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Abstract 

To simultaneously model the change point and the possibly nonlinear relationship in the 
Covid-19 data of the US, a continuous second-order free knot spline model was proposed. 
Using the least squares method, the change point of the daily new cases against the total 
confirmed cases up to the previous day was estimated to be 04 April 2020. Before the point, 
the daily new cases were proportional to the total cases with a ratio of 0.287, suggesting that 
each patient had 28.7% chance to infect another person every day. After the point, however, 
such ratio was no longer maintained and the daily new cases were decreasing slowly. At the 
individual state level, it was found that most states had change points. Before its change point 
for each state, the daily new cases were still proportional to the total cases. And all the ratios 
were about the same except for New York State in which the ratio was much higher (probably 
due to its high population density and heavy usage of public transportation). But after the points, 
different states had different patterns. One interesting observation was that the change point of 
one state was about 3 weeks lagged behind the state declaration of emergency. This might 
suggest that there was a lag period, which could help identify possible causes for the second 
wave. In the end, consistency and asymptotic normality of the estimates were briefly discussed 
where the criterion functions are continuous but not differentiable (irregular).  

Key words: Asymptotic normality; Change point; Consistency; Covid-19; Free knot; Irregular 
criterion function. 

1. Introduction 

The first case of Novel Coronavirus disease 2019 (Covid-19) was reported in Wuhan, 
China on 17 November 2019. This disease was caused by SARS-CoV-2 virus, and in about 6 
months, it has spread throughout the whole world, infected 15.5 million people, and killed more 
than 635,000 (https://covid19.who.int/). In the United States, there are 4 million confirmed 
cases, and 143,000 deaths by 25 July 2020. Many states have ordered their residents to stay at 
home and keep social distancing to slowdown the rapid spread of the virus, so that the health 
care system will not be overwhelmed. The trend of daily new cases in the US appeared to be 
flattened in the early April. Here, we first fitted the data with the change point model (Bai, 
1997; Julious, 2000) to identify the possible date for the trend change. 

The first case in US was reported on 21 January 2020 in Washington State. By the end 
of February, several more confirmed cases were recorded there. By the end of March, the 
number of confirmed cases quickly went up to about 6,000. On 29 February 2020, the Governor 
declared the state emergency. A few weeks later, the daily new cases stabled and slowly started 
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decreasing. Similar patterns could also be observed in other states. By fitting the state data with 
a change point model, we found that the change point was correlated with the date when the 
state emergency was declared. Thus, we believed that one main possible cause for the change 
point could be the declaration of state emergency. Once people started to protect themselves 
more carefully, the effect of the protection would be noticeable after 2-3 weeks. Knowledge 
about this delay period would help us identify the causes if the trend changes again. 

In this study, we used the data collected by New York Times Company. The data is stored 
at GitHub (http://github.com/nytimes/covid-19-data/blob/master/). It contains the number of 
cumulated cases at the county level, state level, and country level, starting from 21 January 
2020. We downloaded the data up to 18 June 2020 for this study. 

2. Change Point Model and Data Fitting Procedure 

First, we fitted the data at the county-level. Displayed in Figure 1A is the plot of the 
number of daily new cases against the total number of cases up to the previous day. Noticeably, 
there is a change point between 28 March and 05 April 2020, around which an increasing 
relationship of the daily new cases against the total cases was progressed to decreasing. 
Specifically, at first, the number of daily new cases was drastically increasing with the total 
number of cases up the previous day. Then after some critical point, the increasing relationship 
turned to decreasing but at a slow rate. This seems to be no surprising. When Covid-19 broke 
out, a great number of people got infected within a short period of time. Meanwhile, measures 
such as social distancing and using of personal protective equipment were taken, the spreading 
was slowed down. Motivated by these plots, we chose to use a change point model to fit the 
data. 

 

A B C  
 

Figure 1: The scatter plot of the data. The y-axis is the daily new cases, and the x-axis is the 
total cases up to the previous day. A: the scatter plot; B: the scatter plot superimposed with the 
fitted linear model (1); C: the scatter plot superimposed with the fitted quadratic model (2). 

In a linear change point model, the expected value 𝐸(𝑦$)	 of the number 𝑦$ of daily new 
cases is expressed as a linear function of the total number 𝑥$,	of cases up to the previous day, 
i.e., 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1,			𝑖 = 1,… , 𝑛                                      (1) 

where	𝛿 is an unknown change point, and 𝑥1: = max(𝑥, 0)  is the positive part of 𝑥. Here 𝛽+	is 
the intercept, which is expected to be very close to zero (there should be almost no new case if 
there is no confirmed cases), 𝛽- is the rate of infection before the change point, which can be 
interpreted as how many persons will be infected by each patient every day; 𝛽.	can be 
interpreted as the effectiveness of the protective measures taken. Treating 𝛿  as known, we 
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estimated the parameters beta by the least squares method. To estimate the change point 𝛿, we 
searched all possible values of the change point and compared the corresponding sum of 
squared residuals (SSE). The estimate of change point is the one corresponding to the smallest 
SSE. The data in Figure 1A was fitted to the linear model with one change point, with the daily 
new cases as the response and the total number of cases up to the previous day as the predictor. 
Listed in Table 1 are all the possible change points with corresponding SSE values. 

