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Abstract
A stochastic process associated with queuing system is specified by the knowledge of

(i) Arrival process (ii) Queue discipline (iii) Service process. Among these three, the service
process is more important since it can be controlled by the operators of the system. A long
with many other assumptions, it is customary to consider that the inter service time are
Exponential. A generalization of it is Erlangian service time in which it is assumed that
there are k-phase of service and each have identically distributed as Negative Exponential
Distribution. But in many practical situations the service times are not identical. Hence in
this paper we consider a queueing system with Poisson arrival having component of additive
exponential service times. Using the probability generating function the system size distri-
bution is derived. The system behaviour analyzed by deriving the system characteristics like,
average number of customer in the system, the variability of system size, etc,. The waiting
time distribution of the system is also derived. The sensitivity of the model with respect
to the parameter is analyzed. It is observed that the system performance is influenced by
the service time distribution parameters. This model includes M/M/1, M/E/1 models as
particular cases for specific or timely value of parameters.

Key words: Queueing system; Erlangian service time; Additive exponential service times;
Negative Exponential Distribution; M/M/1; M/E/1; Sensitivity analysis.

1. Introduction

In many of the queuing models it is customary to consider that the inter service times
follows exponential distribution. In many practical situations the exponential assumption
concerning service times being distributed may be rather limiting on its utility. In particular,
in computer communications the service time of request is sum of two random variables
namely, (1) entering (key in) time and (2) processing time. Each of these service times are
exponentially distributed with different parameters say and as result of it the inter-service
time between two customers follows an additive exponential distribution. Very little work
has been observed regarding queueing models with additive exponential distribution. Hence,
in this paper, we develop and analysis a single server queueing model with Poisson arrivals
having additive exponential service times distribution.

Corresponding Author: S. Govinda Rao
Email: govinda.seepana@gmail.com



232 CH. G. SWAMY, K. S. RAO AND S. GOVINDA RAO [Vol. 21, No. 1

In this section, we briefly review some of the contributions in queueing models with
non exponential service time in order to highlight the present work in its right perspective.
Kendall (1951) used the concept of regeneration point by suitable choice of regeneration
points and extracts. This method is known as embedded Markov chains. This method
pioneered the M/G/1 queueing models. Keillson and Koharian (1960) developed the supple-
mentary variable technique for analyzing the M/G/1 queueing model. This technique is very
popular in analyzing the non-Markovian queueing models. Heymans (1968) considered the
economic behavior of an M/G/1 queueing system that operates under the cost structure, a
server start-up cost, a server shut-down cost, a cost per unit time when the server is busy and
a holding cost per unit time spent in the system for each customer. The author proved that
for a single server queue, there is a stationary optimal operating policy. Levy and Yechiah
(1975) considered the utilization of idle time of the server in a M/G/1 for some additional
work in a secondary queue. Two types of vacation policies viz., M/G/1/Vs and M/G/1/Vm
with exhaustive service are also studied.

Bohm (1992) considered an M/G/1 queueing model with N-policy operating. The
server start up only if a queue of a prescribed length was built up. For this model, the time
dependent distribution of the queue length is given by renewal arguments without resorting to
integral transform techniques. Movaghar (1998) studied a queueing system where customers
have strict deadlines until the beginning of their service. An analytical method is given for
the analysis of a class of such queues, namely, M(n)/M/m/{rm FCFS} + {rm G} models.
The principal measure of performance is the probability measure induced by the offered
waiting time.

Hisashi and Brian (2001) studied the loss models in the traffic engineering of tra-
ditional telephone exchanges. These models were generalized to the loss networks, which
provide models for resource-sharing in multi-service telecommunication networks. The au-
thors introduced a generalized class of models, queueing-loss networks, which captures both
queueing and loss aspects of a system. Choudhury et. al. (2004) considered an Mx/M/1
queueing model under a threshold policy with vacation process, where the server takes a
sequence of vacations, till the server returns to find at least some prespecified number of
customers (threshold) observed after each grand vacation.

