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Abstract
Health service utilization research suffers from lack of statistical methods to analyze

routinely obtained zero-inflated correlated outcome data from multilevel longitudinal stud-
ies. Parameter estimation suffers from use of maximum likelihood based approach involving
cumbersome integration which results in lack of model convergence and utilization of consid-
erable computing resources. Similarly, sample size to conduct randomized controlled trials
are estimated using either inappropriate linear models or simplified non-linear models which
ignore multiple levels of nesting resulting in severely under powered studies. We propose a
robust estimation method based upon Laplace approximation to estimate parameters and
derive formula to compute required sample size employing multiple levels of nesting.
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1. Introduction

Health services (HS) researchers are widely using hierarchical mixed-effects models for
analysis of their correlated clustered and longitudinal data. Parameters are generally esti-
mated by maximum marginal likelihood, empirical Bayes estimation, fully Bayesian strate-
gies and Generalized Estimating Equations (GEE), and hypotheses are tested using t, χ2

or F tests. Furthermore, considerable computer software has now been developed and is
either freely available over the Internet or commercially available. However, this area is still
challenged by a lack of statistical methods appropriate for addressing some unique aspects
of health services research data. A major problem in HS data is missing outcomes as well as
covariate values. Another equally complex problem is the profusion of zero values in count
data such as service units or costs, which results in a highly skewed distribution. To address
these issues, in many instances missing values are imputed, and hierarchical zero-inflated
mixed models are utilized even though non-convergence issues prevail in estimation. In such
models, justification of using random effects in terms of testing its variance components is
avoided because of unavailability of user-friendly testing procedures at the boundary value.
Another challenge is the determination of sample size, as inadequate sample size runs the
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risk of inflated false positive findings (Type I error), while fitting the model with an ex-
cessive number of random-effects can mask significant relationships (Type II error). This
manuscript addresses issues pertaining to parameter estimation and sample size calculation
for HS researches and bridge a critically important gap in the designing stage of health
research studies in general, and mental health services research in particular.

In mental health services research investigators have studied service utilization, barriers
to service utilization, disparities in service utilization and cost associated with service uti-
lization (Hacker, et al. 2015). Similarly, service utilization data are also found in research on
general health care (Gilbert, et al. 2012), dentistry (Moghimbeigi, et al. 2008), occupational
health (Min and Agresti, 2005) and substance abuse (Bandhophadyay, et al. 2011). Our
careful analysis of the literature revealed that service utilization research studies regularly
encounter the problem of missing outcomes and covariates, zero-inflation, over-dispersion,
and non-convergence of statistical models. In addition, this area requires feasible parameter
estimation techniques and sample size determination methods and user friendly software for
analysis of HS data. Particularly there is an lack of suitable software for sample size deter-
mination when zero-inflation is expected in a hierarchical design with random-effects. Most
of the existing methods either assume linear model or completely ignore the random-effects
by using the GEE approach. As such there is a genuine need for sample size methodologies
and more importantly software to calculate sample size for service utilization research with
zero-inflation.

In Section 2, we present some motivating examples. In Section 3, we discuss methods
to model service utilization data. In Section 4, we derive formulae for sample size calculation
for studies employing hierarchical designs resulting in zero-inflated outcomes . In Section 5,
we present some concluding remarks on service utilization data.

2. Motivating Examples

Next we present two HS research studies to motivate the need for theoretical develop-
ments.

2.1. Example 1

The first problem was investigated by Atkins, et al. (2015) and compared group dif-
ferences between Links to Learning (L2L), a school and home-based mental health service
model, and Service As Usual (SAU) on several domains including mental health service use,
classroom observations of academic engagement, teacher report of academic competence and
social skills, parent report of social skills, teacher and parent report of problem behaviors,
daily hassles, and curriculum-based measures. Services were Medicaid-funded through 4
social service agencies (N = 17 providers) in 7 schools (N = 136 teachers, 171 children con-
sists of 124 boys (50 control + 74 Link), and 47 girls (17 control + 30 Link)) in a 2 (Links
to Learning vs. services as usual) 6 (pre- and post tests for 3 years) longitudinal design
with random assignment of schools to conditions. Services as usual consisted of supported
referral to a nearby social service agency. The primary interest was in differential change
over time. A three-level hierarchical design with multiple observations from students nested
within schools was used to analyze the study data. The model included covariates at both
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the student level (grade, gender) and classroom and teacher level (classroom assessment
scoring system, teacher sense of efficacy scale, organizational health inventory-elementary
and Quality of teacher work life survey). The conclusion of the study was that community
mental health services targeting empirical predictors of learning can improve school and
home behavior for children living in high-poverty urban communities. For a full description
of data decomposition, analysis methods, missing value problems and significant results we
refer to Atkins, et al. (2015). Some key difficulties encountered during the analysis of this
dataset were (i) problem of missing data (more than 41.79% in control and 52.88% in L2L
data), (ii) differential measurement errors, and (iii) the problem of unreliable measures of
some outcomes and covariates. This analysis inspired us to develop novel statistical meth-
ods to estimate missing outcomes when corresponding covariates are known, and missing
covariates when corresponding outcome measures are known, but in both situations causes
of missingness are unknown.

