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Abstract

The paper revisits estimation problem for the Cox proportional hazards model. We have con-
sidered the problem in a fully Bayesian nonparametric framework with Polya tree priors for the
baseline survival function. The reason for choosing Polya tree priors is that it can select absolutely
continuous probability measures with probability 1, given proper choice of parameters. Our find-
ing improves the partial likelihood approach in the sense that it takes both ranks and spacings of
the order statistics into account. Also, it generalizes the findings of Muliere and Walker Muliere
(1997) by including covariates.
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1 Introduction

Cox (1972) introduced the proportional hazards (PH) model by specifying the hazard rate at
time t for an individual with covariate vector x. The hazard rate h(t | x) is given by

h(t | x) = h0(t)exp(xTβ), (1.1)

where h0(t) is the baseline hazard function. The model implies that the ratio of the hazards for two
individuals is constant over time provided that the covariates stay the same over time. The propor-
tional hazards model has been used extensively for its mathematical simplicity and straightforward
interpretation.

Suppose we observe censored data (tk, δk,xk), (k = 1, · · · , n), where t1 < t2 < · · · < tn.
Here δk is the censoring indicator, with δk = 0 denoting that tk is a right censored observation. The
regression parameter vector β is usually estimated by maximizing the partial likelihood function
PL(β), where

PL(β) =
n−1∏

k=1;δk=1

exp(xTk β)∑n
j=k+1 exp(x

T
j β)

. (1.2)
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It should be noted that PL(β) is a conditional likelihood function instead of a conventional likeli-
hood function, and it depends on the ranks of event times only. This might be undesirable in some
circumstances where it is believed that the spacings of order statistics should also play a role.

To illustrate the effects of spacings of order statistics, we present a simple toy example. For
simplicity, we assume x is an 1-dimensional covariate, with x1 = 1 for subjects in the experiment
group and x1 = 0 for subjects in the control group. In both scenarios in Figure (1), the black
dashed lines denote the same control group (x1 = 0), while the red lines are survival curves of the
treatment group (x1 = 1).
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Figure 1: Two examples with same rank order statistics

Rank order statistics in both scenarios are exactly the same but it is not the case for spacings.
It is not surprising that the estimates of treatment effects based on the partial likelihood function
are the same as given in Table (1). This is not quite ideal because apparently spacings play a
very important role in both cases. In scenario 1(a), it seems plausible that the treatment group
has a larger mean survival time than that of the control group. Hence, ideally we would like to
include the spacing effect in the model and end up with a more significant treatment effect. It is the
opposite for scenario 1(b). Therefore, we are proposing to take both ranks and spacings of order
statistics into account, via a Bayesian nonparametric method.

Table 1: Partial Likelihood Function Estimates
coef exp(coef) se(coef) P-value lower .95 upper .95

Treatment -1.1051 0.0.3312 0.7082 0.119 0.08265 1.327

Bayesian nonparametric methods have received extensive attention recently because of their
flexibility. Dirichlet process priors, introduced by Ferguson (1973), are probably the most com-
monly used nonparametric priors. Over the years, a large body of theory has developed for the use
of such priors in survival analysis. For example, Susarla and Van Ryzin (1976) derived the Bayes
estimator of the survival function under the Dirichlet process prior and Ferguson and Phadia (1979)
derived the posterior distribution of the cumulative distribution function with right censored data.
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However, their scope is somewhat limited due to the fact that Dirichlet process selects, with prob-
ability 1, discrete probability measures. In many areas, for example, in survival analysis, people
usually deal with continuous random variables rather than discrete ones. Therefore, the need for a
nonparametric prior that picks continuous probability measures could not be achieved by Dirichlet
process priors.

For years, people have been seeking other approaches to accommodate continuity. For instance,
Kalbfleisch (1978) defined a family of random probabilities called the Gamma process. Dykstra
and Laud (1981) specified an extended Gamma process prior on the hazard rate. Hjort (1990)
discussed Beta process in the context of survival analysis. We are interested in Polya tree priors,
originally introduced by Fabius (1964) to provide a density estimator on [0, 1] that was weakly
consistent. It was later termed as a Polya tree process by Ferguson (1974). These priors can select
continuous distributions with positive probability and, if necessary, even with probability 1. Lavine
(1992) Lavine (1994) investigated the basic but very important properties of Polya tree priors.
Sufficient conditions for these priors to assign probability 1 to the set of continuous distributions
are discussed in Mauldin, Sudderth, and Williams (1992) (MSW) and Lavine (1992). Thus, it is a
natural idea to employ this method to survival analysis.

More recently, people tend to use a mixture of nonparametric process priors instead of a single
one due to increasing computing capability. The mixture of Dirichlet process priors, introduced
by Antoniak (1974), offers a reasonable compromise between purely parametric and purely non-
parametric methods, and is used extensively. Doss (1994) and Doss and Huffer (2003) discussed
implementation of mixtures of Dirichlet priors for F (t) = 1 − S(t) in the presence of right cen-
sored data using Gibbs sampler. Mixtures of Polya tree priors are relatively new. In particular,
Hanson and Johnson (2002) have used a mixture of Polya tree priors in accelerated failure time
(AFT) models. Hanson (2006) and Hanson and Yang (2007) fitted the PH model using mixture of
Polya trees, and compared the PH model to the AFT model as well as the proportional odds model.
Hanson and Jara (2013) fitted fully nonparametric survival models based on generalizations of the
Dirichlet process mixture and the Polya tree, and compared these nonparametric models to simpler
ones, like the PH model and the AFT model. In comparison to a specific Bayesian nonparamet-
ric process prior, the mixture contains a wider class of distributions and the mixture parameter
smooths the prior to some extent, but it also brings in certain complexity. Approximate calcu-
lations are usually employed for mixtures of Polya tree priors in the sense that the Polya tree is
truncated at a finite number of steps. Our interest lies in the case where a non-truncated Polya
tree process is used. We show that the marginal likelihood function can be written in an explicit
form. Muliere (1997) discussed how Polya tree priors might be used in survival analysis without
covariates. Their original idea of making the Polya tree partition dependent on data greatly sim-
plifies the problem. Huang and Ghosh (2014) used the same idea to perform a hypothesis test for
Lehmann alternatives. We further extend their idea to solve estimation problems in the PH model
in occurrence of covariates.