EI-Paoumy (2008) derived the analytical solution of the queue: Mx/M/2/N for batch
arrival system with balking, reneging and two heterogeneous servers. A modified queue
discipline is used with a more general condition. The steady-state probabilities and measures
of effectiveness are derived. El-Paoumy and Ismail (2009) studied Mx/Ek/I/N with balking
and reneging queueing model in which, (i) Units arrive in batches of random size with the
inter arrival times of batches following negative exponential distribution. (ii) The queue
discipline is FCFS, it being assumed that the batches are pre-ordered for service purpose.
(iii) The service time distribution is Erlangian with K stages. Recurrence relations connecting
the various probabilities are derived. Measures of effectiveness as L and Lq are deducted and
some special cases are presented.

Fralix and Zwart (2010) studied a conjecture “the distribution of the number of jobs
in the system of a symmetric M/G/1 queue at a fixed time is independent of the service
discipline if the system starts empty”. Their arguments are based on a time-reversal argument
for regenerative processes. Down et. al. (2011) discussed the dynamic server control in a
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two-class service system with abandonments. Two models are considered. In the first case,
rewards are received upon service completion, and there are no abandonment costs (other
than the lost opportunity to gain rewards). In the second, holding costs per customer
per unit time are accrued, and each abandonment involves a fixed cost. Both cases are
considered under the discounted or average reward/cost criterion. Chydzinski and Adamczyk
(2019) studied Queues with the dropping function and general service time Firstly, a stability
condition, more general than the well-known ρ < 1, is proven. Secondly, the formulas for
the queue size distribution, loss ratio and mean duration of the busy period, are derived.
Thirdly, numerical examples are given, including optimizations of the shape of the dropping
function with regard to the combined cost of the queue size and loss ratio.

Dudin et.al. (2021) studied the single-server multi-class queue with unreliable service,
batch correlated arrivals, customers impatience, and dynamical change of priorities. Using
the embedded Markov chain technique the probability generating function of the system
size distribution under steady state condition is derived. The system performance of like the
probability of system emptiness, the average no of customers in the system and in the queue,
the variance of the number of customers in the system, Laplace transformation of waiting
time distribution of the customers in the system, the average waiting time of the customers
in the system and queue ,the variance of the waiting time distribution etc., are derived. The
sensitivity of the model with respect to parameters is studied through numerical illustration.
This model includes the M/M/1 model when 1/θ1 → 0 this also includes M/E2/1 model if
θ2 → θ1.

Additive exponential service time distribution

The additive exponential distribution was introduced as a sum of two different expo-
nential variates. The general procedure for obtaining the probability distribution function for
two independent different exponential random variables is through Jacobian transformation
or inverse theorem of characteristic functions. This distribution also includes exponential if
one of the parameters tends to zero. Consider two univariate continues random variables T1
and T2 which follow Exponential distributions with parameters θ1 and θ2 respectively. Then
the addition of these two random variables T = T1 + T2 is having an Additive exponential
distribution with probability density function

f(t) =

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0

Properties of additive exponential distribution

i) If θ1 → θ2 then the above probability density function gives Gamma distribution with
parameters θ2 as θ1 → θ2

ii) The cumulative distribution of the additive exponential distribution is,

=

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0
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iii) The mean of the distribution is,

Mean = θ1 + θ2

iv) The variance of the distribution is given by,

µ2 = (θ2
1 + θ2

2)

v) Moment generating function of the distribution is given by,

Mt(x) = 1
(1 − tθ1)(1 − tθ2)

vi) Characteristic function of the distribution is given by,

ϕt(x) = 1
(1 − itθ1)(1 − itθ2)

vii) The rth raw moment of the distribution is,

µ′
r =

� ∞

0
tr.b(t).dt = r!