2.2. Example 2

Our second example is based on the work by Cook, et al. (2019) and Bhaumik, et
al. (2019). They recently analyzed data from randomized trial of self-directed care in Texas
public mental health system. In this study, the Zero-Inflated Negative Binomial (ZINB)
and log-gamma models were used to test the effect of an experimental intervention called
self-directed care, in which patients have greater control over service delivery funds and can
choose to hire and fire specific service providers. The authors applied the ZINB model to
analyze service utilization and log-gamma model for analysis of cost data. A total of 216
subjects with serious mental illness receiving care in the Texas public mental health system
were randomly assigned with their consent to receive services as usual ( = 102) or the exper-
imental intervention ( = 114) and followed for 24 months. The primary hypothesis was that
the experimental intervention would produce superior client outcomes at 12 and 24-month
follow-up and this proved to be the case. However, since the intervention was intended to
be budget neutral (i.e., to cost no more than services delivered through the usual system),
secondary analysis of service costs was required. Administrative data were obtained from
the local area’s managed care company in the form of “shadow claims” and grouped into
costs during the first and second years of program participation and for both years combined.
Over the two years of the program, experimental participants incurred a total average per
person cost of 5, 239(s.d. = 5, 500) compared to an average of 5, 493(s.d. = 8, 268) per person
in the control group. This difference was non-significant, as expected. However, costs for
specific service types had the additional challenge of being zero-inflated, with many non-users
of some services. Consequently, the authors used ZINB/log-gamma models for individual
services/costs, which model the mixture of the likelihood of having zero service/costs in
each category, and the relative amount of service/costs among users. As shown in Table 1,
experimental condition subjects were more likely than controls to have zero costs for psy-
chiatric rehabilitation, case management, and skills training, but there were no differences
in costs for users of these three services. On the other hand, there was no difference in the
likelihood of zero costs for medication management, but among users of this service, costs
were significantly lower for the experimental group. For the service of psychotherapy, the
experimental group was less likely than controls to have zero costs, and costs were higher for
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experimental than control subjects. When the authors used linear mixed-effects regression
analysis of these individual service costs adjusting for time, the experimental condition costs
were lower for psychiatric rehabilitation, skills training, and medication management, and
higher for psychotherapy. The linear mixed-effects model cannot provide information sepa-
rately for zero costs and costs for users. Clearly, ZINB modeling provided a more complex
and complete picture of cost differences where they existed.

Table 1: ZINB analysis modeling first, likelihood of zero costs, and second, costs
among service users

Psychiatric Rehab Case Mgmt Skills Training Medication Mgmt Psycho-therapy
Estimate p Estimate p Estimate p Estimate p Estimate p

Pred. zero cost 0.755 .007 1.183 .001 1.484 <.001 0.731 .076 -1.602 <.001
Pred. costs users-0.297 .124 0.076 .855 -0.490 .151 -0.439 .001 1.134 .001

There are important implications in these results for health services researchers and the
service system administrators and policy makers who use these study findings. First, ZINB
allowed us to use a “two-part model” in analyzing utilization data (Manning, et al. 2005).
As noted by Diehr, et al. (1999), the decision to have any use of a service is most likely
made by the person and so is primarily associated with personal characteristics, while the
cost per user may be more related to features of the health care system. When the goal is
understanding the system, a two-part model is preferred because it enables researchers to
differentiate between influences on the propensity to use a service, and factors affecting how
much of the service is used and at what cost once the individual enters the service delivery
system (Diehr, et al. 1999).