Marginal likelihoods for regression coefficients in the Cox proportional hazards model with
a Bayesian nonparametric prior on the baseline survival function have been studied for years.
Kalbfleisch and Prentice (1973) proved that, without ties, a marginal likelihood is well approx-
imated by a partial likelihood with a very diffuse Gamma process prior on the baseline hazard
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function. This result is restricted to the case of continuous univariate survival data and fixed time-
constant covariates. Sinha, Ibrahim, and Chen (2003) generalized these results by establishing
Bayesian justification of partial likelihoods as limiting cases of marginal distributions of the regres-
sion parameters under the grouped data likelihood, continuous-data likelihood with time-varying
covariates and regression coefficients. A similar result is obtained in our setup. A closed form
for the marginal likelihood function of the regression coefficients in the Cox proportional hazards
model is derived, assuming that the baseline hazard function is drawn from a Polya tree process.
Also, the marginal likelihood resembles the partial likelihood function with some natural heuristic
interpretation in a limiting case.

The structure of the paper is as follows. The definition and basic properties of Polya tree priors
as considered here are reviewed in Section 2. In Section 3, the marginal likelihood function of β
is given, and some properties are discussed. In addition, a Bayesian analysis is presented. A real
data analysis is given in Section 4. Finally in Section 5, we discuss the problem when ties occur
and also give some pointers for future work.

2 Polya Trees

The Polya tree process is a large class of priors that includes the Dirichlet process as a special
case. It provides a flexible way for Bayesian analysis of nonparametric problems. It has two parts,
a partition of the sample space and a large set of non-negative parameters. Unlike the Dirichlet
process, the partition plays a deterministic role in the Polya trees, and the large collection of pa-
rameters makes it possible to incorporate a wide range of variability. The following definition of
the Polya tree process is taken from Lavine (1992, 1994) and KalbfGhosh and Ramamoorthileisch
(2003).

Let E = {0, 1}, E0 = ∅. Let Em be the m-fold product E×E×E · · ·×E and E∗ =
⋃∞

0 Em.
Define a separating binary tree of partition of Ω, Π = {πm,m = 0, 1, 2, ...}, such that π0 = Ω.
Also, π0, π1, ... form a sequence of partitions such that

⋃∞
0 πm generates the measurable sets and

every B ∈ πm+1 is obtained by splitting some B′ ∈ πm into two sets. Degenerate splits are
permitted, i.e. some B ∈ πm can be split into B

⋃
∅.

For each m, πm = {B ~εm : ~εm = ε1, ..., εm ∈ Em} is a partition of Ω such that for all ~εm ∈ E∗,
B ~εm,0, B ~εm,1 is a partition of B ~εm . Let A = {a ~εm : ~εm ∈ E∗} be a set of nonnegative real numbers
and y = {Y ~εm : ~εm ∈ E∗} be a collection of random variables. Then we say a random probability
measure P on Ω have a Polya tree distribution with parameter (Π, A), written P ∼ PT (Π, A), if
the following conditions hold:

1. all the random variables in y with subscripts ending with 0 are independent, i.e. Y ~εm,0, for all
~εm ∈ E∗, are independent; Y ~εm,1 = 1− Y ~εm,0;

2. for every ~εm ∈ E∗, Y ~εm,0 has a Beta distribution with parameters a ~εm,0 and a ~εm,1;
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3. for every m = 1, 2, ... and every ~εm ∈ E∗,

P (Bε1,...,εm) = (
m∏

j=1;εj=0

Yε1,...,εj)
m∏

j=1;εj=1

(1− Yε1,...,εj−1,0) =
m∏
j=1

Yε1,...,εj (2.1)

Here the form of P (Bε1,...,εm) differs from what is given in Lavine (1992) by re-arranging Y~εm
and defining Y~εm,1 = 1 − Y~εm,0. This provides a compact expression for P (Bε1,...,εm), noting that
Y~εm,0 and Y~εm,1 are not independent.

Some properties of Polya tree processes are listed below to conclude this section. For more
properties, see Lavine (1992) and KalbfGhosh and Ramamoorthileisch (2003).

Remark: Basic properties of the Polya tree process:

1. The Polya trees are conjugate. If P has a Polya tree distribution, andX | P ∼ P , then P | X
has a Polya tree distribution. The posterior distribution is updated in the following manner:
for every ~εm such that X ∈ B ~εm , add 1 to a ~εm .

2. Some Polya trees assign probability 1 to the set of continuous distributions. A broadly
used sufficient condition for this can be found in Theorem 3.3.7 in KalbfGhosh and Ra-
mamoorthileisch (2003). For example, take a ~εm = cm2, where c is a positive real number.

If we have a Polya tree with partitions {B ~εm : ~εm ∈ E∗} and parameters A, the predictive
density at x ∈ B ~εm is given by

f(x) = lim
m→+∞

Pr(B ~εm)

λ(B ~εm)

= lim
m→+∞

∏m
i=1

aε1,...,εj
aε1,...,εj−1,0

+aε1,...,εj−1,1

λ(B ~εm)
(2.2)

where λ(·) is the Lebesgue measure.

