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Abstract
In this paper, the extropy of ranked set sample from Sarmanov family of distributions

is considered. By deriving the expression for extropy of concomitants of order statistics, the
expression for extropy of ranked set sample of the study variable Y in which an auxiliary
variable X is used to rank the units in each set, under the assumption that (X, Y ) follows
Sarmanov family of distributions is obtained.
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1. Introduction

Let (X, Y ) be a random vector with joint probability density function (PDF) f(x, y)
and cumulative distribution function (CDF) F (x, y). Let fX(x) and fY (y) be the marginal
PDFs and FX(x) and FY (y) be the marginal CDFs of X and Y respectively. Let (Xi, Yi),
i = 1, 2, ...n be a random sample of size n from the population with cdf F (x, y). If these
observations are arrange in increasing order of magnitude based on Xi’s, then the rth largest
observation Xr:n is the rth order statistic of Xi’s. Then the Y variable associated with Xr:n is
called concomitant of rth order statistic and it is denoted by Y[r:n]. David (1973) introduced
the concept of concomitants of statistics which is applicable in various areas like ranked set
sampling, double sampling, correlation analysis and in certain selection procedures. More
details on this idea was given in David and Nagaraja (1998).

McIntyre (1952) introduced an efficient sampling scheme named ranked set sampling,
as an alternative to simple random sampling (see, Chen et al. (2004)). The procedure of
ranked set sampling is as follows. Select n2 units randomly from the population. These
units are randomly alloted into n sets, each of size n. Then the units in each set are ranked
visually, judgement method or using some inexpensive methods. From the first set of n
units, choose the unit which has the lowest rank for actual measurement. From the second
set of n units the unit ranked second lowest is chosen. The process is continued until choose
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the unit which has the highest rank in the nth set. Then make measurement on variable of
interest of the selected units, which constitute the ranked set sample(RSS).

Ranked set sampling as described in McIntyre (1952) is applicable whenever sample
size is small and ranking of a set of sampling units can be done easily by a judgment method.
Suppose the variable of interest, say Y , is expensive to measure and difficult to rank the
units. In this case as an alternative method, Stokes (1977) modified the method by using
an auxiliary variable for ranking the sampling units in each set. Stokes (1977) explained
the ranked set sampling procedure as follows. Choose n2 units randomly from a bivariate
population. Arrange these units into n sets, each of size n and measure the auxiliary variable
X. In the first set, that unit for which smallest measurment on the auxiliary variable X is
chosen and take the measurement of the study variable Y , denoted by Y[1]. In the second
set, that unit for which second smallest measurement on the auxiliary variable X is chosen
and take the measurement of the study variable Y , denoted by Y[2]. Finally, in the nth
set, that unit for which largest measurment on the auxiliary variable X is chosen and take
the measurement of the study variable Y , denoted by Y[n]. Clearly Y[r], r = 1, 2, ...n are
concomitants of order statistics of the given random sample and are independent.

Bain (2017) give an example for the application of RSS as proposed by Stokes (1977).
Here the study variable Y represents the oil pollution of sea water and auxiliary variable X
represents the tar deposit in the nearby sea shore. Clearly collecting sea water sample and
measuring the oil pollution in it is difficult and costly. However the prevalence of pollution in
sea water is much reflected by the tar deposit in the surrounding terminal sea shore. In this
example ranking the pollution level of sea water based on the tar deposit in the sea shore
is more natural and scientific than ranking it visually or by judgement method. Applying
the concepts of concomitant of order statistics in ranked set sampling, Chacko and Thomas
(2007, 2008, 2009), Chacko (2017) and Mehta (2022) estimated the parameters of different
distributions belonging to Morgenstern family of distributions.

As an alternative to entropy defined by Shannon (1948), Lad et al. (2015) introduced
a new measure of uncertainty called extropy . Let X be a random variable with PDF fX(x)
and CDF FX(x). Then the extropy of X is defined as

J(X) = −1
2

� ∞

−∞
(fX(x))2dx (1)

= −1
2

� 1

0
fX(F −1(u))du, (2)

where F −1(u) = inf{x; FX(x) ≥ u}, u ∈ [0, 1] is the quantile function of FX(x).

