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Abstract
Considering the high infection rate and bed scarcity in hospitals amidst the COVID-

19 pandemic it is necessary to find out an optimal lockdown schedule for minimizing infection
rate as well as maintaining economic sustainability. This paper proposes an effective com-
partmental model SEIRDVIm and yields an optimal lockdown schedule using classical and
quantum knapsack algorithms. When the available bed count falls below a certain thresh-
old, the city goes into lockdown mode, and vice versa. The R2 value of SEIRDVIm is
0.8797 and the Mean Squared Error (RMSE) is 34.59. The proposed model yields better
results compared to the classical SEIR model. Variation of infected with vaccination rate
and effectiveness of vaccination is demonstrated. Using 10 predictors it is found that for 60
days, quantum-assisted lockdown yields a death toll of 15062 compared to 20123 in classical
knapsack induced lockdown.

Key words: SEIRDVIm model; Death rate; Knapsack problem; Lockdown schedule; Mean
Squared Error; R-squared (R2).
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1. Introduction

In December 2019 the outbreak of the novel severe acute respiratory syndrome Coro-
navirus called SARS-CoV-2 started locally in Wuhan, China, and rapidly spread all over the
world. As reported 65.8 lakh deaths all over the world on 23rd October 2022. For deciding
public policy several epidemic models have been used by the nation during the past few
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years, see Ferguson et al. (2020). It is important to understand the impact of precautionary
measures and medical intervention on multiple variants. The impact of effective vaccination
in to fight against COVID-19 is tremendous. Vaccination production and proper distribution
are important. Future prediction on pandemic significantly dominates vaccine distribution.
For studying the effect of vaccination, additional compartments have been added to the ex-
isting models to analyze the effectiveness of vaccination. Matrajt et al. (2021) studied the
effectiveness of vaccination for allocating vaccines properly. In the past also several analyses
have been done on vaccination at the time of previous outbreaks, see Feng et al. (2011),
Scherer and McLean (2002) and Chowell et al. (2019). For studying the spread of a disease
in a population, SIR-based epidemic models are widely used, see Cooper et al. (2020), Kuhl
and Kuhl (2021), and others. An extended SEIR-based model to predict the future trend
of COVID-19 has been proposed by Lal et al. (2021). The main framework of the study by
Davies et al. (2020) is the transmission of disease using age-based modeling. In research it
is discussed the population behavior a level of caution and sense of safety while considering
vaccine efficacy, see Usherwood et al. (2021).

This paper proposes an effective compartmental model SEIRDVIm and yields an
optimal lockdown schedule using classical and quantum knapsack algorithms. When the
available bed count falls below a certain threshold, the city goes into lockdown mode, and
vice versa. The novel contributions of this research article are as follows:

Proposed a new compartmental model SEIRDVIm for designing an optimal lockdown
schedule using the quantum knapsack algorithm by maximizing the objective function, avail-
able bed capacity and minimizing the death and then converting the objective function into
an energy function using binary quadratic model (bqm). Then minimize the same by D-Wave
Quantum Annealer.

This paper is represented as follows. Section 1 illustrates the introduction. The newly
proposed model SEIRDVIm is discussed in Section 2. Section 3 highlights the result of the
evolution of the proposed model with lockdown optimization using classical and quantum
knapsack. Section 4 provides the discussion of the work and at last section 5 concludes the
paper.

2. Methods

The proposed SEIRDVIm model in Figure 1 divides the population into susceptible
(S), exposed (E), infected incompletely vaccinated (Iiv), infected completely vaccinated
(Icv), recovered (R), vaccinated (V ), Immunized (Im), and deceased (D).

SEIRDVIm model is described by eight linear differential equations. Variation of eight
compartments S, E, Iiv, Icv, R, V , Im, and D with time (t) are depicted in equations 1 to
8. The assumptions of the model are:

I. The population is fixed.

II. After being completely vaccinated, a person can become infected with a lower rate of
infection.

III. After complete and successful vaccination, immunity may be gained at rate η.
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Figure 1: SEIRDVIm model

The differential equations 1 to 8 of the model are given below:

dS

dt
= −βS

(IIV + ICV )
N

− σS + µIm (1)

dE
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= −βS
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dIIV
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The parameters of the equations are described in Table 1, see Lobinska et al. (2022)
and Rella et al. (2021).