A Polya tree can be constructed by centering at an arbitrary distribution. This is important
because when we use Polya tree priors, we usually have a guess of the underlying distribution. Thus
by proper construction, we can make the expectation of the Polya tree coincide with our guess.
There are two ways to do this. Suppose Ω = R, say we want a Polya tree to center at a pre-specified
probability measure G, which is referred to as the baseline measure of the Polya tree. Let the
partition be such that the elements of πm are taken as the intervals [G−1(k/2m), G−1((k+ 1)/2m))
for k = 0, 1, ..., 2m − 1, with the obvious interpretation for G−1(0) and G−1(1). We will refer
to this as Method 1. The other approach is to make the partition data-dependent, as mentioned
in Muliere (1997). This would make the calculation for the posterior with censored data much
simpler. Suppose we specify a number of points x1 < ... < xn as end points, and let B1 =
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[x1,+∞), B11 = [x2,+∞),...,B1, ..., 1︸ ︷︷ ︸
n

= [xn,+∞). In addition we need the parameters a ~εm to

satisfy
aε1,...,εj−1,0

aε1,...,εj−1,1

=
G(Bε1,...,εj−1,0)

G(Bε1,...,εj−1,1)

and that a ~εm increases quickly enough to ensure the continuity property. Here and later, any other
unspecified subintervals are generated by splitting their parent intervals into two equal parts with
respect to the G measure. For example, if B0 = (0, x1), the sets B00 and B01 are such that
G(B00) = G(B01) = G(B0)/2. This we refer as Method 2. We will take a ~εm = cm2 to ensure
continuity of the priors.

Method 2 yields some extra benefits. For example, it assigns probability 1 to a set of continuous
probability measures. The probability density function exists and is defined as in (2.2). The
partition and parameters in Method 2 differ from Method 1 only by finitely many terms. Thus if
we calculate the limit in (2.2) for any x ∈ R+, the limit exists and is finite. We carried out the
calculations based on the partitions described in Method 2. As we will see in later sections, the
results only depend on finitely many parameters, a1, ..., 1︸ ︷︷ ︸

k

and a1, ..., 1︸ ︷︷ ︸
k−1

,0 for k = 1, · · · , n. The

calculations will go through as long as Polya trees select continuous distributions with probability
1 and aε1,...,εm grows to infinity as m→ +∞.

3 Cox Proportional Hazards Model Under Polya Tree Process Prior

3.1 Marginal Likelihood Function for β

We consider the case with right censoring in survival data analysis. The data are of the form
(tk, δk,xk), where xk is the set of covariates associated with the kth subject, and δk is the censoring
indicator, with δk = 1 being the case that the kth observation is an event.

Assuming Cox proportional hazards model as in (1.1), it follows that the survival function is
given by

S(t | x) = [S0(t)]exp(x
Tβ).

Kalbfleisch and Prentice (1973) derived the marginal likelihood functions of the Cox model
with and without ties. Later, Kalbfleisch (1978) used Gamma process (GP) for the baseline and
derived the marginal likelihood function of the coefficients. In this section we present results
analogous to ones obtained by Kalbfleisch’s work. Instead of putting a Gamma process prior for
the baseline, we use a Polya tree prior.

The Polya tree prior appears to be more flexible than Gamma process prior. To see this, suppose

P1 ∼ GP (γ(t), β) and P2 ∼ PT (Π, A).
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Suppose t1 < t2 < t3 are such that

γ(t2)− γ(t1) = γ(t3)− γ(t2)

Then by the construction of the GP, we have

E[P1((t1, t2))] = E[P1((t2, t3))] and V ar[P1((t1, t2))] = V ar[P1((t2, t3))].

Thus it is clear that the variance is determined homogeneously at some level.

However, this is not the same for Polya trees. By choosing proper parameters, it is possible to
make

E[P2((t1, t2))] = E[P2((t2, t3))] and V ar[P2((t1, t2))] 6= V ar[P2((t2, t3))].

This is useful because in some cases, the researcher might not be sure about the distribution
over a certain interval, and wants to let the distribution have a relatively large variance in that
interval. Polya tree can deal with this situation.

For example, suppose a horrible earthquake took place at t2 and aftershocks kept coming during
t2 to t3. This might bring in a lot of censored data within that period. One might want to let the
variance of the baseline distribution be bigger during (t2, t3) than that during (t1, t2). A Polya tree
prior can accommodate situations like this.

Throughout this section, ties are not considered. We assume that the censoring occurs infinites-
imally before an event happens. Namely, if we observe a censored datum t, the contribution of this
datum to likelihood is Pr([t,+∞)). In case one needs to deal with the opposite situation, one
should let the partition be B1, ..., 1︸ ︷︷ ︸

i

= (Xi,+∞) , for i = 1, · · · , n, and redo the computations.

Now suppose that the baseline distribution F0 = 1 − S0 is drawn from a Polya tree process.
Our interest is to estimate β. For the time being, we are not considering this problem in a fully
Bayesian framework. That is, no prior is given for β and thus finding the posterior of β is not
our primary goal. The reason is that the structure of Polya tree is complicated, that even if we use
the simplest prior for β, the posterior is not available analytically. Hence, we confine our interest
in the marginal likelihood of β and seek Maximum Likelihood Estimator (MLE) throughout this
subsection, which is also the posterior mode under a uniform prior for β.

The following theorem gives the exact form of the marginal likelihood function of β. The proof
of the theorem is provided as supplemental material.

