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Abstract
In this paper, we study some important reliability characteristics of auto-relevation

transform. Various ageing and ordering concepts are discussed. Important results in terms
of reliability and information measures are studied. Some characterizations are presented. A
new lifetime distribution called auto-relevated Lomax (ARL) is introduced and its practical
applicability is illustrated with a real dataset.
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1. Introduction

LetX and Y be two absolutely continuous non-negative random variables, with survival
functions F̄ (.) and Ḡ(.) respectively. Consider an item from a population with survival
function F̄ (x), which is being replaced at the time of its failure at age x, by another item
of the same age x from another population with survival function Ḡ(x). Then the survival
function

T̄ (x) = F̄#Ḡ(x) = F̄ (x) − Ḡ(x)
ˆ x

0

1
Ḡ(t)

dF̄ t. (1)

is called the relevation transform of X and Y introduced by Krakowski (1973). Let Y (X)
denote the total lifetime of the random variable Y given it exceeds a random time X, (i.e
Y (X) d= {Y |Y > X}). Then (1) is the survival function of the random variable Y (X). The
probability density function (p.d.f.) of the relevation random variable is obtained as

t(x) = T ′(x) = g(x)
ˆ x

0

f(t)
Ḡ(t)

dt. (2)

Grosswald et al. (1980) presented two characterizations of the exponential distribution
based on relevation transform. The concept of dependent relevation transform and its im-
portance in reliability analysis is given in Johnson and Kotz (1981). Baxter (1982) discussed
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certain reliability applications of the relevation transform. Shanthikumar and Baxter (1985)
provided closure properties of certain ageing concepts in the context of relevation transforms.
Improved versions of the results in Grosswald et al. (1980) are given by Lau and Rao (1990).
Chukova et al. (1993) established characterizations of the class of distributions with almost
lack of memory property based on the relevation transform. Sankaran and Dileepkumar
(2019) studied important reliability properties of the relevation transform in the context of
proportional hazards model.

When the random variables X and Y are identically distributed, the tail distribution
of the random variable Y (X) can be simplified to

T̄ ∗(x) = F̄ (x)(1 − log(F̄ (x))). (3)

The survival function (3) is known as the auto-relevation of F̄ (x). Kapodistria and
Psarrakos (2012) studied properties and applications of a sequence of random variables with
weighted tail distribution functions based on the auto-relevation transform. In this paper
we focus our attention on various properties, applications and characterizations of the auto-
relevation transform in the context of reliability theory.

The rest of the paper is organized as follows. We provide the concept and basic charac-
teristics of auto-relevation transform in Section 2. Section 3 presents some important char-
acterization results based on reliability and information measures. Various ageing properties
and stochastic orders of auto-relevation are presented in Section 4 and Section 5 respectively.
Finally, in Section 6, we provide major conclusions of the study.

2. Auto-Relevation Transform (ART)

Let X and Y be two non-negative continuous random variables with survival functions
F̄ (x) and Ḡ(x) respectively. Then the survival function of the relevation random variable
Y (X) is given in (1). When X and Y are identically distributed, the random variable X(X)
is known as the auto-relevation of X. Survival function of X(X) is obtained as

T̄ ∗(x) = F̄ (x) − F̄ (x)
ˆ x

t=0

1
F̄ (x)

dF̄ (x)

= F̄ (x)(1 − log(F̄ (x)). (4)

The probability density function (p.d.f) of X(X) is obtained as

t∗(x) = −f(x) log(F̄ (x)). (5)
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From (4) and (5), we have, X(X) is the auto-relevation of X if and only if

hX(X)(x) = t∗(x)
T̄ ∗(x)

⇔ hX(X)(x) = − f(x) log(F̄ (x))
F̄ (x)(1 − log(F̄ (x)))

⇔ hX(X)(x) = hX(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
= hX(x)

(
ΛX(x)

1 + ΛX(x)

)
, (6)

where ΛX(x) = − log(F̄ (x)) is the cumulative hazards function of X.

