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Abstract 

Various self-similar traffic models proposed earlier are asymptotic. In this connection, 

many Markovian models are proposed, but the performance analysis was possible only when 

the system is in steady state, and such  traffic models are not realistic. In this paper, a procedure 

is proposed to fit Markov Modulated Poisson Process (MMPP) with time dependent sinusoidal 

arrival rates that emulates self-similar traffic. This is done by matching the variance of the 

both during prescribed time scales. Numerical results represent what extent MMPP could 

reproduce self-similar traffic in specified time scales.  

Key words: Self-similar traffic; Variance-time; Markovain Modulated Poisson process 

(MMPP); Interrupted  Poisson process (IPP). 

 

1.  Introduction 

The pivotal studies at AT&T Bell labs (Leland, et al. 1994; Paxson and Flyod, 1995) 

revealed that IP packet traffic over LAN and WWW internet traffic (Crovella and Bestavros,  

1997) are self-similar (fractal like behavior), and this behavior effects efficiency of network 

nodes such as routers or switches (Misra, et al. 2012). Many traffic models such as Chaotic 

maps, FARIMA, and FBM are proposed to emulate the self-similar behavior. These models 

are parsimonious, but are asymptotic, hence they are not practically useful (Erramilli, et al. 

1996; Norros, 1994). Andersen and Nielsen (1998) used Markovian Arrival Process (MAP) in 

particular Switched Poisson Process (SPP) to model the Long Range Dependent (LRD) 

characteristics (statistical definition of self-similarity) of traffic over different time scales, and 

proposed a fitting procedure wherein covariance of second-order self-similar process, and that 

of resultant MAP (superposition of several SPPs) are equated.  Kasahara, et al. (2001) proposed 

a method based on variance of second-order self-similar traffic using Interrupted Poisson 

Process (IPP). Later, Reddy, et al. (2005) extended the work by making modulating parameters 

of each IPP unequal, and investigated the relation between traffic parameters, time scale, and 

parameters of fitting.  In all the above, resultant MAP is homogeneous and the arrival rates 

were not functions of time, and queueing behavior of traffic nodes was investigated in the 

steady state. Steady state outcomes never give actual queueing behavior, since it relies on a 

prolonged performance of system to nullify the initial conditions (Kelton and Law, 1985). In 

real time, network traffic is not homogeneous over all time scales, and the modeled system by 

no means attains steady state. Because of these reasons, necessity of time dependent (transient) 

analysis is warranted. Abate and Whitt (1988) analyzed M/M/1 queue in transient with Poisson 

arrivals using Laplace transforms. Eick, et al. (1993) studied the Mt /G/  queue with time 
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dependent arrival rates, and determined the number of  busy servers at time .t  Different 

methods were developed by Jennings and Massey (1997) for analysis blocking in circuit 

switched networks with transient arrival traffic. Massey (2002) proposed canonical queueing 

models with time-varying rates, and derived necessary mathematical tools for analysis. Qian 

and Tipper (2004)  proposed a framework for adaptively determining optimal channel 

allocation scheme, and evaluated performance of the scheme under time varying loads. Liu and 

Whitt (2014) developed an algorithm to find number of servers required to preserve the 

prerformance in a multi server queue with time varying arrival rates for extension of feed-

forward netwoks. Pant and Ghimire (2016) determined the expected queue length and waiting 

time of the customers at time t  using transient arrival rates. In the papers cited above, authors 

worked with various queueing systems using time based sinusoidal arrival rates to address 

issues in various domains. These models are based on the fact that many real time arrival 

phenomenons are almost periodic in nature. In this paper, procedure to fit Markovian Arrival 

Process (MAP) with sinusoidal arrival rates that emulates self-similar traffic over prescribed 

time scales is proposed. Variance of  number of arrivals due to self-similar traffic, and that of 

resultant MAP (superposition of  IPPs with sinusoidal arrival rates) are equated at certain time 

points in order to compute the MAP parameters. 

 

The remaining part is arranged in the following way. In section 2, outline of second-order 

self-similar process and sinusoidal IPP are presented. In section 3, fitting procedure with time 

dependent sinusoidal arrival rates is given. Numerical results are demonstrated in section 4. 