3. Model

In this section we present some models for analysis of count data inflated with zeros.
We begin by positing c centers and ni subjects nested within the ith center. The total
number of subjects N = ∑c

i=1 ni are randomized into intervention and control groups. We
assume that each subject may utilize mental health services longitudinally over T different
time periods. The outcome variable yisjt measures the number of times the jth subject from
the ith center nested within the sth intervention group used mental health services for the
tth time period. The log likelihood function for all observations yi= (yi111, · · · , yi2nT )t
nested within the ith center is

logit(πisjt) = γ0 + γ1g(t) + γ2xijk + γ3xijkg(t) +γt∗wijk + νi0 + νi1g(t) + δisj0 + δisj1g(t), (1)

log(λisjt) = β0 + β1g(t) + β2xijk + β3xijkg(t) + βt∗zijk + υi0 + υi1g(t) + δ∗
isj0 + δ∗

isj1g(t), (2)

Here f(yisjt) be the probability mass function of a Poisson distribution for a zero
inflated Poisson (ZIP) model, and if the model is zero inflated negative binomial then
f(yisjt = k) = (1− πij)

Γ(k+λ1−d
ij /α)

kΓ(−λ1−d
ij /α)(1 +αλdij)−λ1−d

ij /α(1 + λ−d
ij /α)−k. The dispersion parameter
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α is always non-negative and does not depend on covariates. This distribution reduces to
the ZIP distribution when α → 0. The constant d is used to identify a particular form of
a negative binomial distribution (see Saha and Dong, 1997). For various forms of negative
binomial distributions we refer to (McCullagh and Nelder 1989, Ridout, et al. 2001, Yau,
et al. 2003). Xiang, et al. (2007) used a score test for testing the over-dispersion of a ZIP
regression model against the ZINB alternative (i.e., α = 0 in a ZINB model). Both ZIP
and ZINB regression models will be inappropriate for fitting data with zero deflation at any
settings of the explanatory variables. A useful model for such a situation is the “Hurdle”
model proposed first by Mullahy (1986) that separately handles the zero observations and
the positive counts. An advantage of the Hurdle model is that it can handle both the zero
inflation and zero deflation. The downside of this model is that all zero counts are struc-
tural whereas ZINB and ZIP models allow both structural and functional zeros (Pardoe and
Durham, 2003). In the Hurdle model, g2(yij) = f(k)/(1− f(0)).

In model (1), γ0 +γ1g(t) and γ0 +γ1g(t) +γ2xijk +γ3xijkg(t) are the fixed linear trends
for the control group, and for the intervention group, respectively. Thus γ3 differentiates the
slope of the treatment group from the control group of service utilization and β3 has a sim-
ilar interpretation of frequency of service utilization. Exponentiation of γ3 and β3 provides
the odds ratio and risk ratio respectively. Note that these parameter estimates are subject-
specific, which indicates the effectiveness of the intervention at the individual level. The
interpretation of β∗ and γ∗ is of considerable interest. The gamma parameters (γ∗) describe
the effects of the covariates on the likelihood of service utilization, whereas the beta param-
eters (β∗) describe the effects of the same or possibly different covariates on the intensity of
service utilization. Also, νi0 + νi1g(t) is the random linear trend for the ith site effect. The
correlation between subjects nested within the same site is accounted for by the presence of
random site effects. Similarly δisj0 + δisj1g(t) is the random linear trend for the jth subject
nested within the ith site, and the random linear trend at the subject level takes care of the
correlation between multiple observations nested within the same subject. Similar interpre-
tations hold in model (2). The vectors wijk and zijk represent the additional fixed covariates
such as age, race, sex etc. for the logit and the log-linear components. A three-level ZIP or
ZINB longitudinal mixed-effects model can have a total of 12 variance covariance parameters;
six components from the binary part (variance for random intercept, variance for random
slope and their covariance for subjects and for communities), and a parallel set of six vari-
ance components from the count part of the model. Even though 12 variance components
in the above models seems to be a reasonable assumption, in actuality, we do not know how
many of them are really significant. Keeping all of them may over-saturate the model. To
select an appropriate model we generally use deviance, Akaike information criterion (AIC),
and Bayesian information criterion (BIC). Several authors have recently noted that AIC
and BIC are not appropriate for model selection when the sample size is small (Kass and
Raftery, 1995, Seghouane, 2006, Chen, et al. 2008, Tu and Xu, 2012). To resolve this issue,
there is a need for alternative approaches to evaluate the significance of variance components.
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3.1. Estimation of model parameters