Table 1: The possible change points and corresponding SSE from linear model 

Date 𝛿 SSE× 10<= 
2020-03-28 102835 1.34 
2020-03-29 123730 1.23 
2020-03-30 142406 1.14 
2020-03-31 163873 1.08 
2020-04-01 188425 1.05 
2020-04-02 215176 1.08 
2020-04-03 244636 1.17 
2020-04-04 277279 1.34 
2020-04-05 312519 1.61 

From the Table 1, the estimate of the change point is 01 April 2020, which is consistent 
with our observation. The results of all other parameter estimates are listed in Table 2. With 
this change point, the fitted equation is: 

𝐸(𝑦) = 495 + 0.1662𝑥 − 0.1722(𝑥 − 188425)1 

= F 495 + 0.1662𝑥,32942 − 0.006𝑥,			
				𝑥 ≤ 188425, 𝑖. 𝑒. , before	01	April	2020
𝑥 > 188425, 𝑖. 𝑒. , after	01	April	2020  

In this equation, 𝛽U+  is not significantly different from zero, which was consistent with our 
intuition: 𝛽+ should be very close to zero. 𝛽U- = 0.1662 indicated that before the change point, 
each patient had 16.6% chance to infect another healthy person every day. 𝛽U. = −0.1772 
suggested that after the total number of confirmed cases reached to 188,425, the slope of the 
linear trend is V𝛽U- + 𝛽U.W = −0.006. This showed that the daily new cases were decreasing 
after 01 April 2020, but at a very slow rate.  

Displayed in Figure 1B is the scatter plot of the data superimposed with the fitted lines, 
using 01 April 2020 as the change point. The simple linear model fit data well, except that there 
are some noticeable non-linear features for both before and after the change point. This 
motivated us to fit the data with a continuous quadratic change point model: 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.                               (2) 

where 𝛽- is the initial rate when there is only a small amount of confirmed cases; 𝛽-. is the 
correction factor for the non-linear feature before the change point; 𝛽. and 𝛽.. indicate the 
effectiveness of the prevention measures after the change point. Our study exhibited in this 
model that the LSE is asymptotic normal. The estimation method is the same as described 
above, and the possible change points and their corresponding SSE are listed in Table 3. 

In this model, the change date is 04 April 2020, and all other parameter estimates are 
listed in Table 2. The fitted equation is: 
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𝐸(𝑦) = 290 + 0.2247𝑥 − 3.898 × 10<X𝑥. − 0.01845(𝑥 − 277279)1
+ 3.919 × 10<X(𝑥 − 277279)1.  

= F 290 + 0.2247𝑥 − 3.898 × 10<X𝑥.,
35531 − 0.01106𝑥 + 2.028 × 10<=𝑥.,

								 				before	04	April	2020after	04	April	2020  

The superimposed plot is shown in Figure 1C. The quadratic model appeared to be a better fit 
to the data. To confirm this, we performed ANOVA test to test if the linear model is significant. 
The ANOVA test result in Table 4 indicated that the full model is appropriate. Another question 
that arises is - should we still pick 01 April 2020 as the change point as suggested from the 
linear model? The ANOVA test result in Table 4 suggested 04 April 2020. Possibly the linear 
model is somewhat oversimplified, as it ignores the curve features before and after the change 
point, which could lead to restrictions on selecting the change point due to its lack of flexibility. 
Thus, we would suggest 04 April 2020 as the change point for the US.   

Table 2: Parameter estimates from model (1)-(3) 

Model (1): 𝐸(𝑦$	) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 

Estimator Estimated value Std Err t* P (t > t*) 
𝛽U+ 495 335 1.474 0.143 
𝛽U- 0.1662 0.0037 44.533 0.000 
𝛽U. −0.1722 0.0041 −41.685 0.000 

Model (2): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

Estimator Estimated value Std Err t* P (t > t*) 
𝛽U+ 290 323 0.898 0.371 
𝛽U- 0.2247 0.00146 15.356 0.000 
𝛽U-. −3.898×10-7 5.56×10-8 −7.01 0.000 
𝛽U. −0.01845 0.01798 −1.025 0.307 
𝛽U.. 3.919×10-7 5.53×10-8 7.091 0.000 

Model (3): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1. +weekly effect 

The residual has AR (1) pattern 

Estimator Estimated 
value 

Std Err t* P (t > t*) 

𝛽U+ 132 197 0.671 0.504 
𝛽U- 0.2871 0.0161 17.825 0.000 
𝛽U-. −5.143×10-7 4.37×10-8 −11.77 0.000 
𝛽U. -0.0128 0.011 −1.158 0.249 
𝛽U.. 5.17×10-7 4.36×10-8 11.87 0.000 