θ1 − θ2

(
θr+1

1 − θr+1
2

)

viii) The rth cumulant of the distribution is,

kr = (r − 1)!
θ1 − θ2

(
θr+1

1 − θr+1
2

)

ix) The first four central moments of this distribution are,

µ1 = 0, µ2 = (θ2
1 + θ2

2), µ3 = 2(θ3
1 + θ3

2), µ4 = 9θ4
1 + 6θ2

1θ2
2 + 9θ4

2

x) The skewness of the distribution is,

= 4(θ3
1 + θ3

2)2

(θ2
1 + θ2

2)3

This distribution is positively skewed distribution.

xi) The kurtosis of the distribution is,

= 9 − 12 (θ1θ2)2

(θ2
1 + θ2

2)
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2. Single server poisson queueing model with additive exponential service
time distribution

In this section, a single server infinite capacity Poisson queueing system having FIFO
discipline in which the arrivals follows a Poisson process with parameter λ is considered.
It is also assumed that the inter-service times follows an additive exponential service time
distribution with parameters θ1 and θ2. The probability density function of inter-service
times is,

f(t) =

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0 (1)

Following the heauristic arguments of Gross and Harris (1974) the queueing model
is analyzed. The embedded stochastic process X(ti),where, X denotes the number in the
system and t1, t2, t3. . . ,are the successive times of completion of service. Since, ti is the
completion time of the ith customer, then X(ti) is the number of customers the ith customer
leaves behind as he departs. Since, the state space is discrete, Xi represents the number of
customers remaining in the system as the ith customer departs. Then for all n > 0 one can
have.

Xn+1 =
{

Xn − 1 + An+1 ; Xn ≥ 1
An+1 ; Xn = 0

(2)

where Xn is the number in the stem at the nth departure point and An+1 is the number of
customers who arrived during the service time, Sn+1 of the (n + 1)th customer.

The random variable Sn+1 by assumption is independent of previous service times and
the length of the queue, since arrivals are Poissonian, the ransom variable An+1 depends only
on S and not on the queue or on the time of service initiation. Then,

P{A = a} =
� ∞

0
P{A = a|S = t}dB(t) (3)

and P{A = a|S = t} = e−λt(λt)a

a! (4)

so that,

P{Xn+1 = j|Xn = i} = P{A = j − i + 1}

=


� ∞

0
e−λt(λt)(j−i+1)

(j − i + 1)! dB(t) ; (j ≥ i − 1, i ≥ 1)

0 ; (j ≥ i − 1, i ≥ 1)

(5)

If a departing customer leaves an empty system, the system state remains zero until
an arrival comes. Thus the transition probabilities for the case i=0 are identical to those for
i=1. Let pij denote the probability that the system size immediately after a departure point
is j given that the system size after previous departure was i. kn is the probability that there
are n arrivals during a service time t.
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Then,

pij = Pr {system size immediately after a departure point j | system size after
previous departure was i}

= P{Xn+1=j | Xn=i }

Pij =
� ∞

0

e
−t

(
λ+ 1

θ1

)
− e

−t

(
λ+ 1

θ2

)
θ1 − θ2

 (λt)(j−i+1)

(j − i + 1)! dt; j ≥ i − 1, i ≥ 1 (6)

Therefore, kn = P{n arrivals during the service time S=t}

kn = λn

θ1 − θ2

(
θ1

(θ1λ + 1)

)n+1

− λn

θ1 − θ2

(
θ2

(θ2λ + 1)

)n+1

(7)

Therefore,

p = [pij] =


k0 k1 k2 . . .
k0 k1 k2 . . .
0 k0 k1 . . .
0 0 k0 . . .

. . . . . . . . . . . .

 (8)

Assuming that the system is in steady state, and pij= πj, then,

p = π0ki +
i+1∑
j=1

πiki−j+1 (i = 0, 1, 2, ....) (9)

where, πj is the probability of j customers in the system at departure point after steady state
is reached.
Let

K(z) =
∞∑

n=0
kiz

i (10)

π(z) =
∞∑

n=0
πiz

i (|z| ≤ 1) (11)

are generating functions of πn and kn respectively.
Hence,

K(z) =
∞∑

i=0

λi

θ1 − θ2

(
θ1

(θ1λ + 1)

)i+1

zi −
∞∑

i=0

λi

θ1 − θ2

(
θ2

(θ2λ + 1)

)i+1

zi (12)