Theorem 1: Assume the model (1.1) and no ties occur in the data. Suppose the baseline distri-
bution is distributed as a Polya tree PT (Π, A). Then the exact likelihood function of coefficients
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β is given by Lik = limm→+∞E[Lm], where

E[Lm] =

n∏
k=1

{ 1

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)
}δk

n−1∏
k=1

{a1, ..., 1︸ ︷︷ ︸
k

,0}
δk{

a1, ..., 1︸ ︷︷ ︸
n

,0

a1, ..., 1︸ ︷︷ ︸
n

,0 + a1, ..., 1︸ ︷︷ ︸
n

,1

}δn

·
n∏
k=1

{

a1, ..., 1︸ ︷︷ ︸
k

,00

a1, ..., 1︸ ︷︷ ︸
k

,00 + a1, ..., 1︸ ︷︷ ︸
k

,01

a1, ..., 1︸ ︷︷ ︸
k

,000

a1, ..., 1︸ ︷︷ ︸
k

,000 + a1, ..., 1︸ ︷︷ ︸
k

,001

· · ·

a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

+ a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k−1

,1

}δk

· {
n∏
k=1

exp(xTk β)δk} ·
Γ(a0 + a1)Γ(a1 +

∑n
j=1 exp(x

T
j β))

Γ(a0 + a1 +
∑n
j=1 exp(x

T
j β))Γ(a1)

· {
n−1∏
k=1

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1)Γ(a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n
j=k+1 exp(x

T
j β))

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n
j=k+1 exp(x

T
j β) + δk)Γ(a1, ..., 1︸ ︷︷ ︸

k

,1)
}. (3.1)

Note that the terms involving β are independent of m. To get the MLE of β, we only need to
maximize the following function, L(β) , with respect to β, where

L(β) ={
n∏
k=1

exp(xTk β)δk} ·
Γ(a1 +

∑n
j=1 exp(x

T
j β))

Γ(a0 + a1 +
∑n

j=1 exp(x
T
j β))

· {
n−1∏
k=1

Γ(a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 exp(x
T
j β))

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 exp(x
T
j β) + δk)

}. (3.2)

It is worth pointing out that the exact likelihood function of β is just L(β) multiplied by a positive
constant, i.e.Lik(β) = c0L(β). If we re-parameterize as follows,



σk = a1, ..., 1︸ ︷︷ ︸
k

+ a1, ..., 1︸ ︷︷ ︸
k−1

,0

rk = G([vk,+∞))
G([vk−1,+∞))

=

a1, ..., 1︸ ︷︷ ︸
k

a1, ..., 1︸ ︷︷ ︸
k−1

,0
+a1, ..., 1︸ ︷︷ ︸

k

, (3.3)

then L(β) reduces to

L(β) ={
n∏
k=1

exp(xTk β)δk} ·
Γ(σ1r1 +

∑n
j=1 exp(x

T
j β))

Γ(σ1 +
∑n

j=1 exp(x
T
j β))

· {
n−1∏
k=1

Γ(σk+1rk+1 +
∑n

j=k+1 exp(x
T
j β))

Γ(σk+1 +
∑n

j=k+1 exp(x
T
j β) + δk)

}. (3.4)
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Moreover, when σ1 = ... = σn = 0, L(β) reduces to

L(β) ={
n∏
k=1

exp(xTk β)δk}{
n−1∏
k=1

Γ(
∑n

j=k+1 exp(x
T
j β))

Γ(
∑n

j=k+1 exp(x
T
j β) + δk)

}

=
n−1∏

k=1;δk=1

exp(xTk β)∑n
j=k+1 exp(x

T
j β)

which resembles the partial likelihood function for the Cox proportional hazards model. Recall
that the partial likelihood function is

PL(β) =
n∏

k=1;δk=1

exp(xTk β)∑n
j=k exp(x

T
j β)

=
n−1∏

k=1;δk=1

exp(xTk β)∑n
j=k exp(x

T
j β)

They only differ in that exp(xTk β) is not included in the denominator of each term in the product.
If one thinks of the motivation of each term in the partial likelihood function heuristically as a
conditional probability given by

Pr(the particular individual dies at tk | one death at tk) =
h(tk | xk)∑n
j=k h(tj | xj)

=
exp(xTk β)∑n
j=k exp(x

T
j β)

,

then the special case of L(β) is based on conditional odds instead of conditional probabilities for
each term, namely,

Odds(the particular individual dies at tk | one death at tk) =

h(tk|xk)∑n
j=k h(tj |xj)

1− h(tk|xk)∑n
j=k h(tj |xj)

=
exp(xTk β)∑n

j=k+1 exp(x
T
j β)

3.2 Effect of Spacings

In this subsection, we investigate the effect of spacings of order statistics on the MLE. For sim-
plicity, we consider only one-dimensional covariate in this subsection. Without loss of generality,
assume that the covariate is non-negative. We consider individually for the component terms in
(3.4). For k = 1, · · · , n− 1, let

h(rk+1) = log(Γ(σk+1rk+1 +
n∑

j=k+1

exp(xjβ)))− log(Γ(σk+1 +
n∑

j=k+1

exp(xjβ) + δk)),
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and

h(rk+1)β = [ψ(σk+1rk+1 +
n∑

j=k+1

exp(xjβ))−ψ(σk+1 +
n∑

j=k+1

exp(xjβ)+δk)](
n∑

j=k+1

exp(xjβ)xj),

where ψ(·) is the Digamma function. h(rk+1)β is increasing in rk+1 because ψ(·) is strictly in-
creasing in (0,+∞) and

∑n
j=k+1 exp(xjβ)xj > 0 unless all covariates are trivially 0. This is also

true for h(r1) where h(r1) is defined in the obvious way. Thus the MLE is obtained by solving

h(β) =
n−1∑
k=0

h(rk+1)β = 0. (3.5)

Note that h(β) is an increasing function of rk, k = 1, · · · , n. Hence larger rk’s result in larger
h(β), and accordingly result in larger β’s, i.e. larger treatment effects, as shown in Figure (2).