The goal of this section is to derive and use the marginal likelihood function of fixed
parameters (i.e. γ and β) conditioning on the data and a suitable estimate of random effects
(posterior mode). At the initial stage, it is assumed that variance components are known.
The numerical integration over the space of random-effects in the estimation process is
avoided by approximating the log-likelihood around the starting values of random-effects. In
addition, we investigate an alternative procedure based on ordinary Laplace approximation.
The convergence rates of both ordinary Laplace and Marginal Maximum Likelihood (MML)
(combination of Gaussian quadrature and Newton Rhapson method) is O(n−1) (Ghosh,
et al. 2006, page 206). However, MML requires enormous computational time and often
fails to converge for hierarchical Zero-Inflated Data (ZID). Xie, et al. (2013) and Gupta, et
al. (2015) encountered similar convergence problem in their analysis of ZID. On the other
hand, the Laplace approximation avoids numerical integration by exploiting a property of
the multivariate normal distribution. As a result, this method provides better guarantee of
convergence compared to the quadrature methods for hierarchical models. For comparison
purposes we also include the penalized quasi likelihood (PQL) approach (Hyede, 1997).

3.2. Comparison of three estimation methods

First, zero-inflated data were simulated under the assumption that all random-effects
in the logistic component were stochastically independent from the random-effects in the log
linear component. This assumption reduced the complexity of numerical computation. To
compare results of parameter estimation obtained by Laplace and quadrature methods for
a two-level Poisson and logistic regression mixed-effects models, we set intercept parameters
of control and intervention groups at 3 and 0, respectively, and slope parameters at -0.5 and
-1, respectively. The variance-covariance matrix of the random slope and random intercept
were set at (1, -0.2, 0.05). Based on simulations using a two-level ZI model, we observed in
Table that Laplace and quadrature methods produced similar results, whereas results by
PQL were unsatisfactory. In addition, we observed in Table that standard errors of these
estimates for both Laplace and quadrature methods did not vary significantly. However, the
convergence rate obtained by the Laplace method was substantially higher than that of the
quadrature method. In addition, the Laplace method required, on average, one-fourth of the
computing time required by the MML method (whenever it converged), and the accuracy
rates of both Laplace and quadrature were at the same level.

3.3. Computation time and convergence

Another critically important issue in fitting complex models with numerous random-
effects is computational time and model convergence. To investigate these issues we used
PROC NLMIXED, SAS version 9.4 to fit our models. The computational times for ZIP and
ZINB models (i) with fixed-effects, are in terms of seconds, (ii) with mixed-effects having
one or two random-effects, are less than 5 minutes for both quadrature and Laplace, (iii)
with mixed-effects having three random-effects, are around 80 minutes for quadrature and
less than 25 minutes for Laplace, (iv) the quadrature did not converge for both ZIP and
ZINB models with four random-effects, whereas, for the same models with four random
effects, Laplace converged in two hours. The same data analyzed using GEE took less than
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Table 2: Estimation of parameters and standard errors by Laplace, Quadrature
and PQL for Poisson and logistic regression models.

Laplace Quadrature PQL
Parameters Poisson Logistic Poisson Logistic Poisson Logistic
β0 = γ0 = 3 2.997 (0.14) 3.31 (0.63) 2.997 (0.14) 3.202 (0.68) 3.022 (0.14) 2.736 (0.87)
β1 = γ1 = −0.5 -0.499 (0.04) -0.558 (0.14) -0.498 (0.04) -0.537 (0.14) -0.478 (0.04) -0.463 (0.08)
β2 = γ2 = 0 0.007 (0.20) -0.018 (0.64) 0.007 (0.20) 0.039 (0.62) -0.016 (0.25) -0.082 (0.72)
β3 = γ3 = −0.5 -0.503 (0.07) -0.543 (0.21) -0.504 (0.07) -0.557 (0.25) -0.490 (0.37) -0.412 (0.54)
σ2

δ0
= σ2

δ∗
0

= 1 0.979 (0.14) 1.412 (1.53) 0.981 (0.15) 1.606 (1.60) 0.959 (0.25) 0.219 (0.64)
σδ01 = σδ∗

01
= −0.2 -0.197 (0.04) -0.573 (0.53) -0.197 (0.04) -0.354 (0.40) -0.204 (0.09) -0.005 (0.79)