After simplification, we get

K(z) = θ1

(θ1 − θ2)(1 + θ1λ(1 − z)) − θ2

(θ1 − θ2)(1 + θ2λ(1 − z)) (13)
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Therefore, the probability generating function of system size distribution for the M/G/1
model under consideration as,

π(z) = (1 − K ′(z))(1 − z)K(z)
K(z) − z) (14)

Differentiating the equation (13) with respect to z and taking z=1 we get

dK(z)
dz

=
[(

θ1

θ1 − θ2

)(
θ1λ

(1 + θ1λ(1 − z))2

)
−
(

θ2

θ1 − θ2)

)(
θ2λ

(1 + θ2λ(1 − z))2

)]
/z=1

This implies,
ρ = K ′(z)/z=1 = λ(θ1 + θ2) (15)

Substituting equations (13) and (15) in equation (14) we get,

π(z) =

(1 − ρ)(1 − z)
(θ1 − θ2)

[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
[(

1
(θ1 − θ2)

)[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
− z

] (16)

3. System characteristics

In this section we derive and analyze the performance of the queueing model. The
probability that there are n customers in the system at any arbitrary time is, coefficient of
zn,

pn = A

n/2∑
j=0

B(n − j)C(j) − p
(n/2)−1∑

j=0
B(n − j − 1)C(j)

 , where n is even

pn = A

(n+1/2)∑
j=0

B(n − j)C(j) − p
(n−1/2)∑

j=0
B(n − j − 1)C(j)

 , where n is odd

From the equation (16) the probability generating function of the number of customers in
system is

π(z) =

(1 − ρ)(1 − z)
(θ1 − θ2)

[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
[(

1
(θ1 − θ2)

)[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
− z

] (17)

Expending equation (1) and collecting the constant terms we get the probability that the
system is empty as

P0 = 1 − λ(θ1 + θ2) (18)
The average number of customers in the system can be obtained as,

Ls =
[

d

dz
[π(z)]

]
z=1
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Differentiating equation (2) and using L-Hospital rule, we get,

Ls =
[

[ρ − θλ2]
[1 − ρ]

]

θ1θ2 = θ, λ(θ1 + θ2) = ρ (19)
The average number of customers in the queue is

Lq = Ls − ρ

Lq = ρ2 − θλ2

1 − ρ
(20)

The variance of the number of customers in the system is given by,

Vs = E(N2 − N) + E(N) − (E(N))2

= [π′′(z) + π′(z) − [π′(z)]2]
(21)

Differentiating equation (1) with respect to z and using L-Hospital rule, we get the variance
of the number of customers in the system as

V (N) = ρ − θλ2(3 + ρ − θλ2)
(1 − ρ)2 (22)

4. Waiting time distribution

In this section we derive the waiting time distribution of the single server Poisson
arrival queueing model with additive exponential inter-service time distribution. Consider
the queue discipline of the system as FIFO, following the heauristic arguments of Gross and
Harris (1974) for the M/G/1 model, we derive the Laplace transformation of the waiting
time distribution.

Let B∗(s) be the Laplace Transformation of the inter-service time distribution and
W ∗(s) be the Laplace transformation of the waiting time distribution. Then we have,

B∗(s) = 1
(sθ1 + 1)(sθ2 + 1)

we have
K(z) = θ1

(θ1 − θ2)(1 + θ1λ(1 − z)) − θ2

(θ1 − θ2)(1 + θ2λ(1 − z))
Therefore,

K(z) = B∗(λ − λz) (23)
The Laplace transformation of waiting time distribution is

W ∗[λ(1 − z)] = [1 − K ′(1)](1 − z)B∗(λ(1 − z))
B∗(λ(1 − z)) − z

(24)

where, K ′(1) is as given in equation (15)
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Writing λ(1 − z) = s, we get z = 1 − s
λ

Therefore,

W ∗(s) = [1 − K ′(1)]sB∗(s)
s − λ(1 − B∗(s)) (25)

From the convolution property of transformation,

W ∗(s) = W ∗
q (s).B∗(s) (26)

where, T is the waiting time of the customer in the system and Tqis the time waiting time of
a customer in the queue and S is the service time of the customer and T = Tq +S. Therefore,