Finally, some conclusions are given in section 5. 

 

2.  Second-Order Self-Similar and Sinusoidal IPP Processes 

Self-similarity is a property, wherein a certain feature of the object is maintained with 

respect to scaling in space and time. It is statistically defined as follows.  Let X  be a second 

order process with variance ,2  and the time axis is splitted into disjoint sub intervals of unit 

length. Let  ,.....3,2,1/  tXX t  be the points (packet arrivals) in tht interval. Let  )()( r

t

r XX    be 

a new sequence obtained by averaging the original sequence over non-overlapping blocks of 

size r . i.e., 
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The obtained sequence is a second order process, and is called exactly second order self-

similar with Hurst Parameter, ,2/1 H  if 
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This feature can be emulated by Markov Modulated Poisson Process (MMPP) over the 

desired time scale (Reddy, et al. 2005). For the reason mentioned in the introduction, a special 

type of two-state IPP is proposed using time dependent arrival rates. The proposed IPP is given 

as follows: 
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In the above, Q  is transition rate matrix with two distinct parameters and )(tR  is arrival 

rate matrix, which says that, when Markov process is in state 1, arrival process is with 

sinusoidal arrival rate )sin()( tbat  , where ba,  are the constants, and 10,  ab  

(Eick, et al. 1993), and when the Markov process in state 2, there are no arrivals. The number 

of arrivals in ],0( t  of the said IPP is denoted by 
tN , and tJ  be the state of Markov process at 

time .t  The Generating function ),( tzP  obtained by forward Chapman-Kolmogorov 

equations with time dependent Markovian process (Fischer and  Hellstern,  1993) is given by 

                                          .)()1(),(
0














 



t

dttRzQtExptzP                                          (4) 

The mean value of tN  is given by (Heffes and Lucantoni, 1986) 
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Differentiating with respect to z, and solving above equation (Neuts, 1979; Coddington and 

Levinson, 1987), one can obtain as 
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The variance of tN  is given by (Heffes and Lucantoni, 1986)  
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After differentiating with respect to z, and by applying some algebraic manipulation (Neuts, 

1979; Coddington and Levinson, 1987), one can obtain as 
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where Π   is steady state vector of Markov chain, e  is the vector of appropriate dimension 

with each entry as 1, and 
t
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One can derive the following results: 

i. ,1)( tIDC  as 0t  (i.e., MMPP move towards to a Poisson process).

 

ii. 
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  , a constant, as t . 

3.  Fitting Procedure 

Variance based fitting procedure is to obtain the MMPP parameters using time dependent 

arrival rates. From earlier, (Reddy, et al. 2005; Kasahara, et al. 2001) it is known that modelling 

of self-similar traffic involves superposition of number of two-state MMPPs (in particular 

IPPs), and the fundamental requirements for fitting process are  

i)  maxmin , rr : Minimum, maximum limits of the time scale range. 

ii)  )(tw  : Arrival rate of  whole process at time .t  

iii)  n  : Number of superposed two-state IPPs. 

iv)  H  : Hurst parameter. 

v)  2 : Variance. 

The thj IPP of the process is given by
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where jba ,  are the constants and .10,  jjj ab 
 
In this context, a  is assumed that, it is 

equal to the whole arrival rate. The superposition of n  IPPs, and a Poisson process is stated as 

                                   
,21 nQQQQ  
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Here, time dependent arrival rate of classical Poisson Process is denoted by )(tp , and 

  indicates the kronecker’s sum, where the resultant of above sum is also an MMPP. The 

arrival rate of whole process at time t  is given by  
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Let tY  be the number of arrivals in whole Markovian process, and the arrivals from thj  

