 ≤ 𝑟*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R 
= 1 − 𝛼. QSince	𝑟*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*) − 1	R. 
 
Here 𝐹,,,-",") (𝑥) denotes the 𝑥𝑡ℎ quantile of the snedecor 𝐹  distribution with (2, 2𝑚 − 2)	 
degree of freedom (d.f.).  
 
3.  Two-Stage Procedure for the Simultaneous Testing of the Ordered Differences of 

Location Parameters 

A two-stage multiple comparison procedure has been used on the similar lines of Lam’s 
(1987, 1988) to construct one-sided and two-sided simultaneous confidence intervals (SCIs) 
for the ordered pair-wise comparisons of location parameters of several exponential 
populations under the heteroscedasticity of scale parameters, which is explained below: 

 
 

Stage 1: In the first stage, the procedure begins by taking random sample	𝑋!), 𝑋!,, … , 𝑋!-, of 
size 𝑚	(≥ 2) from the 𝑖𝑡ℎ  population 	𝐸!(𝜇! , 𝜃!) . Let 𝑌q! = 𝑋! − 𝑆!/𝑚 and 𝑆! = ∑ (𝑋!+ −-

+
𝑋!)/(𝑚 − 1) be the PMLEs of 𝜇! and	𝜃!, respectively, where	𝑋! = min(𝑋!), 𝑋!,, … , 𝑋!-), 𝑖 =
1,… , 𝑘 . The random variables 𝑇! = (𝑋! − 𝜇!)/𝜃!  and 2(𝑚 − 1)𝑆!/𝜃!  are independently 
distributed as 𝐸(0,1) and Chi-square with	2(𝑚 − 1) d.f., respectively. 
 

Stage 2: In the second stage	(𝑁! −𝑚) additional observations are taken, for that we defined 
𝑁! = max[𝑚, [𝑆!/𝑐] + 1]	, 𝑖 = 1,… , 𝑘, where 𝑐 is an arbitrary positive constant to be chosen 
to control the width of the confidence intervals and [𝑥] denotes the greatest integer less than 
or equal to	𝑥. If	𝑁! = 𝑚, we do not take any more sample observations from each population. 
If	𝑁! > 𝑚, then take (𝑁! −𝑚) more/additional sample observations 𝑋!,-;), . . . , 𝑋!<! , from the 
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𝑖𝑡ℎ population	𝐸!(𝜇! , 𝜃!). This is known as the second stage of the two-stage procedure. Now, 
based on the combined sample observations 𝑋!,), … , 𝑋!,-, 𝑋!,-;), … , 𝑋!,<! ,	 let𝑋q! = 𝑋q!<! =
minQ𝑋!,), … , 𝑋!,-, 𝑋!,-;), … , 𝑋!,<!R and		𝑌q! = 𝑋q! − 𝑆!/𝑁!. It can be noted that 𝑈! = 𝑁!Q𝑋q!<! −
𝜇!R/𝜃!  and 2(𝑚 − 1)𝑆! 𝜃!⁄  are stochastically independently distributed as 𝐸(0,1) and Chi-
square with 	2(𝑚 − 1)  d.f., respectively. Hence 	𝑊! = 𝑁!Q𝑋q!<! − 𝜇!R/𝑆!  is distributed as 
Snedecor 𝐹 with (2, 2𝑚 − 2) d.f. 

 
The following theorem will provide us the one-sided and two-sided simultaneous 

confidence intervals (SCIs) for the ordered pair-wise differences of location parameters under 
heteroscedasticity of scale parameters. 
 

Theorem 2: Let	𝑢*,-,9 = 𝐹,,,-",") (1 − 𝛼))/(*")) − 1 and	𝑣*,-,9 = 𝐹,,,-",") (1 − 𝛼))/* − 1, 
for given 0 < 𝛼 < 1 
 

(i)  𝑃Q𝜇+ − 𝜇! ≥	𝑌q+ − 𝑌q! − 𝑐𝑢*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼. 
Then (𝑌q+ − 𝑌q! − 𝑐𝑢*,-,9 , ∞)  is the set of one-sided simultaneous confidence 
intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 

(ii) 𝑃Q𝑌q+ − 𝑌q! − 𝑐𝑣*,-,9 ≤ 𝜇+ − 𝜇! ≤ 𝑌q+ − 𝑌q! + 𝑐𝑣*,-,9 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘R ≥ 1 − 𝛼.  
 