W ∗
q = [1 − K ′(1)]s

s − λ(1 − B∗(s)) (27)

The mean waiting time of a customer in the queue is,

Wq =
d

(
W ∗

q (s)
)

ds


s=0

d

ds

[
W ∗

q (s)
[1 − K ′(1)]

]
= s − λ + λB∗(s) − s[1 + λB∗(s)]

s − λ[1 − B∗(s)]]2 (28)

substituting the values of B∗(s) in equation (28) and using L-Hospital rule, we get the
random waiting time of a customer in the queue as

Wq = 1
λ

[
[θλ2 − ρ]
[1 − ρ]

]
(29)

The waiting time of the customers in system is,

Ws = Wq + ρ, where,ρ = λ(θ1 + θ2)

Therefore,

Ws = θλ2 − ρ + ρλ(1 − ρ)
(1 − ρ) (30)

The variance of the waiting time of customer in the queue is,

V (Wq) = Vq =
(

d2 (W ∗(s))
ds2

)
s=0

− [Wq]2 (31)

Therefore,

Vq = ρ3(2 − ρ) − 2ρθλ2(4 − ρ) − 3θ2λ4

λ2(1 − ρ)2 (32)
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Table 1: Values of P0 and (1 − P0) for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 P0 1 − P0
2 11 11 0.636 0.364
2 11 13 0.664 0.336
2 11 15 0.685 0.315
2 11 17 0.701 0.299
2 11 19 0.713 0.287
4 11 15 0.273 0.727
4 13 15 0.329 0.671
4 15 15 0.370 0.630
4 17 15 0.401 0.599
4 19 15 0.426 0.574
1 15 15 0.867 0.133
2 15 15 0.733 0.267
3 15 15 0.600 0.400
4 15 15 0.467 0.533
5 15 15 0.333 0.667

5. Sensitivity analysis

In this section, the performance of the queueing mode is discussed through a numer-
ical illustrations. Different values of the parameter are considered for the given value of
λ=1,2,3,4,5, 1/θ1=11,13,15,17,19 and 1/θ2=11,13,15,17,19. The probability that the system
is empty and the probability the service is busy are computed and presented in Table 1.The
relation between the parameters and probability of the idleness are shown in the figure 1.

From Table 1, it is observed that the probability of emptiness is highly influenced by

Figure 1: Relation between probability of emptiness and input parameters



2023] POISSON QUEUEING MODEL WITH ADDITIVE EXPONENTIAL DISTRIBUTION 241

the model parameters. As the mean arrival rate λ varies from 1 to 5, the probability that
the emptiness in the system is decreasing from 0.867 to 0.333 when other parameters are
fixed at 1/θ1=15 and 1/θ2=15. The service time parameter 1/θ1 increases from 11 to 19,
the probability that the emptiness in the system increasing from 0.273 to 0.426 when other
parameter are fixed at λ = 4 and 1/θ2 = 15. The service time parameter 1/θ2 increases from
11 to 19, the probability that the system is empty is in the system increasing from 0.636 to
0.713 when other parameter are fixed at λ = 2 and 1/θ1 = 11.

For different values of the parameter the average number of customers in the system,
average number of customers in the queue and the variance of the number of customers in
the system are computed and presented in Table 2.The relation between the parameters and
the performance measures in the figure 2. From Table 2, it is observed that the performance
measures of the queueing model are significantly influenced by the parameters of the model.
As the mean arrival rate λ varies from 1 to 5, the average number of customers in the system
is increasing. The same phenomenon is observed with respective the average number of
customers in the queue for the given values of the other parameters.

When the parameter 1/θ1 increases from 11 to 19, the average number of customers in
the system is decreasing from 2.182 to 1.169 for fixed values of λ=4, 1/θ2 =15. Similarly the
value of average number of customers in the queue is decreasing from 1.937 to 0.773. It is
observed that as λ increases the variance of the number of customers in system is increasing
from given values of the other parameters when 1/θ1 is increasing the variance of the number
of the customers in system is decreasing for fixed values of the other parameters. When 1/θ2
is increasing the variance of the number of the customers in system is decreasing for fixed
values of the other parameters.