An important class of distributions used in risk theory and queueing theory is the class
L distribution. A distribution F belongs to the class L if

lim
x→∞

F̄ (x− y)
F̄ (x)

= 1,∀ y ∈ R. (7)

Kluppelberg (1988) showed that,
F ∈ L if and only if lim

x→∞
hF (x) = 0,where hF (x) is the hazard rate function of F (x).

Proposition 1: if X ∈ L then X(X) ∈ L .

Proof: We have

lim
x→∞

hX(X)(x) = lim
x→∞

hX(x) lim
x→∞

(
log(F̄ (x))

log(F̄ (x)) − 1

)
. (8)

Now by applying L’Hospitals’s rule and noting that lim
x→∞

h(x) = 0, we get
lim

x→∞
hX(X)(x) = 0. This completes the proof.

Let QX(.) and QX(X)(.) be the quantile functions of the random variables X and
X(X) with respective distribution functions F (x) and T ∗(x). In the following, we establish
the relation between the quantile functions of X and X(X).
Proposition 2: Suppose QX(.) and QX(X)(.) are the quantile functions of the random
variables X and X(X) respectively. Then

QX(u) = QX(X)(u+ (1 − u) log(1 − u)). (9)

Proof: From (4), we have

T ∗(x) = 1 − F̄ (x)(1 − log(F̄ (x))). (10)

By taking F (x) = u where u ∈ (0, 1), we get X = QX(u). Using this in (10), we have

T ∗(QX(u)) = 1 − (1 − u)(1 − log(1 − u))
=⇒ QX(u) = QX(X)(u+ (1 − u) log(1 − u)).

Remark 1: When the cumulative distribution function of X(X) is non-invertibe, we can
effectively employ the identity (9) to simulate random samples of X(X) using the quantile
function of X.
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3. Characterization Results

Glaser (1980) established a general theorem that facilitates the determination of whether
hX(x) is increasing (IHR), decreasing (DHR), Bath-tub (BT) or upside-down bathtub (UBT).
He made use of the function ψ(x) = −f ′(x)

f(x) , known as the Glaser’s function. In the next
proposition, we present an interesting identity connecting the Glaser’s functions of the ran-
dom variables X and X(X).
Proposition 3: Let X be a non-negative continuous random variable with survival function
F̄ (x). Then X(X) is the auto-relevation of X if and only if

ψX(X)(x) = ψX(x) − hX(x)
ΛX(x) , (11)

where ψX(x) and ψX(X)(x) are the Glaser’s function of X and X(X) respectively.

Proof: If X(X) is the auto-relevation of X then we have

ψX(X)(x) = −t∗′(x)
t∗(x)

ψX(X)(x) = −f ′(x)
f(x) + f(x)

F̄ (x) log(F̄ (x))

ψX(X)(x) = ψX(x) − hX(x)
log(F̄ (x))

. (12)

Conversly (11) gives

d

dx
(log(t∗(x)) = d

dx

(
log(−f(x) log(F̄ (x)) + C

)
, (13)

where C is a constant. Since t∗(x) is a density function, on integration, we get C = 0 and
(13) reduces to

t∗(x) = −f(x) log(F̄ (x)). (14)

This completes the proof. The odds function of a random variable X is defined by

ϕX(x) = P (X > x)
P (X ≤ x) = F̄X(x)

FX(x) .

Note that the odds function is a decreasing function of x. In the coming proposition, we
provide an interesting connection between the odds functions of X(X) and X.
Proposition 4: X(X) is the auto-relevated random variable of X if and only if

ϕX(X)(x) = 1 + Λ(x)
ϕ−1

X (x) − Λ(x)
, (15)

where ϕX(X)(x) and ϕX(x) are the odds functions of X(X) and X respectively.
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Proof: Assume X(X) is the auto-relevated random variable of X. From (4), We have

ϕX(X)(x) = T̄ ∗(x)
1 − T̄ ∗(x)

⇔ ϕX(X)(x) = F̄ (x) − F̄ (x) log(F̄ (x))
F (x) + F̄ (x) log(F̄ (x))

⇔ ϕX(X)(x) = ϕX(x)(1 − log(F̄ (x)))
1 + ϕX(x) log(F̄ (x))

⇔ ϕX(X)(x) = 1 + Λ(x)
ϕ−1

X (x) − Λ(x)
, (16)

which completes the proof.