Table 1: Parameters of the model

Parameter Value
Transmission of disease β {0.0155, 0.18}
Infection rate δ 1.1
Infection rate after vaccination δ′ 0.5
Death rate after incomplete vaccination ρIV 0.2
Death rate after complete vaccination ρCV 0.01
Recovery rate after incomplete vaccination γIV 0.076
Recovery rate after complete vaccination γCV 0.79
Fatality rate α 0.05
Vaccination rate σ {0.3, 0.8}
Vaccine effectiveness η {0.2, 0.7}

3. Results

The newly proposed SEIRDVIm model is used to run for 51 days. The time frame is
divided into intervals of five days. SEIRDVIm model is used to run for each interval of time
for each of the five cities. SEIRDVIm model in Figure 2 depicts the variation of incompletely
vaccinated people with vaccination rate and effectiveness of vaccination. The vaccination
rate has varied from 0.3 to 0.8 with effectiveness 0.2 to 0.7. From Figure 3, the Variation of
infection with completely vaccinated with vaccination rate and effectiveness is seen. Figure
4 exhibits the variation of death with a product of vaccination rate and effectiveness. As the
product increases total death count decreases. Figure 5 depicts the comparison of the total
infected in the simulation result and the actual data value. The registry data of the United
States is collected in the period of 1st March 2020 to 23rd March 2020, see Liu et al. (2021)
and Alamo et al. (2020). The data set is used for validation of the model.

Figure 2: Variation of infected incompletely vaccinated with vaccination rate
and effectiveness
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Figure 3: Variation of infection with completely vaccinated with vaccination rate
and effectiveness

Figure 4: Variation of Death with effective vaccination

Figure 5: Comparison on total infected with actual data and simulated results
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In order to analyze the model, R-squared (R2) and Mean Squared Error (RMSE)
are used for comparison. R-squared (R2) is a statistical measure of how close the simulation
result matches the actual data. The higher the value of R-squared (R2), the better the model
fits the actual data. Equations 9 and 10 describe R-squared (R2) and Mean Squared Error
(RMSE).

R2 =
∑(simulated result− actual value)2∑(actual value−Mean value)2 = 0.8797 (9)

The RMSE value calculates the error between the simulated result value and the real
data. The more the RMSE value closes to 0, the better the result, see Lucas (2014).

RMSE =

√∑N
i=1(simulated value i− actual value i)2

N
= 34.59 (10)

Table 2: Comparison of Models

Parameter Classical SEIR, Liu et al. (2021) Proposed Model SEIRDVIm
R2 0.60624 0.8979
RMSE 4132.2348 34.59

3.1. Model 1: Lockdown using classical knapsack

Lockdown state is represented by 0 and open state is represented by 1. Figure 6
depicts the scenario when the city is in open or closed states.

Figure 6: Lockdown in cities

3.1.1. Lockdown and open state for five cities

We are using the same parameters as in the SEIRDVIm model with no lockdown
scenario as in Table 1. The classical knapsack algorithm is applied every five days to obtain
the optimal lockdown schedule. We consider bed capacity as cost and the number of infected
as weight. The knapsack will contain only the open cities. The cities are selected in such a
way that the number of available beds is maximized and death will be minimized. Figure 7
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describes the classical knapsack-imposed lockdown schedule. The variation of bed capacity
for each city with the number of days in lockdown is portrayed in Figure 8.

Figure 7: Lockdown schedule using classical knapsack

Figure 8: Variation of available bed capacities for five cities with number of days
in lockdown

It is reflected in the result that for classical knapsack-imposed lockdown, the total
death is 20123 after 60 days, where 356169 have been recovered and 7060317 have been
vaccinated.No real data is used to derive the lockdown schedule.

3.2. Model 2: Lockdown using quantum knapsack

For deriving an optimal lockdown schedule in quantum, we need to transfer the
objective, i.e. maximizing available bed capacity and minimizing the death into an energy
function using a binary quadratic model (bqm). Then we minimize the energy function by D-
Wave Quantum Annealer. Lucas (2014) described the quantum algorithm for the knapsack
problem. The Quantum algorithm for the knapsack problem is built by using the algorithm
Q-Knapsack (cityindex, cityGDP , cityinfected, citybedCapacity) where cityGDP represents the GDP
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of each city, cityinfected is the number of infected in the city, and citybedCapacity represents the
hospital bed capacity of each city. See Annexure for algorithm 1 of quantum knapsack
algorithm for generating binary quadratic model, from which lockdown schedule is obtained
based on closed and open cities sample set.

For deriving optimal an lockdown schedule using quantum knapsack we are using the
same parameters as described in Table 1. Figure 9 depicts the lockdown schedule as time is
divided into five-days intervals.