σ2
δ1

= σ2
δ∗

1
= 0.05 0.086 (0.01) 0.149 (0.15) 0.086 (0.01) 0.154 (0.21) 0.083 (0.11) 0.012 (0.25)

one minute with an exchangeable correlation matrix. The Bayesian approach with three
random-effects took 10 minutes to update 1 chain for 10,000 iterations (5000 burn-in, 5000
update), and 15 minutes to update 2 chains for 10,000 iterations (5000 burn-in, 5000 update).
We further repeated the simulation study with various levels of missingness and observed that
computational time varied significantly between the methods, and non-convergence became
a norm rather than an exception, especially when missingness exceeded more than 30%.
An alternative approach when convergence persists is the use of “Maximum A Posteriori
(MAP)” estimation that sets the initial value of the parameters to their posterior mode,
and uses adaptive quadrature instead of fixed-point quadrature. Yet another alternative
is to use the Laplace approximation at each center, and then perform meta analysis to
combine results from centers (Bhaumik, et al. 2012, Amatya, et al. 2015). Convergence rate
for this combination approach is expected to be better as random components at the center
level are eliminated. Based on this simulation study, we recommend to use Laplace method
(or a combination of Laplace and meta analysis) for estimating parameters of zero inflated
models when number of random effects is more than two in order to get consistent estimators
avoiding non-convergence issues.

4. Sample Size Determination

In this section we address the issue of sample size determination for hierarchical designs
with zero-inflated data.

Statistical methods for the analysis of longitudinal data with clustering of subjects
are now routinely applied in mental health service utilization studies. The design of such
studies often suffers from poorly specified and often inadequate sample sizes. This is be-
cause sample size determination methodology is derived based on a single outcome, or based
on longitudinal studies which ignore clustering. The determination of sample sizes when
subjects are both repeatedly measured over time and clustered within research sites (e.g.,
multisite Randomized Controlled Trials (RCTs)) can be erroneous unless both factors, and
attrition rates are taken into account. Several authors have developed power analysis for
cluster-randomized, and/or repeated measurements studies (Roy, et al. 2007, Bhaumik, et
al. 2008, 2013, Amatya, et al. 2013, Kapur, et al. 2014). Some of the key features of power
calculations include (i) type of randomization (participant level, or site level), (ii) cluster
and longitudinal variability, (iii) differential attrition rates over time, and also in different
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groups (i.e. intervention and control groups), and (iv) proportion of allocations of subjects.

4.1. Theoretical foundation for sample size computation using generalized linear
models

Denote the outcome of the ith subject nested within the cth cluster measured at the
jth time point by ycij, where i = 1, . . . , n, c = 1, . . . , C, and j = 1, . . . , T . Let yci=
(yci1, yci2, · · · , yciT )t be a column vector of dimension T × 1 composed of outcomes of the
ith subject measured at T different time points. Generalized linear mixed model that links
the expectation of yci to the linear predictor has the following expression: E(yci|δ,γ) =
h(Xciβ+Zciδci +W ciγc) = h(ηci), where ηci = Xciβ+Zciδci +W ciγc, and Xci, Zci and
W ci are design matrices associated with fixed-effects (β), subject-level random-effects (δci),
and cluster-level random-effects (γc), respectively. Random-effects δ and γ are independent
and assumed to follow multivariate distributions. Denote the number of clusters by C,
number of treatments by S, the covariance matrix of the pseudo observation y∗ (obtained by
linearizing the real observation y) by V s, the noncentrality τ parameter of a noncentral F
distribution with degrees of freedom a and b by H(a, b, α, τ). Assume G: (S−1)×1 is group
indicator vector whose sth element is 1 corresponding to treatment s; 0 otherwise. Denote
Cov(β̂) = C−1Γ−1. The focus now is on testing a set of linear hypotheses related to group-
by-time (or a function of time) interaction parameters which are expressed in the following
general linear hypothesis set up of the fixed-effect parameters β, H0 : Lβ = 0 vs. H1 : Lβ 6=
0.