To measure the distance between two probability distributions, Kullback-Leibler diver-
gence (K-L divergence) has been popularly used in modelling of statistical data. The K-L
divergence, which is closely related to relative entropy, information divergence, and informa-
tion for discrimination is a non-symmetric measure of the difference between two probability
distributions f(x) and g(x). When f(x) and g(x) are non-negative continuous distributions,
then the K-L divergence I(f, g) is defined as

I(f, g) =
ˆ ∞

0
f(x) log

(
f(x)
g(x)

)
dx. (17)

Specifically, the K-L divergence of g(x) from f(x), denoted I(f, g), is a measure of the
information lost when g(x) is used to approximate f(x). In the following we present a
relationship between I(t∗, f) and I(f, t∗) in the context of ART.
Proposition 5: Let X(X) be the ART random variable corresponding to the non-negative
random variable X. Then

I(X,X(X)) = 1 − I(X(X), X), (18)

where I(X,X(X)) is the Kullback-Leibler divergence between X and X(X).

Proof: From (17), we have

I(X(X), X) =
ˆ ∞

0
t∗(x) log

(
t∗(x)
f(x)

)
dx. (19)

Since X(X) is the ART random variable corresponding to X, using (5) in (19), we get

I(X(X), X) = −
ˆ ∞

0
f(x) log(F̄ (x)) log(− log(F̄ (x)))dx. (20)

by taking u = − log(F̄ (x)), the integral in (20) became

I(X(X), X) =
ˆ ∞

0
u log(u)e−udu.
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Now by applying integration by parts, we obtain

I(X(X), X) = −Lim
x→∞

(
x log(x)
ex

)
+ Lim

x→0

(
x log(x)
ex

)
+
ˆ ∞

0
(1 + log(x))e−xdx

=
ˆ ∞

0
(1 + log(x))e−xdx. (21)

Again applying integration by parts on (21), we get

I(X(X), X) = 1 +
ˆ ∞

0
log(x)e−xdx = 1 − γ, (22)

where γ = −
´∞

0 log(x)e−xdx is the Euler–Mascheroni constant (γ ≃ 0.5772). Now, we have

I(X,X(X)) =
ˆ ∞

0
f(x) log

(
f(x)
t∗(x)

)

= −
ˆ ∞

0
f(x) log(− log(F̄ (x)))dx. (23)

Using the transformation u = − log(F̄ (x)), (23) becomes

I(X,X(X)) = −
ˆ ∞

0
log(u)e−udu = γ. (24)

From (22) and (24), the result follows.

4. Ageing Properties

We describe ageing properties of the relevation random variable X(X) in connection
with the ageing behaviour of the baseline random variable X. Various ageing classes and
their properties and applications can be seen in Barlow and Proschan (1975), Shaked and
Shanthikumar (2007), and Nair et al. (2013). From (6), we have

hX(X)(x) = hX(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
. (25)

Differentiating (25), we obtain

h′
X(X)(x) = h′

X(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
+
(

hX(x)
(log(F̄ (x) − 1)

)2

. (26)

Note that
(

log(F̄ (x))
log(F̄ (x))−1

)
> 0 and

(
hX(x)

(log(F̄ (x)−1)

)2
> 0 for all x > 0. Thus when X is IHR, we

have h′
X(x) > 0 for all x > 0, which gives h′

X(X)(x) > 0 for all x > 0. Thus X(X) is also IHR.
Hence IHR property is preserved under auto-relevation. When X is an exponential random
variable with hazard rate hX(x) = C, where C > 0, a constant. Then, from (26) we obtain

h′
X(X)(x) =

(
C

(log(F̄ (x) − 1)

)2

≥ 0. (27)
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Thus auto-relevated exponential distribution is always IHR. However, the case when X is
DHR gives different options, which is presented in the next proposition.
Proposition 6: Let X be a non-negative continuous random variable with survival function
F̄ (x). Suppose X is DHR. Then the auto-relevation random variable X(X) is IHR (DHR)
if and only if

h′
X(x)