Figure 9: Quantum imposed lockdown schedule

Using the same rule, we are putting the cities in the knapsack such that available bed
increases and death decreases. The cities that are not in knapsack need to be in lockdown.
Algorithm 2 describes the quantum algorithm for lockdown. Figure 10 shows the variation
of bed capacity for each city with a number of days in lockdown.

Figure 10: variation of bed capacity with number of days in lockdown

It is reflected in the result that for quantum-imposed lockdown the total number
of deaths is 15062 after 60 days, where 192804 have been recovered and 7230041 have been
vaccinated. Figure 11 depicts the comparison of infected who are incompletely vaccinated by
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classical knapsack-imposed lockdown and Quantum knapsack-imposed lockdown. Algorithm
2 describes the algorithm of quantum-imposed lockdown, see Annexure for Algorithm 2.

Figure 11: Comparison of infected who are incompletely vaccinated by classical
knapsack-imposed lockdown and quantum knapsack-imposed lockdown

Figure 12: Comparison of dead by no lockdown, classical knapsack-imposed
lockdown and quantum knapsack-imposed lockdown

In Figure 12, a comparison of the death count is done between no lockdown, classical
knapsack-assisted lockdown, and quantum knapsack-assisted lockdown algorithm. It is re-
flected from the result that quantum causes 15062 total deaths whereas in classical knapsack
death count is 20123.
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4. Discussion

This paper fulfills the objective by validating the proposed model with real data. The
model fits better and the root mean square error concerning actual data is lesser compared to
the classical SEIR model. The model shows the effectiveness of vaccination by showing the
variation of infected and death with vaccination rate. It is observed that number of infected
is much lesser in complete vaccination compared to incomplete vaccination. An optimal
lockdown schedule is derived by applying a quantum knapsack algorithm and it is found
that compared with classical knapsack-based lockdown quantum assisted lockdown results
in lesser death. For 60 days, quantum-assisted lockdown yields a death toll of 15062 compared
to 20123 in classical knapsack-induced lockdown. Compared to classical, quantum knapsack
implements a lockdown schedule more efficiently so that the number of infections decreases
resulting increase in available bed capacity and thus number of deaths. Because of this,
the death toll of quantum-assisted method is much smaller compared to classical Knapsack
algorithm. However, the paper has the limitations that the exact date of obtaining predictor
values is not known. Despite this limitation, the SEIRDVIm model can predict the possible
infected and death as well as help to decide on lockdown.

5. Conclusion

In this paper, our objective is to propose an effective compartmental model SEIRDVIm
considering complete and partially vaccinated populations with immunized as a separate
compartment. The model yields better results compared to the classical SEIR model in terms
of R2 and RMSE values. This model yields an optimal lockdown schedule using classical
and quantum knapsack algorithms. It is reflected in the result that for 60 days, quantum-
based lockdown resulted death toll of 15062 compared to 20123 in classical knapsack-induced
lockdown.
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ANNEXURE

Algorithm 1: An algorithm to obtain Binary Quadratic Model for Quantum Knapsack
Require: cityindex, cityGDP , cityinfected, citybedCapacity

bqm : Binary Quadratic Model
lagrange← max(cityvalue)
xsize ← length(cityinfected)
yindexmax : maximum index in y
for k ← 1, xsize do

bqm.setLinear(cityindexk
, lagrange ∗ (cityinfectedk

)2 − cityGDPk
))

end for

for i← 1, xsize do
for j ← i + 1, xsize do

bqm.setQuadratic[cityindexi
, cityindexj

] ← 2(lagrange ∗ cityinfectedi
∗ cityinfectedj

)
end for

end for

for k ← 1, yindexmax do
bqm.setLinear(’y’ + string(k), lagrange ∗ (yk)2)

end for

for i← 1, yindexmax do
for j ← i + 1, yindexmax do

bqm.setQuadratic[yi, yj] ← 2 ∗ lagrange ∗ yi ∗ yj

end for
end for

for i← 1, xsize do
for j ← i + 1, yindexmax do

bqm.setQuadratic[cityindexi
, yj] ← −2 ∗ lagrange ∗ cityinfectedi

∗ yj

end for
end for
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Algorithm 2: An algorithm to lockdown city based on Binary Quadratic Model from
Quantum Knapsack
Require: bqm : Binary Quadratic Model for Quantum Knapsack

Get OpenCity & ClosedCity sampleset from bqm based on bed Capacity threshold.
for each city do

if cityindex is in OpenCities then LockdownList ← 1
else LockdownList ← 0
end if

end for
return LockdownList


	Introduction
	Methods
	Results
	Model 1: Lockdown using classical knapsack
	Lockdown and open state for five cities

	Model 2: Lockdown using quantum knapsack

	Discussion
	Conclusion