4.2. Results

Assume that a study wants to compare S treatments in C centers utilizing a longitu-
dinal design of length T , and an allocation vector of π = (π1, . . . , πS)t. Further assume that
each center wants to use n subjects and randomization is performed at the center level, i.e.
all subjects in a given center receive the same treatment assigned to that particular center.
Let the proportion of dropouts in centers receiving the sth treatment be ξs = (ξs,1, . . . , ξs,T )t.
In order to attain at least (1 − τ)100% power for the test specified in H1 at an alternative
value of β = β∗, the required number of subjects n per center should maintain the following
constraint:

n ≥ min{j : λ̂(j) ≥ H(S − 1, C − S, α, τ)/C}, (3)

where λ̂(j) = (Lβ∗)t(LΓ̂
−1
Lt)−1(Lβ∗). An arbitrary value of C cannot provide a valid

solution of (3). Equation (3) provides a feasible solution only when C ≥ C∗, where

C∗ = H(S − 1, C − S, α, τ)/(β∗tLt[L((U t∆πU)⊗Σ−1
γ )−1Lt]−1Lβ∗), (4)

where, ∆π is a diagonal matrix with diagonal elements πs, U = (ut1, · · · ,uts)t and us =
(1 Gt

s)t and ⊗ is the Kronecker product. Thus, C∗ is the lower bound of C and is
independent of n. The proof is mathematically intensive and lengthy, hence is not given
here (see Amatya and Bhaumik (2018) for complete derivation). This result suggests that
at least C∗ clusters are necessary for a cluster randomized study to achieve the desired
level of power 1− τ . As C increases (starting from C∗), the requirement for the number of
subjects decreases, provided all other parameters remain fixed. An explicit expression of C∗
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is given in Amatya and Bhaumik (2018). In order to evaluate the flexibility of this exciting
result, we did some robustness studies via simulations (i) changing symmetric distributions
(of random effects) to right skewed gamma distributions, (ii) relaxing the constraint of equal
sample sample sizes of every center to 10% variations. The simulated power (under various
parametric combinations, attrition rates, and model violations of types (i) and (ii)) was never
less than 76% when it was fixed at 80%. Comprehensive results are reported in Amatya and
Bhaumik (2018). A testing procedure with inflated Type I error rates will require fewer
samples, but such a test will often show significance when the intervention effect is actually
non-significant. On the other hand, a very conservative test will require more resources to
attain the same target power (e.g., 80%) compared to an exact test. Our proposed procedure
avoids both scenarios. In order to demonstrate how fatal it can be in terms of power, when
inappropriate methods are used for sample size determination we compared our proposed
method with two existing methods by Murray (1998) and Heo, et al. (2013) designed for
linear models. Results are presented in Table where for various values of between-cluster
variation in slopes (σ2

γ22) we compute cluster size and corresponding power. Note that power
for both the existing methods is substantially lower than what was targeted at 80%.

Table 3: Comparison of required number of clusters estimated from Murray
(1998), Heo, et al. (2013), the proposed method, and the power attained in sim-
ulated evaluation

σ2
γ22 Murray (1998) Heo, et al. (2013) Proposed

C power C power C power
0.03 8 .287 12 .367 35 .797
0.04 8 .252 12 .361 41 .797
0.05 8 .237 12 .339 46 .773
0.06 8 .243 12 .297 52 .778
0.07 8 .223 12 .275 58 .767
0.08 8 .218 12 .279 64 .795
0.35 10 .153 12 .216 224 .799

Both the existing methods perform well when outcome is linear, however, they are in-
appropriate for non-linear outcomes. Hence, sample size methodologies should be developed
taking into account all complexities (type of outcome, within and between cluster variation,
attrition rate) which is incorporated in our proposed method.

5. Conclusions

Health service utilization researchers regularly conduct multi-center studies which are
longitudinal in nature. In these studies multiple correlated measurements are obtained from
subjects who are nested within hospitals, schools etc. The distribution of the outcome vari-
able usually is highly skewed with a profusion of zero as a large majority of eligible subjects
never utilize service either due to lack of need or access, and a long right tail as some subjects
are mass consumers of service. Sample size estimation methods used to design these hierar-
chical longitudinal studies with skewed zero-inflated outcome data either rely on completely
inappropriate linear models or employ simple designs ignoring various levels of hierarchy
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which can result in severe under-estimation of resulting power. We derive a robust method
for sample size estimation that incorporates multiple random-effects in a zero-inflated model.
Our simulation study showed the proposed method achieved the desired 80% power consis-
tently whereas the other competing approaches under estimated the power severely. During
the data analysis phase researchers are routinely forced to exclude important random-effects
from their fitted models due to model convergence issue. We propose a novel technique based
upon Laplace approximation which considerably reduces the non-convergence and utilizes
less computing resources in comparison to the existing methods.
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