(hX(x))2 ≥ (≤) −1
ΛX(x)(ΛX(x) + 1) for all x > 0. (28)

Proof: We have

h′
X(X)(x) = h′

X(x)
(

log(F̄ (x))
log(F̄ (x)) − 1

)
+
(

hX(x)
(log(F̄ (x) − 1)

)2

. (29)

X(X) is IHR(DHR) if and only if h′
X(X)(x) ≥ (≤)0. Now, since X is DHR, we have h′

X(x) < 0
for all x > 0. By using the facts that

(
log(F̄ (x))

log(F̄ (x))−1

)
and

(
hX(x)

(log(F̄ (x)−1)

)2
are non-negative, we

get X(X) is IHR(DHR) if and only if, for all x > 0,

− h′
X(x)

(
log(F̄ (x))

log(F̄ (x)) − 1

)
≤ (≥)

(
hX(x)

(log(F̄ (x) − 1)

)2

⇔ − h′
X(x)

(hX(x))2 ≤ (≥) 1
log(F̄ (x)(log(F̄ (x) − 1))

⇔ h′
X(x)

(hX(x))2 ≥ (≤) −1
ΛX(x)(ΛX(x) + 1) , for all x > 0.

Remark 2: Note that X(X) accommodates non-monotonic shapes when the equality holds
in (28). The change point of the non-monotonic hazard function will be obtained by solving
the equality (28).

From Proposition 6, it is clear that the auto-relevation of DHR class of distributions
can provide new lifetime models with non-monotonic hazard rate functions. Note that the
auto-relevated distribution consists of the same number of parameters as in the parent distri-
bution. Thus we can efficiently use the auto-relevation transformation for developing more
flexible lifetime models from the existing ones without introducing additional parameters.
To illustrate this, consider the Lomax distribution with survival function

F̄ (x) =
(

α

x+ α

)c

, α > 0, c > 0 and 0 < x < ∞, (30)

and hazard function
hX(x) = c

α + x
. (31)

We have hX(x) is non-increasing for all parameter combinations. Thus X is always DHR.
The survival function of the auto-relevated Lomax random variable (ARL) X(X) has the
form

T̄ ∗(x) =
(

α

α + x

)c (
1 − log

((
α

α + x

)c))
. (32)
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The corresponding hazard function is obtained as

hX(X)(x) = c

α + x

 log
((

α
α+x

)c)
log

((
α

α+x

)c)
− 1

 . (33)

On differentiating, we get

h′
X(X)(x) =

c
(
c+ log

((
α

α+x

)c)
−
(
log

((
α

α+x

)c))2)
(α + x)2

(
log

((
α

α+x

)c)
− 1

)2 . (34)

Thus the sign of h′
X(X)(x) depends only on the function
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Figure 1: hX(X)(x) of ARL distribution for different parameter combinations.

γ(x) =
(
c+ log

((
α

α + x

)c)
−
(

log
((

α

α + x

)c))2)
.

We can write this as
γ(x) = c+ k(x) − (k(x))2, (35)

where k(x) = log
((

α
α+x

)c)
. We can observe that k(x) < 0 for all x > 0 and strictly

decreasing for all α, c > 0. Since k(0) = 0, it is clear that γ(x) takes a positive sign
initially and then became negative as x progresses. Correspondingly, the hazard function
first increase then decrease in x for all parameter combinations. Thus the hazard function
of ARL distribution is always Bathtub shaped. The change point of h(x) will be attained
by solving the equation γ(x) = c+ k(x) − (k(x))2 = 0, which is obtained as

x0 = α (eη − 1) , where η = 1
2 +

√
1 + 4c

2 .
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To show the practical importance of the proposed model, we consider a real data
reported in Bekker et al. (2000), which corresponds to the survival times (in years) of a group
of 45 patients given chemotherapy treatment alone. The method of maximum likelihood is
employed to estimate the parameters. The estimates obtained are

α̂ = 0.97003 and ĉ = 2.70067. (36)

Recently, Handique and Chakraborty (2016) fitted this data with Beta generalized Ku-
maraswamy Weibull(BKw-W) distribution and compared with Kumaraswamy Weibull (Kw-
W) and Beta generalized Weibull(B-W) distributions. They compared the goodness of fit
using the AIC measure. The AIC values of the ARL, BKw-W, Kw-W and B-W models are
presented in Table 1.