−2 0 2 4 6

−2
−1

0
1

2

Demo for MLE

beta

h(
be

ta
)

●

small r_k
large r_k

Figure 2: Effects of spacings on MLE

3.3 Full Bayesian Analysis

A fully Bayesian setup is available in this framework and is discussed in this sub-section.
Assume that a generic prior π(β) is assigned to β. It is straightforward that the posterior is given
by

π(β | data) ∝ Lik(β)π(β)

∝ L(β)π(β).

Since an explicit expression forL(β) is available, it is straightforward to apply standard Metropolis-
Hastings algorithm to simulate the posterior distribution of β.

Here we revisit the toy example (Figure (1)) proposed in Section 1. A relatively non-informative
N(0,100) prior is assigned to β. Figure (3) shows the kernel density estimates of the posteriors of
β using MCMC algorithm.
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Figure 3: Kernel Density for Posteriors of β

Compared to the partial likelihood estimate, βPL = −1.1051, in Table (1), the posterior mean
of β in scenario 1(a) is evaluated at −2.44, showing a sign of much larger treatment effect; the
posterior mean of β in scenario 1(b) is evaluated at −0.79, showing a smaller treatment effect.
Another interesting result is that the highest posterior density (HPD) interval for scenario 1(a) is
(−3.38,−1.57), which is clearly far away from 0, identifying a statistically significant treatment
effect. In contrast, the HPD interval for scenario 1(b) is (−1.53,−0.003), which barely excludes
0, making the significance of treatment effect less convincing.

3.4 Simulation Study Showing Consistency of the Posterior Mean

To study asymptotic properties of the estimation, a series of simulation studies were carried
out. A Weibull (3,12) is used as the baseline survival distribution for simulation . Observations
are censored by an independent Exp(50) distribution. Assume that there are 2 covariates. The true
regression coefficients are set to be 0.5 and −5 respectively. We randomly generated censored
sample with sizes from 15 to 150. Throughout all calculations for posteriors, a non-informative
prior, N (0,100), was assigned to the two coefficients independently. For each sample size, a
MCMC algorithm is used to compute the posterior mean. The posterior means are plotted in
Figure (4).

As one can see in the simulations, the posterior means of the regression coefficients converge
to the true values quickly and stay stable ever since.

4 Real Data Analysis

We take the ovarian cancer dataset in the Survival package of R software as a real data analysis
example. The data set was originally reported by Edmunson, Fleming and Decker (1979), and was
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Figure 4: Posterior Means of β’s as Sample Size Increases

later re-analyzed in a number of situations, such as Collett (2003). The study included n = 26
patients with advanced ovarian carcinoma (stages IIIB and IV). Treatment of patients using either
cyclophosphamide alone (1 g/m2) or cyclophosphamide (500 mg/m2) plus adriamycin (40 mg/m2)
by injection every 3 weeks each produced partial improvement in approximately one third of the
patients.

Table 2: Ovarian Cancer
Treatment Survival Time (Days)

Treatment 1 59, 115, 156, 268, 329, 431, 448+, 477+, 638, 803+, 855+, 1040+, 1106+
Treatment 2 353, 365, 377+, 421+, 464, 475, 563, 744+, 769+, 770+, 1129+, 1206+, 1227+

As an illustration, we consider the Bayesian parametric model described by Dellaportas and
Smith (1993). The likelihood under the Weibull model is given by

L(β, ρ | data) = {
n∏
j=1

ρtρ−1
j exp(xjβ)}{

n+m∏
j=1

exp[−tρjexp(xjβ)]}. (4.1)

We assume that β1, β2, β3 ∼ N(0, 100) independently, where β1, β2, β3 are regression coefficients
correponding to treatment, age and residual disease respectively. Due to the fact that for ECOG
score, 1 is better than 2, we assign a lognormal (0, 100) prior to β4. Through Gibbs sampling in
Winbugs, the posterior densities are given in Figure (5).

Now we proceed with our proposed method. A relatively noninformative prior is used. The
same priors for β are used. Standard Metropolis within Gibbs sampler algorithm can be applied
and the kernel density estimates of resulting posterior distributions are displayed in Figure (6).

A simple comparison of the results shows that our method leads to a treatment effect with
larger magnitude. Furthermore, our method successfully identifies a positive age effect. This is
reasonable as one would expect that older people are more likely to have larger hazards.
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Figure 5: Kernel Density for Posteriors of β’s (Dellaportas and Smith’s method Dellaportas and
Smith (1993))

Hennerfeind (2006) introduced a method using B-spline to model the baseline hazard as an
alternative nonparametric approach. Hennerfeind, Brezger, and Fahrmeir (2006) further included
time-varying covariates as well as a spatial component for geographical effects in this nonparamet-
ric model. We adopt the idea of B-spline and present the results for comparison. In this model,
a cubic spline with 2 knots was generated. The coefficients of the Spline basis functions and the
regression coefficients for age, treatment, residual disease and ECOG performance score are esti-
mated by maximizing the full likelihood function, with the constraint that the coefficients for the
Spline are nonnegative. It appears the Spline model overestimates treatment effects and it does
not capture the trend that higher ECOG scores should be associated with higher risks (hazards).
The results are presented in Table (3) and the estimate of the baseline hazard function is shown in
Figure (7).

Table 3: Ovarian Cancer - Spline Model
Age Residual Disease Treatment ECOG

Estimates 0.0430 -0.0113 -3.3262 -1.0490

5 Discussion

So far our approach only works in case without ties. However, in reality, there might be situa-
tions where ties occur. For example, public emergencies might cause multiple events or censoring
to occur at the same time.We divide ties into two categories, namely ties of censored data and ties
of event times. For the first case when multiple observations are censored at the same time, our
calculations are still valid. However, this is not the case for the second scenario.
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The problem occurs for two reasons. First, the limit (2.2) may not exist or be infinity for
some x ∈ R+ because the density does not necessarily exist when the underlying distribution is
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not absolutely continuous. Second, when multiple events are observed at the same time, we know
that the underlying distribution must be non-continuous. In this case, to keep the prior reasonable,
we should not assign parameters such that Polya tree gives probability 1 to a set of continuous
distributions. Instead, appropriate parameters should be assigned to the Polya tree such that it gives
positive probability either to a set of discrete distributions, or to a set of partly discrete and partly
continuous distributions. Dirichlet process appears to be a natural candidate in this case. However,
it turns out to be computationally prohibitive, since the likelihood function depends not only on
the number of tied observations, but also on the location on R+ of the occurrences of ties. The
problem becomes intractable as sample size increases, since the number of possible combinations
of ties grows exponentially.