Then (𝑌q+ − 𝑌q! − 𝑐𝑣*,-,9 , 𝑌q+ − 𝑌q! + 𝑐𝑣*,-,9) is the set of two-sided simultaneous 
confidence intervals for 𝜇+ − 𝜇! with confidence coefficient at least	(1 − 𝛼). 
 
Proof: The proof of the Theorem 2 is based on the similar lines of Theorem 1, by replacing 𝑐  
with		𝑑.  
 

4.  Simulation Study 
 
For the purpose of comparison of the proposed procedures, say Prop, with the 

procedure of Singh and Singh (2013), say SS, a Monte Carlo simulation study has been 
performed using 10=  iterations. The simulated power, coverage probability (CP), and the 
average volume (AV) of SCIs under each of these procedures have been computed. In each 
iteration fresh random samples were generated from each of the 𝑘 = 4  exponential 
distributions with location parameters (𝜇), 𝜇,, 𝜇>, 𝜇?) and scale parameters	(𝜃), 𝜃,, 𝜃>, 𝜃?). 
We have used the values of sample size and parametric configuration, i.e., the value of	𝑚, 
(𝜇), 𝜇,, 𝜇>, 𝜇?) and (𝜃), 𝜃,, 𝜃>, 𝜃?), as taken by Singh and Singh (2013) so that their simulated 
results can be incorporated in the comparison Tables 1-4. The simulated coverage probability 
is the proportion of repetitions in which all the ordered differences of location parameters are 
contained in the respective confidence intervals among 105 repetitions.  The volume of 
simultaneous confidence intervals in a repetition is the product of lengths of all the 
underlying confidence intervals. The average volume is the average of the volumes obtained 
under 105 repetitions. Thus, the average volume is with respect to two-sided SCIs where the 
lower and upper limits are finite. Simulated power is the proportion of repetitions in which at 
least one of the ordered differences	𝜇+ − 𝜇!, 1 ≤ 	𝑖 < 𝑗	 ≤ 	𝑘 falls outside the corresponding 
confidence interval.  
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Table 1: Simulated powers of one-stage procedure at 𝟏 − 𝜶 =. 𝟗𝟓, for varied 
configuration of (𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) when (𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) = (𝟏, 𝟏. 𝟏, 𝟏. 𝟐, 𝟏. 𝟑) 

 

𝑚 (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 

SS Prop SS Prop 
10 

(0,0,0, .4) 

.069 .180 .044 .117 
15 .434 .761 .313 .631 
16 .666 .933 .425 .746 
17 .792 .972 .548 .835 
18 .885 .989 .670 .902 
19 .943 .996 .772 .942 
20 .926 .987 .860 .969 
25 .999 1 .986 .998 
30 1 1 1 1 
10 

(0, .2, .3, .4) 

.066 .16 .039 .090 
15 .369 .629 .218 .424 
16 .469 .724 .357 .611 
17 .572 .803 .455 .706 
18 .672 .863 .559 .787 
19 .764 .908 .658 .851 
20 .832 .941 .666 .846 
25 .981 .995 .944 .982 
30 .998 1 .994 .998 

 
Table 2: Simulated powers of one-stage procedure at 𝟏 − 𝜶 =. 𝟗𝟓,  for varied 

configuration of (𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) when	(𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) = (𝟏, 𝟏, 𝟏, 𝟏) 
 

𝑚 (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 

SS Prop SS Prop 
10 

(0,0,0, .4) 

.087 .271 .056 .172 
15 .660 .937 .517 .862 
16 .791 .973 .667 .933 
17 .885 .989 .790 .971 
18 .943 .996 .884 .989 
19 .976 .999 .943 .996 
20 .990 1 .975 .999 
25 1 1 1 1 
30 1 1 1 1 
10 

(0, .2, .3, .4) 