Table 1: AIC values

Distribution AIC
ARL 118.831

BKw-W 122.92
Kw-W 123.44
B-W 124.14
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Figure 2

It is evident that the ARL model gives a better fit than the other models concerning the
values of AIC. Note that the ARL model contains fewer number of parameters as compared
to the competing alternatives. Plot of the fitted density with the histogram of the observed
data is given in Figure 2(a). To check the physical closeness of the model, we use the Q-
Q plot, which is given in Figure 2(b). We also carry out the Kolmogorov–Smirnov (K–S)
goodness of fit test. The K–S test statistic with the associated p-value for the fitted model
are 0.093 and 0.80 respectively.

In the context of coherent systems with ‘n’ identical components, Navarro et al. (2013)
established that the component survival function F̄c(x) and the system survival function
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F̄S(x) are connected through the relation

F̄S(x) = q(F̄c(x)), (37)

where q(u) is a distortion function, which is a concave non-decreasing function from [0, 1] to
[0, 1], such that q(0) = 0 and q(1) = 1.

From (5), the survival function T̄ ∗(x) satisfies

T̄ ∗(x) = q(F̄ (x)), where q(u) = u (1 − log(u)) u ∈ [0, 1]. (38)

The function q(u) is a concave distortion function. From this, we can infer that X(X) is
the distorted random variable obtained from X by the distortion q(u). Distorted random
variables have many applications in reliability theory. Navarro et al. (2013, 2014) developed
various stochastic orders and preservation properties of ageing classes and for the general
distorted distributions in the context of coherent systems. For more details on this topic,
one could refer to Wang (1996), Sordo and Suarez-Llorens (2011), Sordo et al. (2015), and
Navarro et al. (2016).

Let X and S denotes the lifetimes of the component and system respectively in the
context of coherent systems. Then, Navarro et al. (2014) showed that If X is NBU (NWU)
and q(u v) ≤ (≥) q(u) q(v) for all 0 ≤ u, v ≤ 1, ( submultiplicative (supermultiplicative))
holds then S is NBU (NWU). Similarly, if X is IHRA (DHRA) and q(ua) ≥ (≤) (q(u))a holds
for all 0 ≤ u, v ≤ 1 and 0 < a < 1, then S is IHRA (DHRA). Now for the model (4), we have
X(X) is the distorted random variable of X, with distortion function q(u) given in (38). We
can easily verify that q(u) is submultiplicative and satisfies the condition q(ua) ≥ (≤)(q(u))a

for all 0 ≤ u, v ≤ 1 and 0 < a < 1. Thus, NBU (NWU) and IHRA (DHRA) properties are
preserved under auto-relevation transform.

5. Stochastic Orders

There are many situations in practice where we need to compare the characteristics
of two distributions. Stochastic orders are used for the comparison of lifetime distributions.
In this section, we provide some important stochastic orders between the random variables
X and X(X). We shall consider the following stochastic orders. Important properties and
interrelations of various stochastic orders can be seen in Shaked and Shanthikumar (2007) and
Barlow and Proschan (1975). Suppose F̄1(x) and F̄2(x) be the survival functions obtained
by distorting F̄ (x) using the distortion functions q1(u) and q2(u) respectively. Let S1 and S2
be the random variables corresponding to F̄1(x) and F̄2(x) respectively. Now from Navarro
et al. (2014) (Theorem 2.5), we have

S1 ≤lr (≥lr)S2 if and only if q
′
1(u)
q′

2(u) is increasing (decreasing) in u ∈ (0, 1), (39)

where q′
i(u) is the derivative of qi(u), i = 1, 2. To study different stochastic order relations

between X and X(X), we take S1 = X(X) and S2 = X, with distortion functions q1(u) =
u (1 − log(u)) and q2(u) = u respectively.
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Note that,
d

du

(
q′

1(u)
q′

2(u)

)
= d

du
(− log(u)) = −1

u
≤ 0.