Lad et al. (2015) gave some properties and applications of extropy measure. Qiu
(2017) discussed the characterization results, monotone properties, and lower bounds of
extropy of order statistics and record values. Zamanzade and Mahdizadeh (2019) discussed
the nonparametric estimation of extropy based on ranked set sampling. Eftekharian and
Qiu (2022) considered the information content of statified ranked set sampling in terms of
extropy. Qiu and Raqab (2022) discussed the properties of weighted extropy using Ranked
Set Samples.

Morgenstern (1956)introduced a bivariate family of distributions which can be con-
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structed with specific marginal distributions and the PDF is given by

f(x, y) = fX(x)fY (y)[1 + δ(2FX(x) − 1)(2FY (y) − 1)], −1 ≤ δ ≤ 1,

where δ is the association parameter, fX(x) and fY (y) are the marginal PDFs and FX(x) and
FY (y) are the marginal CDFs of X and Y respectively. One of the important limitations of
the Morgenstern family of distributions (MFD) is that the correlation coefficient lies between
-1/3 and 1/3. Several authors have modified the MFD to enhance the range of correlation
and extended the domain of applications. One of the important modifications of MFD was
given by Sarmanov (1966) in the sense that it provides the best improvement in correlation
level with only one parameter as in the MFD. The PDF of family of distributions of Sarmanov
(1966) is given by

f(x, y) = fX(x)fY (y)
[
1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)]
, |α| ≤

√
7

5 (3)

where α is the association parameter. When the marginal distributions follow uniform, the
distribution attain its maximum correlation coefficient, α.

Alemany et al. (2020) give an example for application for Sarmanov family of distri-
butions given in (3). Here the study variable Y follows the average claim cost per insured
and X represents the number of claims of individual. This model can be used to obtain the
distribution of the total cost of claims based on the collective model, for a policyholder with
specific characteristics. If the profiles have larger dependency, the Sarmanov distribution
can be used to fit a non- linear dependence between frequency and severity (cost random
variable). The different applications of Sarmanov family of distributions are given in Abdal-
lah et al. (2016) and Bolancé et al. (2020). Barakat et al. (2022) discussed the properties of
concomitants of order statistics of Sarmanov family of distributions.

It is well known that ranked set sample provides more information than simple random
sample(SRS) of the same size about the unknown parameters of the underlying distribution
in parametric inferences (see, Chen et al. (2004) ). Jozani and Ahmadi (2014) explained the
concept of information content of RSS data and compared them with their counterparts in
SRS data. Raqab and Qiu (2019) described the monotone properties and stochastic orders
of ranked set sample and compared the results with their counterpart under SRS design.
Husseiny et al. (2022) discussed information measures in records and their concomitants
arising from Sarmanov family of distributions. Chacko and George (2024, 2023) discussed the
extropy properties of RSS for MFD and Cambanis type bivariate distributions. George and
Chacko (2023) considered the cumulative residual extropy properties of ranked set samples
for Cambanis type bivariate distributions.

In this paper, we derive the extropy of concomitant of order statistic Y[r:n] of a random
sample of size n from Sarmanov family of distributions. Since observations of a ranked set
sample, in which an auxiliary variable X is used to rank the units in each set, are nothing but
concomitant of order statistics, we derive the extropy of RSS when (X, Y ) follows Sarmanov
family of distributions. The properties and bounds for extropy of RSS are also derived. We
also consider the joint extropy of (XRSS, Y[RSS]), where XRSS =

(
X(1), X(2), ..., X(n)

)
is the
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RSS of X observations in which ranking in each unit is perfect and Y[RSS] =
(
Y[1], Y[2], ..., Y[n]

)
is the RSS of Y observations in which ranking in each unit is based on X observations.

The paper is organized as follows. In section 2, the expression for extropy of Y[r:n]
and also obtain upper and lower bounds of it. In section 3, we obtain the extropy of the RSS
arising from Sarmanov family of distributions and study its properties. Section 4 devotes
to obtain extropy of (Xr:n, Y[r:n]) and thereby obtain the extropy of (XRSS, Y[RSS]), where
XRSS =

(
X(1), X(2), ..., X(n)

)
is the ranked set sampling based on X observations in which

ranking in each unit is perfect and Y[RSS] =
(
Y[1], Y[2], ..., Y[n]

)
. Finally, in section 5 we give

the conclusion.