IPP and Poisson process are denoted by  tpj,t NN ,,
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The variance of thj  IPP  and Poisson process are given as  
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From Eqs. (11), (12), (13), and using the fact that variance of a resultant process is 

preserved by the superposition of distinct sub-processes, the following relation is obtained. 
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Using (1) and (14), at n  different points njrj ,..,3,2,1,   variance  of both processes are 

equated. The time scale over which self-similarity of traffic exhibits is taken as ],[ maxmin rr  (i.e., 

maxmin rrr  ), then jr
 
is given by 
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Consider  that  2,1 21 ldrldr jj   and make use of  inequality given below in Eq. (15), 
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The above assumptions are based on the fact that self-similar process is identical for all 

time scales. Now the parameters to be obtained are 11d , .21d  Once their values are obtained, 
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4.  Numerical Results 

 

Accuracy of fitting (self similar traffic as of MMPP) is presented using different samples 

given in Table 1. The samples are pertaining to seminal studies at AT& T Bell labs (Leland, et 

al. 1994). The number of  superposed IPPs n  is taken to be 4. The sinusoidal arrival rates are 

given in Table 2. The variance versus time curves of resultant MMPPs and self-similar traffic 

are shown in Figs.1-12 for n 4 in the time scale ranges ],10,10[ 4

 ],10,10[ 52

 ],10,10[ 62

 ].10,10[ 72  

The n  is taken to be 3 in typical time scale range ]10,10[ 52  to represent the effect of the 

number of superposed components, and the pertinent results are presented in Figs.13-15. The 

results exhibit good agreement with that of self-similar traffic.  

 

Table 1:  Fitting data of samples in time scale range [102, 105] 

 

Sample 

Number 

Parameter Values n=4 n=3 

d11 d21 d11 d21 

Sample 1 H ,7.0 )(tw 1 , and 2 6.0  
0.22 0.001 0.09 0.0924 

Sample 2 H ,8.0 )(tw 1 , and 2 6.0  
0.5 0.0359 0.385 0.025 

Sample 3 H ,9.0 )(tw 1 , and 2 6.0  
0.040015 0.005 0.202 0.001 

Source: Leland, et al. 1994 (for samples) 
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Table 2:  Sinusoidal arrival rates 

 

Arrival rate Value 
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)(12 t  )sin(3.01 t  

)(13 t  )sin(5.01 t  

)(14 t
 

)sin(7.01 t  

 

 

 

Figure 1: Variance versus time curves with n 4  for sample 1during time scale ]10,10[ 4
 

 

 

Figure 2: Variance versus time curves with n 4  for sample2 during time scale ]10,10[ 4
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Figure 3: Variance versus time curves with n 4  for sample3 during time scale ]10,10[ 4
 

 

 

 

Figure 4: Variance versus time curves with n 4  for sample1 during time scale ]10,10[ 52
 

 

Figure 5: Variance versus time curves with n 4  for sample2 during time scale ]10,10[ 52
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Figure 6: Variance versus time curves with n 4 for sample3 during time scale ]10,10[ 52
 

 

Figure 7: Variance versus time curves with n 4 for sample1 during time scale ]10,10[ 62
 

 

Figure 8: Variance versus time curves with n 4 for sample2 during time scale ]10,10[ 62
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Figure 9: Variance versus time curves with n 4 for sample3 during time scale ]10,10[ 62
 

 

Figure 10: Variance versus time curves with n 4 for sample1 during time ]10,10[ 72
 

 

Figure 11: Variance versus time curves with n 4 for sample2 during time ]10,10[ 72
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Figure 12: Variance versus time curves with n 4  for sample3 during time ]10,10[ 72
 

 

 

 
Figure 13: Variance vs time curves with n 4,3  over time-scale ]10,10[ 52

 for sample1 

Figure 14: Variance vs time curves with n 4,3 over time-scale ]10,10[ 52
 for sample2 
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Figure 15: Variance vs time curves with n 4,3 over time-scale ]10,10[ 52
 for sample3 

 

 

5.  Conclusion 

 

Self-similar traffic models proposed earlier are independent of time (homogeneous), and 

they do not work for time dependent queueing analysis. Here, variance based Markovian fitting 

procedure is presented using time dependent arrival rates. For the validation of fitting variance–

time curves are presented, which show how the resultant MMPPs exhibit legitimate agreement 

with that of self-similar traffic in specified time scales. In addition, it is seen that the accuracy 

improved as number of MMPPs in superposition increases. This model is useful for time 

dependent queuing based performance analysis.  
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