Thus q′
1(u)

q′
2(u) is decreasing in u ∈ (0, 1). Now from (39), we get X ≤lr X(X). Moreover, from

Shaked and Shanthikumar (2007), we have the following implications,

X ≤lr X(X) =⇒ X ≤hr X(X) =⇒ X ≤st X(X).

Kochar and Wiens (1987) have defined an IHR order by saying that X is more IHR
than Y if X ≤

c
Y . Further, X is more IHRA (NBU) than Y if G−1(F (x)) is star-shaped

denoted by X ≤∗ Y (super additive denoted by X ≤su Y ). We have also X ≤DMRL Y

if mX(x)
mY (x) is non-decreasing, X ≤NBUE Y if mX(x)

mY (x) ≤ E(X)
E(Y ) , X ≤NBUHR Y if hX(x)

hY (x) ≥ hX(0)
hY (0) ,

and X ≤NBUHRA Y if F−1
Y (FX(x)) ≥ x

(
F−1

Y (F (x)
)

x=0
(Nair et al., 2013). Among these

stochastic orders X ≤c Y =⇒ X ≤DMRL Y =⇒ X ≤NBUE Y and X ≤NBU Y =⇒
X ≤NBUHRA Y . Later Sengupta and Deshpande (1994) proved that X ≤

c
Y if and only

if hX(x)
hY (x) is non-decreasing in x, provided hY (x) ̸= 0. The following proposition establishes

various interrelationships among these orderings.
Proposition 7: Let X be a non-negative random variable and X(X) be the auto-relevation
of X with survival function (4). Then X(X) ≤

c
X.

Proof: From (25), we have
hX(X)(x)
hX(x) = log(F̄ (x))

log(F̄ (x)) − 1
.

Upon differentiating, we obtain

d

dx

(
hX(X)(x)
hX(x)

)
= f(x) log(F̄ (x))
F̄ (x)(log(F̄ (x)) − 1)2

− f(x) (log(F̄ (x)) − 1)
F̄ (x)(log(F̄ (x)) − 1)2

= hX(x)
F̄ (x)(log(F̄ (x)) − 1)2

≥ 0. (40)

Thus hX(X)
hX(x) is non-decreasing in x and hence X(X) is more IHR than X. The

implications, consequence of the Proposition 7, are exhibited in the following diagram;

X(X) ≤cw� X =⇒ X(X) ≤∗w� X =⇒ X(X) ≤suw� X

X(X) ≤DMRL X =⇒ X(X) ≤NBUE X =⇒ X(X) ≤NBUHR X =⇒ X(X) ≤NBUHRA X.

Proposition 8: Let Y1 and Y2 be the auto-relevated random variables corresponding to X1
and X2 respectively. Then the following results hold;

(i) If X1 ≤st X2 then Y1 ≤st Y2.

(ii) If X1 ≤hr X2 then Y1 ≤hr Y2.
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(iii) If X1 ≤icx X2 then Y1 ≤icx Y2.

Proof: The proof for (i) is direct from (4). Now to prove (ii), we have
u q′(u)
q(u) = − log(u)

1 − log(u) .

Note that d
du

(
u q′(u)

q(u)

)
= − 1

u(1−log(u))2 ≤ 0 for all u ∈ (0, 1). Now from Theorem 2.6 of Navarro
et al. (2014), we get Y1 ≤hr Y2. From Theorem 2.6 of Navarro et al. (2014), (iii) follows
since q(u) is concave in (0,1).

6. Conclusion

In this paper, we have presented the auto-relevation transform, which is useful in the
context of lifetime studies. Various properties and characterizations in terms of reliability
measures were presented. Ageing and ordering properties, which will be useful in the relia-
bility context were studied. We also introduced the ARL distribution having non-monotonic
hazard function and compared the performance with some existing competing alternatives.
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