One way to overcome the hurdles is to learn from how people deal with ties in the partial likeli-
hood function. Suppose observed data set (tk, δk,xk), k = 1, 2, · · · , n (without loss of generality,
assuming data are sorted by tk) has tied event times tk0 = tk0+1 = t. Assume that the underlying
distribution of times is continuous. In this case, we observe ties because of measurement error.
In reality, tk0 6= tk0+1, but they are so close to each other such that we do not see the difference.
Just by looking at the data, there could be two equally likely possibilities, i.e. tk0 > tk0+1 and
tk0 < tk0+1 by a small margin. Let ε be a very small positive real number. Then we can calculate
approximate L(β) by letting both tk0 = t + ε, tk0+1 = t and tk0+1 = t + ε, tk0 = t. Then the
overall L(β) is given by the average of resulting two L(β)’s since both possibilities are equally
likely. The continuity of L(β) on rk0 guarantees that approximate L(β) is close to its true value as
long as ε is small.
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Appendix

The proof of Theorem 1 is provided.

Proof. Take m > n, such that at level m, t1, ..., tn are separated in different intervals. For t ∈
[0,+∞), let ~εm(t) = ε1, ..., εm such that t ∈ Bε1,...,εm . In addition, with appropriate parameters, P
is continuous with probability 1. Thus without loss of generality, assume t1 < ... < tn. And write
~εm
i = ~εm(ti) = εi1, ..., ε

i
m.

When there are no covariates, t1, ..., tn | P ∼ P = 1− P̄ . At level m of the tree, given P , the
conditional independence yields the joint pdf of t1, ..., tn is

fm(t1, ..., tn | P ) =
∏n
i=1 Pr(B ~εmi

|P )∏n
i=1 λ(B

~εmi
)

=

∏n
i=1

∏
εi
j
=0

Y
εi1,...,ε

i
j

∏
εj=1 (1−Y

εi1,...,ε
i
j
)∏n

i=1 λ(B
~εmi

)
(5.1)

The exact marginal joint pdf is given by letting m → +∞ and then taking the expectation.
By repeated use of the Theorem 2 in Lavine Lavine (1992), the existence and finiteness of the
limit are guaranteed. We denote this limit by f . By dominated convergence theorem, the order of
expectation and limit can be interchanged.

Now with the occurrence of covariates xk, write

αk = exp(xTk β)

for k = 1, ..., n.

We will calculate the conditional likelihood function of (tk, dk), given P , by considering cen-
sored and uncensored data separately. Let us begin with the uncensored situation. Without loss of
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generality, assume that all data are uncensored, i.e., dk = 1, for k = 1, · · · , n. The conditional joint
likelihood function is not trivial in this case. Take any t ∈ Bε1,...,εm . We need to find Pαk(B ~εm),
where Pαk denotes the probability measure induced by Pαk = 1− P̄αk . To do this, we have to sum
all the probabilities of the intervals to the right of B ~εm , plus probability of B ~εm , and then raise to
power αk. This quantity is denoted by Pαk(B ~εm+ | P ). At mth level of the tree, given P , a simple
expression is provided by,

Pαk(B ~εm+ | P ) = {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + Pr(B ~εm | P )}αk .

Therefore,

Pαk(B ~εm | P )

= Pαk(B ~εm+ | P )− P ′((B ~εm+)−B ~εm | P )

= {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + Pr(B ~εm | P )}αk − {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)}αk

(5.2)

where the ”-” sign in the probability means exclusion. Now using the second order Taylor Expan-
sion for function h(t) = tα,

h(t+ ∆)− h(t) = αtα−1∆ + α(α− 1)(t+ θ)α−2∆2

where θ ∈ (0,∆). It follows that

Pαk(B ~εm | P ) = αk Pr(B ~εm | P ){
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)}αk−1

+ αk(αk − 1)Pr(B ~εm | P )2{
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + θ}αk−2

where θ ∈ (0, P r(B ~εm | P )). For simplicity, write

Wm(t) =
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)

Wm depends on t because ε1, ..., εm depend on t.

Now we are in place to calculate the conditional joint pdf of t1, · · · , tn atmth level of the Polya
tree, which is denoted by f̄m(t1, ..., tn | P ).

f̄m(t1, ..., tn | P )

=

∏n
i=1 Pαi(B ~εm

i | P )∏n
i=1 λ(B ~εm

i)

=

∏n
i=1 Pr(B ~εm

i | P )
∏n

i=1 {αiWm(ti)
αi−1 + αi(αi − 1)[Wm(ti) + θi]

αi−2Pr(B ~εm
i | P )}∏n

i=1 λ(B ~εm
i)

=
NUM∏n

i=1 λ(B ~εm
i)
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where NUM is the numerator of the fraction. The exact marginal joint pdf is found by letting m
→ +∞ and then taking expectation with regard to Polya tree process.