.080 .225 .050 .145 
15 .524 .812 .402 .718 
16 .641 .878 .530 .811 
17 .750 .924 .646 .877 
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18 .833 .955 .775 .925 
19 .892 .973 .831 .954 
20 .932 .984 .892 .972 
25 .994 .999 .990 .998 
30 1 1 .999 1 

 
Table 3: The Coverage Probabilities (CP) and Average Volumes (AV) of two-sided SCIs 

under one-stage procedure for𝟏 − 𝜶 =	. 𝟗𝟓 
 

𝑚 (𝜃), 𝜃,, 𝜃>, 𝜃?) 
SS Prop 

CP AV CP AV 
10 

(1,1,1,1) 

.996 24.853 .987 7.66 
15 .993 .724 .977 .196 
16 .993 .428 .976 .114 
17 .992 .263 .974 .069 
18 .991 .167 .972 .063 
19 .990 .108 .971 .028 
20 .990 .073 .969 .019 
25 .989 .013 .963 .003 
30 .986 .004 .957 .001 
10 

(1,1.1,1.2,1.3) 

.996 68.961 .987 21.255 
15 .992 2.031 .978 .551 
16 .992 1.195 .975 .319 
17 .992 .742 .974 .195 
18 .991 .469 .973 .122 
19 .991 .308 .971 .079 
20 .991 .327 .972 .083 
25 .988 .061 .965 .015 
30 .987 .016 .962 .004 

 
Table 4: Simulated powers of two-stage procedure for varied configurations of 

(𝝁𝟏, 𝝁𝟐, 𝝁𝟑, 𝝁𝟒) and (𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒) for 𝟏 − 𝜶 =. 𝟗𝟓 
 

𝐿 𝑚 (𝜃), 𝜃,, 𝜃>, 𝜃?) (𝜇), 𝜇,, 𝜇>, 𝜇?) 
One-sided case Two-sided case 
SS Prop SS Prop 

0.6 

10 

(1,1.1,1.2,1.3) 

(0,0,0, .3) 
.755 .748 .757 .749 

20 .772 .718 .767 .724 
30 .782 .691 .783 .692 
10 

(0, .1, .2, .3) 
.555 .546 .552 .545 

20 .580 .514 .570 .518 
30 .581 .478 .578 .475 
10 

(1,1.1,1.2,1) 
(0,0,0, .3) 

.751 .757 .754 .756 
20 .739 .773 .742 .771 
30 .734 .784 .734 .783 
10 (0, .1, .2, .3) .549 .550 .547 .546 
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20 .537 .535 .540 .539 
30 .519 .516 .519 .517 
10 

(1,1,1,1) 

(0,0,0, .3) 
.755 .755 .754 .754 

20 .750 .754 .749 .750 
30 .751 .752 .751 .751 

 
10 

(0, .1, .2, .3) 
.543 .544 .542 .544 

20 .530 .530 .525 .525 
30 .509 .510 .509 .509 

 
Tables 1-2 show that the power of the proposed one-stage procedure using the PMLEs 

is substantially higher for small and moderate sample sizes than the power of the MLEs based 
procedure of Singh and Singh (2013). The analysis of Table 3 also suggests that the simulated 
coverage probability (CP) of the proposed procedure is closer to the nominal level .95 for 
moderate and large sample sizes whereas it is too high (close to .99) under the procedure of 
Singh and Singh (2013). Further, the average volume is also substantially smaller under the 
proposed procedure than the Singh and Singh (2013) procedure and it indicates that the 
length of the SCIs under the proposed procedure is smaller than the Singh and Singh (2013) 
procedure. The simulated powers under a two-stage setup are the same for the Proposed and 
Singh and Singh (2013) procedures. 
 
5.  Real Life Example 

 
We have taken the same data set as illustrated in Maruya et al. (2011) and Singh and 

Singh (2013), presented in Table 5. The data is about the survival times of inoperable lung 
cancer patients, categorized on the basis of histological type of tumor (squamous, small, 
adeno and large), who were subjected to standard chemotherapeutic agents. 