2. Extropy of concomitant of rth order statistic

Let Y[r:n] r = 1, 2, ...n be the concomitant of rth order statistic of a bivariate random
sample arising from Sarmanov family of distributions. If fr:n(x) is the pdf of rth order
statistic and fY X(y/x) is the conditional pdf of Y given X, then the pdf of concomitant of
rth order statistic, Y[r:n] is

fY [r:n](y) =
� ∞

−∞
fY X(y/x)fr:n(x)dx

=
� ∞

−∞
fY (y)

[
1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)]
× n!

(r − 1)!(n − r)!(FX(x))r−1(1 − FX(x))n−rdx

= fY (y)
1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

), (4)

where

d1 = 3α
2r − n − 1

n + 1 (5)

and

d2 = 5
2α2

(
1 − 6r(n − r + 1)

(n + 1)(n + 2)

)
. (6)
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Then by using (1) the extropy of Y[r:n] is given by

J(Y[r:n]) = −1
2

�
y

(fY [r:n](y))2dy

= −1
2

�
y

(fY (y))2

1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

)2

dy

= −1
2

� 1

u=0
fY (F −1(u))

1 + d1(2u − 1) + d2

(
3(2u − 1)2 − 1

)2

du

= −1
2

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du, (7)

where

ρ(r,n,α)(u) = 1 + d1(2u − 1) + d2

(
3(2u − 1)2 − 1

)
. (8)

Theorem 1: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, then the extropy of Y[r:n] can be written as

J(Y[r:n]) = −1
2

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
, (9)

where a0 = (1 − d1 + 2d2)2, a1 = 2(1 − d1 + 2d2)(2d1 − 12d2), a2 = (2d1 − 12d2)2 + 24d2(1 −
d1 + 2d2), a3 = 24d2(2d1 − 12d2), a4 = 144d2

2 and

E
(
F −1(Uk)

)
=
� 1

0
(k + 1)ukfY (F −1(u))du

with Uk follows Beta (k + 1, 1).

Proof: Since Y[r:n] is the concomitant of rth order statistic of a random sample of size n
arising from Sarmanov family of distributions, we have

(fY [r:n](y))2 = (fY (y))2

1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

)2

= (fY (y))2
4∑

k=0
ak

(
FY (y)

)k
,

where a0 = (1 − d1 + 2d2)2, a1 = 2(1 − d1 + 2d2)(2d1 − 12d2), a2 = (2d1 − 12d2)2 + 24d2(1 −
d1 + 2d2), a3 = 24d2(2d1 − 12d2) and a4 = 144d2

2.
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Therefore, the extropy of Y[r:n] is given by

J(Y[r:n]) = −1
2

�
(fY [r:n](y))2dy

= −1
2

�
(fY (y))2

4∑
k=0

ak

(
FY (y)

)k
dy

= −1
2

4∑
k=0

ak

� 1

0
ukfY (F −1(u))du

= −1
2

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
,

where Uk follows Beta (k + 1, 1). Hence the theorem.

Remark 1: If r = 1 and r = n in (4), we get the concomitant of first order statistic and
largest order statistic of a random sample of size n. Then the extropy of concomitant of first
order statistic Y[1:n] and concomitant of largest order statistic Y[n:n] are given by

J(Y[1:n]) = −1
2

4∑
k=0

a
(1)
k

k + 1E
(
F −1(Uk)

)
,

where a
(1)
0 = (1 + q1 + 2q2)2, a

(1)
1 = −2(1 + q1 + 2q2)(2q1 + 12q2), a

(1)
2 = (2q1 + 12q2)2 +

24q2(1 + q1 + 2q2), a
(1)
3 = −24q2(2q1 + 12q2) and a

(1)
4 = 144q2

2
and

J(Y[n:n]) = −1
2

4∑
k=0

a
(n)
k

k + 1E
(
F −1(Uk)

)
,

where a
(n)
0 = (1− q1 +2q2)2, a

(n)
1 = 2(1− q1 +2q2)(2q1 −12q2), a

(n)
2 = (2q1 −12q2)2 +24q2(1−

q1 + 2q2), a
(n)
3 = 24q2(2q1 − 12q2) and a

(n)
4 = 144q2

2
with q1 = 3αn−1

n+1 and q2 = 5
2α

(
1 − 6n

(n+1)(n+2)

)
.