We claim that

lim
m→+∞

E[
NUM∏n

i=1 λ(B ~εm
i)

] = lim
m→+∞

E[

∏n
i=1 Pr(B ~εm

i | P )
∏n

i=1 {αiWm(ti)
αi−1}∏n

i=1 λ(B ~εm
i)

] (5.3)

Indeed, if we write the products in the numerator as summation, we have

n∏
i=1

[αiWm(ti)
αi−1 + αi(αi − 1){Wm(ti) + θi}αi−2Pr(B ~εm

i | P )]

=
∑
S⊆Ω

[
∏
j∈S

αiWm(tj)
αi−1

∏
k∈Sc

αi(αi − 1){Wm(tk) + θk}αi−2Pr(B ~εm
k | P )] (5.4)

where Ω = {1, ..., n}, and the summation is taken for all (proper and improper) subsets S ⊆ Ω.

However, if | Sc |≥ 1, i.e. there exists k0 ∈ Sc, then

| [
∏
j∈S

αiWm(tj)
αi−1

∏
k∈Sc

αi(αi − 1){Wm(tk) + θk}αi−2Pr(B ~εm
k | P )] | .

≤| αn(α− 1)|S
c|Pr(B ~εm

k0 | P ) |

where α = max
i=1,··· ,n

αi. The above inequality uses the fact that

0 ≤ Wm(t) ≤ Wm(t)+θ ≤ Wm(t)+Pr(B ~εm
k | P ) ≤

m∑
n=1

Pr(Bε1,...,εn | P ) = Pr([0,+∞) | P ) = 1.

Hence, the expectation of the corresponding term in summation satisfies

E[|
∏n

i=1 Pr(B ~εm
i | P )[

∏
j∈S αiWm(tj)

αi−1
∏

k∈Sc αi(αi − 1){Wm(tk) + θk}αi−2Pr(B ~εm
k | P )]∏n

i=1 λ(B ~εm
i)

|]

≤ E[|
∏n

i=1 Pr(B ~εm
i | P )αn(α− 1)|S

c|Pr(B ~εm
k0 | P )∏n

i=1 λ(B ~εm
i)

|]

= const.E[
{
∏

i 6=k0 Pr(B ~εm
i | P )}Pr(B ~εm

k0 | P )2∏n
i=1 λ(B ~εm

i)
] (5.5)

Comparing (5.5) to (5.1), it follows that

E [
{
∏

i 6=k0 Pr(B ~εm
i | P )}Pr(B ~εm

k0 | P )2∏n
i=1 λ(B ~εm

i)
]

= E[fm(x1, ..., xn | P )]
m∏
j=1

a
ε
k0
1 ,...,ε

k0
j

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1

a
ε
k0
1 ,...,ε

k0
j−1,0

+ a
ε
k0
1 ,...,ε

k0
j−1,1

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1
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where n
ε
k0
1 ,...,ε

k0
j−1

= ]{j : Xj ∈ Bε
k0
1 ,...,ε

k0
j−1
}.

When m > n, we specify the parameters as

aε1,...,ε,m−10 = aε1,...,εj−1,1 = m2

which implies that when m is large,
a
ε
k0
1 ,...,ε

k0
j

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1

a
ε
k0
1 ,...,ε

k0
j−1,0

+ a
ε
k0
1 ,...,ε

k0
j−1,1

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1
→ 1

2
,

and E[fm(x1, ..., xn | P )] is finite. Therefore,

E[
{
∏

i 6=k0 Pr(B ~εm
i | P )}Pr(B ~εm

k0 | P )2∏n
i=1 λ(B ~εm

i)
]→ 0 as m→ +∞.

So all the terms with | Sc |≥ 1 in (5.4) eventually tend to 0. The only term left is when
| Sc |= 0, i.e. S = Ω, which completes the proof to the claim.

As for the censored data, their contribution to the likelihood function is simpler. The contribu-
tion of the (tk, dk = 0) at mth level of Polya tree is just

Pαk(B ~εm+ | P ) = {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + Pr(B ~εm | P )}αk = Wm(tk)
αk (5.6)

Before we combine the results of (5.3) and (5.6) together, let us figure out what ~εm(ti) is. By
the mechanism of partition, for m > n, and i = 1, ..., n, ti is an end point at level i of the tree.
Before the ith level, ti lies in the right subinterval every time the current interval splits into two;
after ith level, ti would always be in the left subinterval generated by splitting the current interval
that contains ti. Thus,

~εm(ti) = 1, ..., 1︸ ︷︷ ︸
i

, 0, ..., 0︸ ︷︷ ︸
m−i

Clearly,
Pr(B ~εm

i | P ) = Y1Y11...Y1, ..., 1︸ ︷︷ ︸
i

Y1, ..., 1︸ ︷︷ ︸
i

,0...Y1, ..., 1︸ ︷︷ ︸
i

,0, ..., 0︸ ︷︷ ︸
m−i

.

And by definition of Wm(t),

Wm(t1) = Y1, Wm(t2) = Y1Y11, · · · , Wm(tn) = Y1Y11...Y1, ..., 1︸ ︷︷ ︸
n

. (5.7)

These lead to
n∏
i=1

Pr(B ~εm
i | P ) ={Y1Y10Y100...Y1,0, ..., 0︸ ︷︷ ︸

n−1

}{Y1Y11Y110Y1100...Y11,0, ..., 0︸ ︷︷ ︸
n−2

} · · ·

{Y1Y11...Y1, ..., 1︸ ︷︷ ︸
n

Y1, ..., 1︸ ︷︷ ︸
n

,0Y1, ..., 1︸ ︷︷ ︸
n

,00...Y1, ..., 1︸ ︷︷ ︸
n

,0, ..., 0︸ ︷︷ ︸
m−n

} (5.8)
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Recall that

Yε1,...,εj ,1 = 1− Yε1,...,εj ,0 (5.9)

for all j = 1, ..., n and all (ε1, ..., εj).