 
Singh and Singh (2013) have constructed one-sided and two-sided simultaneous 

confidence (SCIs) by taking		𝑐 = 11.862. Note that the choice of 𝑐 determines the size of the 
sample from each population. In this numerical example, the choice of	𝑐	 = 	11.862, gives 
the same sample sizes (9, 9, 9, 9) from all the four populations under the proposed and Singh 
and Singh (2013) procedures so that the comparison is feasible. Therefore for  𝑐	 = 	11.862, 
the length 𝑙 = 2𝑐𝑢*,-,9  of SCIs under the proposed two-stage procedure are 187.656, 
143.981 and 113.92 at 𝛼 = .01, 𝛼 = .025		and	𝛼 = .05, respectively. The lengths of these 
SCIs are smaller than those reported in Singh and Singh (2013). 
 

Table 5: Survival time (days) of inoperable lung cancer patients 
 

Type of Tumor 

Survival 
Days 

Squamous Small Adeno Large 
72 30 8 177 
10 13 92 162 
81 23 35 553 
110 16 117 200 
100 21 132 156 
42 18 12 182 
8 20 162 143 
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25 27 3 105 
11 31 95 103 

 
We have constructed simultaneous confidence intervals (SCIs) using Theorem 1, 

since for	𝑐 = 	11.862 the sample sizes are same under both the one-stage and two-stage 
procedures. The estimates of the scale and location parameters respectively, for the above 
reported data in Table 5 are, 	𝑆) = 48.375, 𝑆, = 10.25, 𝑆> = 78.265, 𝑆? = 106.7and 𝑌)′ =
8 − ?D.>F=

D
= 2.625, 𝑌,′ = 13 − )(.,=

D
= 11.861, 𝑌>′ = 3 − FD.,G=

D
= −5.696, 𝑌?′ = 103 −

)(G.F
D

= 91.144. The required values of the critical constants for	𝑚 = 9, 𝑘 = 4 and at the level 
of significance 𝛼 = .01, .025  and . 05 are 	𝑞*,-,.(= = 4.318, 𝑞*,-,.(,= = 5.539, 𝑞*,-,.() =
7.314 , and 	𝑟*,-,.(= = 4.080, 𝑟*,-,.(,= = 6.069, 𝑟*,-,.() = 7.910 . The constructed one-sided 
and two-sided simultaneous confidence intervals are presented in Table 6.  
 
Table 6: Simultaneous confidence intervals (SCIs) under the proposed (Prop) and Singh 

and Singh (2013) (SS) procedures 
 

 Difference 
SS Prop 

𝛼 = .01 𝛼 = .01 

One-Sided 
SCI 

𝜇, − 𝜇) (-93.620,	∞) (-77.522,	∞) 
𝜇> − 𝜇, (-108.620,	∞) (-104.315, ∞) 
𝜇> − 𝜇) (-103.690,	∞) (-95.079, ∞) 
𝜇? − 𝜇> (1.379, ∞) (10.076, ∞) 
𝜇? − 𝜇, (-8.620, ∞) (-7.480, ∞) 
𝜇? − 𝜇) (-3.620, ∞) (1.755, ∞) 

Two-Sided 
SCI 

𝜇, − 𝜇) (-100.690,110.690) (-84.592, 103.064) 
𝜇> − 𝜇, (-115.690,95.690) (-111.385, 76.271) 
𝜇> − 𝜇) (-110.690,100.690) (-102.149,85.507) 
𝜇? − 𝜇> (-5.690,205.690) (3.006,190.663) 
𝜇? − 𝜇, (-15.690,195.690) (-14.550,173.106) 
𝜇? − 𝜇) (-10.690,200.690) (-5.314,182.342) 

 
A pair-wise difference is declared to be significant if the corresponding simultaneous 

confidence interval (SCI) does not contain zero. Accordingly, at the level	𝛼	 = 	 .01, we infer 
that: (i) Under one-sided SCIs the Singh and Singh (2013) procedure declares the difference 
𝜇? − 𝜇>  as significant whereas the proposed procedure declares two differences 𝜇? − 𝜇> 
and	𝜇? − 𝜇) as significant (the corresponding SCIs do not contain zero); (ii) Under two-sided 
SCIs, the proposed procedure declares the difference 𝜇? − 𝜇)  as significant whereas the 
Singh and Singh (2013) procedure does not declare any difference as significant. 
 