Remark 2: If α = 0, that is X and Y are independent, then d1 = 0 and d2 = 0 and hence
J(Y[r:n]) = −1

2 E
(
F −1(U0)

)
= J(Y ).

Corollary 1: Let (Xi, Yi), i = 1, 2, ...n be a bivariate sample of size n arising from Sarmanov
family of distributions. Then the extropy of concomitant of rth order statistic for α > 0 is
same as the extropy of concomitant of (n − r + 1)th order statistic for α < 0 .

Proof: Let J (α)(Y[r:n]) be the extropy of concomitant of rth order statistic for any α. We
have by (5) and (6), d1(n,α) = d1(n−r+1,−α) and d2(n,α) = d2(n−r+1,−α) . Therefore by (9),

J (α)(Y[r:n]) = J (−α)(Y[n−r+1:n]).

Example 1: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) = −1
2

4∑
k=0

ak

k + 1 .
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Example 2: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) = −θ2

2

4∑
k=0

ak

(k + 1)(k + 2) .

Theorem 2: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, the upper bound of J(Y[r:n]) can be written
as

J(Y[r:n]) ≤ −1
2

3∑
k=1

ak

k + 1E
(
F −1(Uk)

)
, (10)

where Uk follows Beta (k + 1, 1).

Proof: Since a0 ≥ 0 and a4 ≥ 0, by using Theorem 1 we can obtain the inequality (10)
directly . Hence the proof.

Example 3: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) ≤ −1
2

3∑
k=1

ak

k + 1 .

Example 4: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) ≤ −θ2

2

3∑
k=1

ak

(k + 1)(k + 2) .

Theorem 3: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, then the lower bound of J(Y[r:n]) is given
by

J(Y[r:n]) ≥ −1
2

E[(fY (y))2]
 1

2
 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

. (11)

Proof: From (7), we have

J(Y[r:n]) = −1
2

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du

By applying Cauchy - Schwarz inequality, we have

J(Y[r:n]) ≥ −1
2

 � 1

u=0
(fY (F −1(u)))2du

 1
2
 � 1

u=0

(
ρ(r,n,α)(u)

)4
du

 1
2

. (12)
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Therefore
� 1

u=0
(fY (F −1(u)))2du =

�
y

(fY (y))3dy

= E[(fY (y))2]. (13)

Also
(
ρ(r,n,α)(u)

)4
=

( 4∑
k=0

akuk
)2

. (14)

On substituting (13) and (14) in (12) we get (11). Hence the proof.

Example 5: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) ≥ −1
2

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Example 6: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) ≥ −1
2

(
θ2

2
3

) 1
2

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

3. Extropy of ranked set sample

Let Y[1],Y[2],...Y[n] be the RSS of size n arising from Sarmanov family of distributions
in which X observations are used to rank the units in each set. Clearly Y[r], r = 1, 2, ..., n

are independent and Y[r]
d= Y[r:n]. If Y[RSS] = {Y[r], r = 1, 2, ...n} , then the extropy of Y[RSS]

can be written as

J(YRSS) = −1
2

n∏
r=1

�
y

(fY [r:n](y))2dy

= −1
2

n∏
r=1

[−2J(Y[r:n])].

Therefore,

J(YRSS) = −1
2

n∏
r=1

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
.

Example 7: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 ,then

J(YRSS) = −1
2

n∏
r=1

4∑
k=0

ak

k + 1 .
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Example 8: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(YRSS) = −1
2 θn

2

n∏
r=1

4∑
k=0

ak

(k + 1)(k + 2) .

Definition 1: (Shaked and Shanthikumar (2007)) Let X1 and X2 be two random variables
with cdfs F1 and F2 and pdfs f1 and f2 respectively. The left continuous inverses of F1 and F2
are given by F −1

1 (u) = inf{t : F1(t) ≥ u} and F −1
2 (u) = inf{t : F2(t) ≥ u}, 0 ≤ u ≤ 1. Then

X1 is said to be smaller than X2 in dispersive order denoted by X1 ≤disp X2 if F −1
2 (F1(x))−x

is increasing in x ≥ 0. Clearly if X1 ≤disp X2 , then f1(F −1
1 (u)) ≤ f2(F −1

2 (u)), for 0 ≤ u ≤ 1.