Combining the results from (5.3) , (5.6), (5.7) and (5.8) yields that the contribution, at level
m, of (αk, tk, δk) to the likelihood is asymptotically equal to

Lk,m =
Pr(B ~εm

k | P ) · αk ·Wm(tk)
αk−1

λ(B ~εm
k)

=

Y1Y11...Y1, ..., 1︸ ︷︷ ︸
k

Y1, ..., 1︸ ︷︷ ︸
k

,0...Y1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

· αk · (Y1Y11...Y1, ..., 1︸ ︷︷ ︸
k

)αk−1

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)

=

Y1, ..., 1︸ ︷︷ ︸
k

,0...Y1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

· αk · (Y1Y11...Y1, ..., 1︸ ︷︷ ︸
k

)αk

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)
(5.10)

When δ = 0, tk is a censored time. Thus the contribution to the likelihood, given P , is

Lk,m = Wm(Xk)
αk = {Y1Y11...Y1, ..., 1︸ ︷︷ ︸

k

}αk

Combining the previous two equations, the contribution of (αk, tk, δk) to the likelihood is

Lk,m = (Y1Y11...Y1, ..., 1︸ ︷︷ ︸
k

)αk{

αkY1, ..., 1︸ ︷︷ ︸
k

,0...Y1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)
}δk

Thus the true likelihood function has the form

L = E[ lim
m→+∞

n∏
k=1

Lk,m]

Again, By Lavine Lavine (1992), the density exists and is finite. By dominated convergence
theorem, we can interchange the order of the expectation and the limit.
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Define

Lm =

n∏
k=1

Lk.m

=Y
∑n

i=1 αi

1 Y
∑n

i=2 αi

11 · · ·Y
∑n

i=k αi

1, ..., 1︸ ︷︷ ︸
k

· · ·Y αn

1, ..., 1︸ ︷︷ ︸
n

·
n∏
j=1

{

Y1, ..., 1︸ ︷︷ ︸
j

,0 · · ·Y1, ..., 1︸ ︷︷ ︸
i

,0, ..., 0︸ ︷︷ ︸
m−i

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)
}δj

=[

n∏
k=1

αδkk
λ(B1, ..., 1︸ ︷︷ ︸

k

,0, ..., 0︸ ︷︷ ︸
m−k

)δk
]

· (1− Y0)
∑n

i=1 αi(1− Y10)
∑n

i=2 αiY δ111 · · · (1− Y1, ..., 1︸ ︷︷ ︸
k−1

,0)
∑n

i=k αiY
δk−1

1, ..., 1︸ ︷︷ ︸
k−1

,0
· · · (1− Y1, ..., 1︸ ︷︷ ︸

n−1

,0)αnY
δn−1

1, ..., 1︸ ︷︷ ︸
n−1

,0

· {Y100Y1000 · · ·Y1,0, ..., 0︸ ︷︷ ︸
m−1

}δ1

· {Y1100Y11000 · · ·Y11,0, ..., 0︸ ︷︷ ︸
m−2

}δ2

· · ·
· {Y1, ..., 1︸ ︷︷ ︸

n

,0Y1, ..., 1︸ ︷︷ ︸
n

,00Y1, ..., 1︸ ︷︷ ︸
n

,000 · · ·Y1, ..., 1︸ ︷︷ ︸
n

,0, ..., 0︸ ︷︷ ︸
m−n

}δn

With all Y ′s appeared in last equation being independently beta distributed, taking expectation

E[Lm] =
n∏
k=1

{ 1

λ(B1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

)
}δk

n−1∏
k=1

{a1, ..., 1︸ ︷︷ ︸
k

,0}
δk{

a1, ..., 1︸ ︷︷ ︸
n

,0

a1, ..., 1︸ ︷︷ ︸
n

,0 + a1, ..., 1︸ ︷︷ ︸
n

,1

}δn

·
n∏
k=1

{

a1, ..., 1︸ ︷︷ ︸
k

,00

a1, ..., 1︸ ︷︷ ︸
k

,00 + a1, ..., 1︸ ︷︷ ︸
k

,01

a1, ..., 1︸ ︷︷ ︸
k

,000

a1, ..., 1︸ ︷︷ ︸
k

,000 + a1, ..., 1︸ ︷︷ ︸
k

,001

· · ·

a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k

+ a1, ..., 1︸ ︷︷ ︸
k

,0, ..., 0︸ ︷︷ ︸
m−k−1

,1

}δk

· {
n∏
k=1

αδkk } ·
Γ(a0 + a1)Γ(a1 +

∑n
j=1 αj)

Γ(a0 + a1 +
∑n

j=1 αj)Γ(a1)

· {
n−1∏
k=1

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1)Γ(a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 αj)

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 αj + δk)Γ(a1, ..., 1︸ ︷︷ ︸
k

,1)
}

Then the true marginal likelihood of α′s (β′s) is given by letting m→ +∞. Generally it is not
likely to get a close form of this likelihood function because of the difficulty in evaluating limits.
However, even though (3.1) looks complex, we do not need to evaluate it if our goal is to get the
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MLE of β′s. Note that β′s are involved only through α′s. And terms containing α′s are

L(~α) ={
n∏
k=1

αδkk } ·
Γ(a0 + a1)Γ(a1 +

∑n
j=1 αj)

Γ(a0 + a1 +
∑n

j=1 αj)Γ(a1)

· {
n−1∏
k=1

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1)Γ(a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 αj)

Γ(a1, ..., 1︸ ︷︷ ︸
k

,0 + a1, ..., 1︸ ︷︷ ︸
k

,1 +
∑n

j=k+1 αj + δk)Γ(a1, ..., 1︸ ︷︷ ︸
k

,1)
},

where αk = exp(xTk β). Also, (3.2) is independent of m. That is saying that when taking m →
+∞, L(~α) stays the same. Therefore, maximizing the true likelihood with respect to β is equivalent
to maximizing (3.2) with respect to β.