For the different values of parameters the values of the average waiting time of customer
in system, the average waiting time of customer in queue, the variance of the waiting of the
customer in the queue are computed and given the Table 3. The relation between the

Table 2: Values of Ls,Lq and Vs for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 Ls Lq Vs

2 11 11 0.519 0.207 0.626
2 11 13 0.463 0.169 0.551
2 11 15 0.425 0.145 0.502
2 11 17 0.397 0.128 0.467
2 11 19 0.376 0.115 0.442
4 11 15 2.182 1.937 3.387
4 13 15 1.702 1.369 2.528
4 15 15 1.443 1.073 2.105
4 17 15 1.280 0.893 1.855
4 19 15 1.169 0.773 1.690
1 15 15 0.149 0.020 0.159
2 15 15 0.339 0.097 0.338
3 15 15 0.600 0.266 0.738
4 15 15 0.990 0.609 1.318
5 15 15 1.667 1.332 2.444
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Figure 2: Relation between probability of emptiness and input parameters

parameters and the performance measures in the figure 3.

From the table 3 it is observed that the model parameters have a significant influence
on the waiting time of the customer in the system and the queue. As the mean arrival rate
λ is increasing then the average waiting time of the customer in the queue and the average

Table 3: Values of Ws,Wq and Vq for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 Ws Wq Vq

2 11 11 0.442 0.078 0.025
2 11 13 0.399 0.064 0.018
2 11 15 0.370 0.005 0.015
2 11 17 0.348 0.049 0.012
2 11 19 0.331 0.044 0.011
4 11 15 1.091 0.364 0.220
4 13 15 0.929 0.258 0.124
4 15 15 0.833 0.203 0.085
4 17 15 0.769 0.170 0.064
4 19 15 0.732 0.149 0.052
1 15 15 0.149 0.015 0.003
2 15 15 0.303 0.036 0.008
3 15 15 0.467 0.067 0.016
4 15 15 0.648 0.114 0.033
5 15 15 0.867 0.200 0.076
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Figure 3: Relation between Ws, Wq and input parameters

waiting time of customer in the system are increasing when the other parameters remain
fixed. It is observed that as the parameter 1/θ1 is increasing from 11 to 19, the average
waiting time of the customer in the system and the average waiting time of the customer in
the queue are decreasing from 1.091 to 0.732 and 0.364 to 0.149 respectively, for fixed values
of other parameters. It is observed that as the parameter 1/θ2 is increasing from 11 to 19,
the average waiting time of the customer in the system and the average waiting time of the
customer in the queue are decreasing from 0.442 to 0.331 and 0.078 to 0.044 respectively,
for fixed values of other parameters. It is further observed that when the mean arrival rate
λ increases the variance of the waiting time of a customer in the system is increasing when
other parameters remain fixed.

6. Conclusion

Developed and analyzed a single sever queueing model with Additive exponential ser-
vice time distribution having Poisson arrivals. Here it is assumed that the queue discipline
is FIFO. Using the embedded Markov technique the probability generating function of the
queue size distribution under steady state condition is derived. The performance measures
of the model like, the average number of customers in the system, the average number of
customers in the queue, the probability of emptiness of the system, the probability that the
server is busy, the variance of the number of the customers in system, the Laplace transfor-
mation of the waiting time distribution of a customer in the system, the average waiting time
of a customer in the system, the average waiting time of customer in the queue, the variance
of the waiting time of the customers are derived explicitly. The effect of the variation of the
input parameter of the model on the performance measures is studied through numerical
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analysis. It is observed that the model parameter has significant influence on the average
number of customers in the system and the average waiting time of a customer in the system
and in the queue. This model also includes the M/M/I and M/E2/I models as particular
cases for limiting values of the parameters.

This model includes several of the earlier models as particular cases for specific or
limiting values of the the parameters

If 1/θ1 → 0 then this includes M/M/1 queueing model
If θ1 → θ2 → 0 then this includes M/E2/1 queueing model

The performance measures of both Exponential and Additive exponential distributions were
differ.
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