Theorem 4: Let (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
cdfs FX(x) and FY (y) and pdfs fX(x) and fY (y) respectively. Let YRSS = {Y[r], r = 1, 2, ...n}
be the ranked set sample of size n arising from Sarmanov family of distributions in which
X observations are used to rank the units. Let (V, W ) be another pair of random variables
follows Sarmanov family of distributions given in (3) with marginal cdfs GV (v)and GW (w)
and pdfs gV (v) and gW (w) respectively. Let WRSS = {W[r], r = 1, 2, ...n} be the ranked set
sample of size n arising from (V, W ) in which V observations are used to rank the units. If
Y ≤disp W , then J(YRSS) ≤ J(WRSS).

Proof: We have

J(YRSS) = −1
2

n∏
r=1

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.

Since Y ≤disp W , we have fY (F −1(u)) ≥ gW (G−1(u)) for all u in (0, 1).
Therefore

J(YRSS) ≤ −1
2

n∏
r=1

� 1

u=0
gW (G−1(u))

(
ρ(r,n,α)(u)

)2
du

= J(WRSS).

Hence the proof.

3.1. Bounds of J(YRSS)

In this subsection, we obtain some lower bounds and upper bounds for J(YRSS). Be-
fore that we give some properties of ρ(r,n,α)(u) given in (8). We have tabulated the value of
ρ(r,n,α)(u) for r = 1, 2, ...10 and α = −0.5, −0.25, 0.25, and 0.5 and are given in Table 1 and
Table 2. We have also drawn the graphs of ρ(r,n,α)(u) for n = 10 and for α > 0 and α < 0
and are given in Figure 1 to Figure 4.

Remark 3: From Table 1 and Table 2, we have for a fixed α , ρ(r,n,α)(u) = ρ(n−r+1,n,α)(1−u).
The above inference also be seen from Figures 1, 2, 3 and 4.

Remark 4: From Figures 1 and 2 we have for α > 0, ρ(r,n,α)(u) is decreasing in r if 0 ≤
u < 0.5 and is increasing in r if 0.5 < u ≤ 1. Again for α < 0, ρ(r,n,α)(u) is increasing in r if
0 ≤ u < 0.5 and is decreasing in r if 0.5 < u ≤ 1.
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Figure 1: Graph of ρ(r,n,α)(u) against u when α > 0

Figure 2: Graph of ρ(r,n,α)(u) against u when α < 0
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Figure 3: Graph of ρ(r,n,α)(u) against r when α > 0

Figure 4: Graph of ρ(r,n,α)(u) against r when α < 0
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Table 1: ρ(r,n,α)(u) when α is positive for n = 10

α=0.25
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 1.7841 1.2855 0.9148 0.6719 0.5568
2 1.5341 1.2315 0.9716 0.7543 0.5795
3 1.3125 1.1740 1.0142 0.8331 0.6307
4 1.1193 1.1129 1.0426 0.9084 0.7102
5 0.9545 1.0483 1.0568 0.9801 0.8182
6 0.8182 0.9801 1.0568 1.0483 0.9545
7 0.7102 0.9084 1.0426 1.1129 1.1193
8 0.6307 0.8331 1.0142 1.1740 1.3125
9 0.5795 0.7543 0.9716 1.2315 1.5341
10 0.5568 0.6719 0.9148 1.2855 1.7841

α=0.5
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 2.9091 1.5284 0.6591 0.3011 0.4545
2 2.1818 1.4489 0.8864 0.4943 0.2727
3 1.5682 1.3551 1.0568 0.6733 0.2045
4 1.0682 1.2472 1.1705 0.8381 0.2500
5 0.6818 1.1250 1.2273 0.9886 0.4091
6 0.4091 0.9886 1.2273 1.1250 0.6818
7 0.2500 0.8381 1.1705 1.2472 1.0682
8 0.2045 0.6733 1.0568 1.3551 1.5682
9 0.2727 0.4943 0.8864 1.4489 2.1818
10 0.4545 0.3011 0.6591 1.5284 2.9091

Theorem 5: Let Y1, Y2, ...Yn be a simple random sample from a distribution with cdf FY (y)
and pdf fY (y). Let {Y[r], r = 1, 2, ...n} be the RSS of size n arising from Sarmanov family
of distributions in which X observations are used to rank the units. If YSRS = {Y1, Y2, ..Yn}
and Y[RSS] = {Y[1], Y[2], ...Y[n]}, then for n ≥ 1,

J(YRSS)
J(YSRS) ≤

n∏
r=1

(
ρ(r,n,α)(u0)

)2
,

where u0 is the value of u which maximise ρ(r,n,α)(u).