6.  Conclusion 

 
We have observed that lengths of SCIs of the proposed one-stage and two-stage 

procedures, based on the PMLEs, are significantly smaller and that their coverage probability 
is also close to the nominal level as compared to the MLEs based procedure of Singh and 
Singh (2013). Thus, the Singh and Singh (2013) procedure is too conservative than the 
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proposed procedure. Further, the power of the proposed one-stage procedure is higher than 
the one-stage procedure of Singh and Singh (2013) and both procedures have almost the same 
power under the two-stage setup. Keeping in view the dominance of the proposed procedures 
in terms of lengths of SCIs, coverage probability, and average volume, we recommend the 
use of proposed procedures, particularly, the one-stage procedure when there are smaller 
samples from the populations. In most of the practical situations we get smaller samples on 
life lengths and the use of the proposed one-stage procedure, based on the PMLEs, is 
recommended since it dominates the procedure of Singh and Singh (2013) in terms of lengths 
of SCIs, power, coverage probability and average volume. 
 
Acknowledgement  
 

The authors are thankful to the reviewer and the Chair Editor for their valuable 
comments, which led to substantial improvement in the presentation of the manuscript. 
 
References 
 
Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical 

Inference Under Order Restrictions. John Wiley, New York. (ISBN-10: 
0471049700). 

Chen, H. (1982). A new range statistic for comparisons of several exponential location 
parameters. Biometrika, 69, 257-260. 

Cohen, A. C. and Helm, F. R. (1973). Estimators in the exponential distribution. 
Technometrics, 15, 415-418.    

Dhawan, A. K. and Gill, A. N. (1997). Simultaneous confidence intervals for the ordered 
pairwise differences of exponential location parameters. Communications in 
Statistics-Theory and Methods, 26(1), 247-262. 

Hayter, A. (1990). A one-sided studentized range test for testing against a simple ordered 
alternative. Journal of the American Statistical Association, 85, 778-785. 

Kharrti, Kopaei M. (2014). A note on the simultaneous confidence intervals for the 
differences of successive differences of exponential location parameters under 
heteroscedasticity. Statistical Methodology, 22, 1-17. 

Lam, K. (1987). Subset selection of normal populations under heteroscedasticity. In: 
Proceeding of the Second International Advanced Seminar/Workshop on Inference 
Procedures Associated with Ranking and Selection, Sydney, Australia. 

Lam, K. (1988). An improved two-stage selection procedure. Communications in 
Statistics- Computation and Simulations, 17(3), 995-1006. 

Lee, R. E. and Spurrier, J. D. (1995). Successive comparison between ordered treatments. 
Journal of Statistical Planning and Inference, 43, 323-330. 

Liu, W., Miwa, T. and Hayter, A. J. (2000). Simultaneous confidence interval estimation 
for successive comparisons of ordered treatment effects. Journal of Statistical 
Planning and Inference, 88, 75-86. 

Marcus, R. (1976). The power of some tests of the equality of normal means against an 
ordered alternative. Biometrika, 63, 177-183. 

Maurya, V. Goyal, A. and Gill, A. N. (2011). Simultaneous testing for successive 
difference of location parameters under heteroscedasticity. Statistics and 
Probability Letters, 81(10), 1507-1517. 

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Ordered Restricted Statistical 
Inferences. John Wiley, New York. (ISBN: 0-471-91787-7). 



2022]  TESTING OF THE LOCATION PARAMETER UNDER HETEROSCEDASTICITY   249 

Sarhan, A. E. (1954). Estimation of the mean and standard deviation by ordered statistics. 
Annals of Mathematics and Statistics, 25, 317-318. 

Singh, P., Abebe, A. and Mishra, S. (2006). Simultaneous testing for successives 
differences of exponential location parameters. Communications in Statistics- 
Simulation and Computations, 35 (3), 547-561. 

Singh, P. and Singh, N. (2013). Simultaneous confidence intervals for ordered pair wise 
differences of exponential location parameters under heteroscedasticity. Statistics 
and Probability Letters, 83, 2673-2678. 

Zheng, M. (2013). Penalized maximum likelihood estimation of two-parameter 
exponential distribution. An unpublished  Project Submitted to the Faculty of the 
Graduate School of the University Minnesota. 

  