Proof: We have

J(YSRS) = −1
2

n∏
r=1

�
y

(
fY (y)

)2
dy

= −1
2

n∏
r=1

� 1

0
fY (F −1(u))du.

Then,

J(YRSS) = −1
2

n∏
r=1

� 1

0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.
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Table 2: ρ(r,n,α)(u) when α is negative for n = 10

α=-0.5
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 0.4545 0.3011 0.6591 1.5284 2.9091
2 0.2727 0.4943 0.8864 1.4489 2.1818
3 0.2045 0.6733 1.0568 1.3551 1.5682
4 0.2500 0.8381 1.1705 1.2472 1.0682
5 0.4091 0.9886 1.2273 1.1250 0.6818
6 0.6818 1.1250 1.2273 0.9886 0.4091
7 1.0682 1.2472 1.1705 0.8381 0.2500
8 1.5682 1.3551 1.0568 0.6733 0.2045
9 2.1818 1.4489 0.8864 0.4943 0.2727
10 2.9091 1.5284 0.6591 0.3011 0.4545

α=-0.25
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 0.5568 0.6719 0.9148 1.2855 1.7841
2 0.5795 0.7543 0.9716 1.2315 1.5341
3 0.6307 0.8331 1.0142 1.1740 1.3125
4 0.7102 0.9084 1.0426 1.1129 1.1193
5 0.8182 0.9801 1.0568 1.0483 0.9545
6 0.9545 1.0483 1.0568 0.9801 0.8182
7 1.1193 1.1129 1.0426 0.9084 0.7102
8 1.3125 1.1740 1.0142 0.8331 0.6307
9 1.5341 1.2315 0.9716 0.7543 0.5795
10 1.7841 1.2855 0.9148 0.6719 0.5568

Let u0 be the value of u which maximise ρ(r,n,α)(u). Then,

J(YRSS) ≥ −1
2

n∏
r=1

� 1

0

fY (F −1(u))(ρ(r,n,α)(u0))2

du

= −1
2

n∏
r=1

 � 1

0
fY (F −1(u))du

 n∏
r=1

ρ(r,n,α)(u0)
2

= J(YSRS)
n∏

r=1

(
ρ(r,n,α)(u0)

)2
.

Since J(YSRS) < 0,

J(YRSS)
J(YSRS) ≤

n∏
r=1

(
ρ(r,n,α)(u0)

)2
.

Hence the proof.

Theorem 6: Let YRSS = {Y[r], r = 1, 2, ...n} be the RSS of size n arising from Sarmanov
family of distributions in which X observations are used to rank the units then for all n ≥ 1,
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then the lower bound of extropty of YRSS is given by

J(YRSS) ≥ −1
2

EfY (y)2

 n
2 n∏

r=1

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Proof: We have

J(YRSS) = −1
2

n∏
r=1

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.

Using Cauchy-Schwarz inequality

J(YRSS) ≥ −1
2

n∏
r=1

( � 1

u=0
fY (F −1(u))2du

) 1
2
( � 1

u=0

(
ρ(r,n,α)(u)

)4
du

) 1
2
.

We have
(

ρ(r,n,α)(u)
)2

= ∑4
k=0 akuk.

Therefore

J(YRSS) ≥ −1
2

(
EfY (y)2

) n
2

n∏
r=1

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Hence the proof.

4. Extropy of (XRSS, Y[RSS])

If X(r) is the observation measured on the auxiliary variable X of the unit chosen
from the rth set then X(r) is the rth order statistic of a random sample of size n. Since Y[r]
is the concomitant of X(r), the joint pdf of (X(r), Y[r]) is given by

h(X(r), Y[r]) = n!
(r − 1)!(n − r)!f(x, y)(FX(x))r−1(1 − FX(x))(n−r). (15)
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Then the extropy of (X(r), Y[r]) can be defined as

J(X(r), Y[r]) = −1
2

� ∞

−∞

� ∞

−∞

(
h(X(r), Y[r])

)2
dydx

= −1
2

� ∞

−∞

� ∞

−∞

(
n!

(r − 1)!(n − r)!

)2(
fX(x)

)2(
fY (y)

)2

×

1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)2

×
(

FX(x)
)2(r−1)(

1 − FX(x)
)2(n−r)

dxdy

= −1
2

(
n!

(r − 1)!(n − r)!

)2
M00N00 + 9α2M20N20 + 25

16α2M02N02

+ 6αM10N10 + 5
2α2M01N01 + 15

2 α3M11N11

, (16)

where Mij and Nij for i = 0, 1 and 2 are given below.

Mij =
�

(fX(x))2(FX(x))2(r−1)(1 − FX(x))2(n−r)(2FX(x) − 1)i(3(2FX(x) − 1)2 − 1)jdx

= (2r − 2)!(2n − 2r)!
(2n − 1)! E

[
fX(F −1(U))(2U − 1)i(3(2U − 1)2 − 1)j

]
, (17)

where U follows beta distribution with parameters (2r − 1, 2n − 2r + 1) and

Nij =
�

(fY (y))2(2FY (y) − 1)i(3(2FY (y) − 1)2 − 1)jdy

= E
[
fY (F −1(V ))(2V − 1)i(3(2V − 1)2 − 1)j

]
, (18)

where V follows uniform distribution over (0, 1).
If XRSS = {X(1), X(2), .., X(n)}, then XRSS is the RSS of X observations in which ranking of
units in each set is perfect. Let (XRSS, Y[RSS]) = {(X(r), Y[r]), r = 1, 2, 3...n} then extropy of



300 MANOJ CHACKO AND VARGHESE GEORGE [Vol. 22, No. 2

(XRSS, Y[RSS]) is given by

J(XRSS, Y[RSS]) = −1
2

n∏
r=1

� ∞

−∞

� ∞

−∞

(
h(X(r), Y[r])

)2
dydx

= −1
2

n∏
r=1

−2J(X(r), Y[r])

= −1
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2

×

M00N00 + 9α2M20N20 + 25
16α2M02N02

+ 6αM10N10 + 5
2α2M01N01 + 15

2 α3M11N11

. (19)

Example 9: If (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
pdfs of X and Y are fX(x) = 1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 respectively, then

Mij = (2r − 2)!(2n − 2r)!
(2n − 1)! E

[
(2U − 1)i(3(2U − 1)2 − 1)j

]

=
� 1

0
(2u − 1)i(3(23 − 1)2 − 1)ju2r−2(1 − u)2n−2rdu

and

Nij = E
[
(2V − 1)i(3(2V − 1)2 − 1)j

]
=
� 1

0
(2v − 1)i(3(2v − 1)2 − 1)jdv.

Therefore,
M00 = (2r − 2)!(2n − 2r)!

(2n − 1)! ,

M10 = (2r − 2)!(2n − 2r)!
(2n − 1)!

(2r − 1)
n

− 1
,

M20 = (2r − 2)!(2n − 2r)!
(2n − 1)!

4(2r)(2r − 1)
(2n)(2n + 1) − 4(2r − 1)

2n
+ 1

,

M01 = (2r − 2)!(2n − 2r)!
(2n − 1)!

12(2r)(2r − 1)
(2n)(2n + 1) − 12(2r − 1)

2n
+ 2

,

M02 = 4(2r − 2)!(2n − 2r)!
(2n − 1)!

36(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 72(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 48(2r)(2r − 1)

(2n + 1)(2n) − 12(2r − 1)
2n

+ 1
,
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and

M11 = 2(2r − 2)!(2n − 2r)!
(2n − 1)!

12(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) − 18(2r)(2r − 1)

(2n + 1)(2n)

+ 8(2r − 1)
2n

− 1


Also N00 = 1, N10 = 0, N20 = 1
3 , N01 = 0, N02 = 4

5 and N11 = 0. Then from (16),

J(X(r:n), Y[r:n]) = −1
2

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r)!
(2n − 1)!

×

180α2(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 360α2(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 252α2(2r)(2r − 1)

(2n + 1)(2n)

− 72α2(2r − 1)
2n

+ 8α2 + 1
.

Therefore,

J(XRSS, Y[RSS]) = −1
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r)!
(2n − 1)!

×

180α2(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 360α2(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 252α2(2r)(2r − 1)

(2n + 1)(2n)

− 72α2(2r − 1)
2n

+ 8α2 + 1
.

Example 10: If (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
pdfs of X and Y are fX(x) = θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0 respectively,then

Mij = (2r − 2)!(2n − 2r)!
(2n − 1)! θ1E

[
(1 − U)(2U − 1)i(3(2U − 1)2 − 1)j

]

= θ1

� 1

0
(1 − u)(2u − 1)i(3(23 − 1)2 − 1)ju2r−2(1 − u)2n−2rdu

and

Nij = θ2E
[
(1 − V )(2V − 1)i(3(2V − 1)2 − 1)j

]
= θ2

� 1

0
(1 − v)(2v − 1)i(3(2v − 1)2 − 1)jdv.
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Therefore,

M00 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1,

M10 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

2(2r − 1)
(2n + 1) − 1

,

M20 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 4(2r)(2r − 1)
(2n + 1)(2n + 2) − 4(2r − 1)

(2n + 1) + 1
,

M01 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 12(2r)(2r − 1)
(2n + 1)(2n + 2) − 12(2r − 1)

(2n + 1) + 2
,

M02 = 4(2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 36(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− 72(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1) + 48(2r)(2r − 1)

(2n + 2)(2n + 1) − 12(2r − 1)
2n + 1 + 1


and

M11 = 2(2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 122(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)

− 18(2r)(2r − 1)
(2n + 2)(2n + 1) − 8(2r − 1)

2n + 1 − 1
.

Also, N00 = θ2
2 , N10 = −θ2

6 , N20 = θ2
6 , N01 = 0, N02 = 2θ2

5 and N11 = −2θ2
15 . Then from (16),

J(X(r:n), Y[r:n]) = −1
2

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r + 1)!
(2n)! θ1θ2

×

 45α2(2r + 2)(2r + 1)(2r)(2r − 1)
4(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− (2r + 1)(2r)(2r − 1)(45α2 − 24α3)
(2n + 3)(2n + 2)(2n + 1) + 36(2r)(2r − 1)(α2 + α3)

(2n + 2)(2n + 1)

− (32α3 + 27α2 + 4α)
2

α2(2r − 1)
2n + 1 + α3 + 51

24α2 + α + 1
2

.
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Therefore,

J(XRSS, Y[RSS]) = −θn
1 θn

2
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r + 1)!
(2n)!

×

 45α2(2r + 2)(2r + 1)(2r)(2r − 1)
4(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− (2r + 1)(2r)(2r − 1)(45α2 − 24α3)
(2n + 3)(2n + 2)(2n + 1) + 36(2r)(2r − 1)(α2 + α3)

(2n + 2)(2n + 1)

− (32α3 + 27α2 + 4α)
2

α2(2r − 1)
2n + 1 + α3 + 51

24α2 + α + 1
2

.

5. Conclusion

In this work, we considered the extropy of concomitants of order statistic arising from
Sarmanov family of distributions when ranking is subject to error. If we considered a ranked
set sampling in which an auxiliary variable is used to rank the units in each set, then the
observation of RSS are nothing but concomitants of order statistics. Hence by using the
results for extropy of concomitants of order statistics Y[r:n], we derived the extropy of RSS in
which units are ranked based on measurements made on an easily and exactly measurable
auxiliary variable X which is correlated with the study variable Y , under the assumption that
(X, Y ) follows Sarmanov family of distributions. The lower and upper bounds of extropy of
Y[r:n] were obtained. Moreover, we obtained the lower and upper bound of extropy of RSS.
The upper bound for the ratio of extropy of ranked set sample to that of simple random
sample were obtained. The extropy of (XRSS, Y[RSS]) were also obtained for Sarmanov family
of distributions, where XRSS is the RSS of the X observations and Y[RSS] is the RSS of the
Y observations in which X observations are used to rank.
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