Monday effect −10130 1586 −6.385 0.000 
Tuesday effect −8960 1595 −5.618 0.000 

Wednesday effect −7848 1602 −4.9 0.000 
Thursday effect −4933 1611 −3.062 0.003 

Friday effect −3513 1557 −2.256 0.026 
Saturday effect −5379 1566 −3.44 0.001 
Sunday effect −10090 1577 −6.397 0.000 
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Table 3: The possible change points & corresponding SSE from the quadratic model (2) 

Date Value of 𝛿 SSE× 10<= 
2020-03-28 102835 1.2719 
2020-03-29 123730 1.1982 
2020-03-30 142406 1.1266 
2020-03-31 163873 1.0520 
2020-04-01 188425 0.9893 
2020-04-02 215176 0.9446 
2020-04-03 244636 0.9190 
2020-04-04 277279 0.9111 
2020-04-05 312519 0.9112 
2020-04-06 337984 0.9163 
2020-04-07 367599 0.9285 
2020-04-08 399388 0.9454 

 

In Figure 1A, one notices that besides the trend, the variation of daily new cases exhibited 
strong weekly effect: during the weekend, the number was small, and during the middle of a 
week, the number was high. Here, the plot of the residual after 18 March 2020 is shown in 
Figure 2A. The plot indicated that there was an oscillation pattern. The auto-correlation 
function (ACF) plot of the residual is shown in Figure 2B. From the ACF plot, the weekly 
effect was apparent: the residual was highly positive correlated on 7 days and 14 days. 

Table 4: The ANOVA test results 

Full model: Quadratic model (2); reduced model: linear model (1) 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.9111× 10= 143    
Reduced 1.05 × 10= 145 68849507 10.81 0.00043 

 

Full model: Quadratic model (2); reduced model: change date is 01 April 2020 
 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.9111× 10= 143    
Reduced 0.9893× 10= 144 78144937 12.26 0.00061 

 

Full model: Quadratic model (3); reduced model: Quadratic model (4) 
 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.3793× 10= 141    
Reduced 0.5202× 10= 136 140938174 10.10 0.0000 
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Figure 2: The residual plot (A) and ACF plot (B) 

 

Table 5: The possible change points and corresponding SSE from model (3) 

Date Value of 𝛿 SSE× 10<Y 
2020-04-01 188425 4.348 
2020-04-02 215176 4.102 
2020-04-03 244636 3.899 
2020-04-04 277279 3.793 
2020-04-05 312519 3.801 
2020-04-06 337984 3.885 
2020-04-07 367599 4.023 
2020-04-08 399388 4.187 

 

To address the weekly effect, we include the weekday-indicator in the model for the data 
collected after 27 March 2020: 

 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

+V∑ 𝛽[\ ⋅ 𝟏{Weekday$ = 𝑗}X
\f- W ⋅ 𝟏{𝐷𝑎𝑡𝑒$ ≥ 27	𝑀𝑎𝑟𝑐ℎ	2020}                      (3) 

Another model for the weekly effect to use the periodic sine and cosine functions: 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

+o𝛽p sin o2𝜋 ⋅
Weekday$

7 t + 𝛽u cos o2𝜋 ⋅
Weekdayw

7 tt ⋅ 𝟏{𝐷𝑎𝑡𝑒$ ≥ 27	𝑀𝑎𝑟𝑐ℎ	2020}			(4) 

It can be seen that that model (4) is a reduced model of model (3): 𝛽[\ = 𝛽p sin x
.\y
X
z +

𝛽u cos x
.\y
X
z , 𝑗 = 1,… ,7. Thus, we can use the ANOVA to test if model (4) is significant. The 

ANOVA test result in Table 4 supported the full model (3). For the model (3), the possible 
change point and the corresponding SSE is listed in Table 5, and the result still showed that 04 
April 2020 was the change point. 
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Figure 3: The ACF plot (A) and PACF plot (B) for residue from model (3). 

The data was fitted to the weekly effect model (3), and the ACF and partial ACF (PACF) 
plot of resulted residuals were shown in Figure 3. The PACF plot indicated that the residuals 
had auto-regression pattern {AR (1)}. The data was then fitted with the weekly-effect model 
with AR (1). The results are listed in Table 2 and shall be discussed in next section. 

The data from individual state was fitted using the following model,  

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.                               (5) 

Here we removed the second order term before the change point, and our motivation was that 
this model is more sensitive to the change point based on our theoretical study. The results are 
listed in Table 6 and shall be discussed in next section. 

Table 6: The results for individual state data 

Model (5): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

The average delay-time between the date to declare state emergency and change point was 21.8 days 
with the standard deviation of 5.2 days. 

State Name Change point 𝛽U- Date to declare 
state emergence1  

Alabama 4/2/2020 0.133 3/13/2020 
Arizona 3/28/2020 0.229 3/11/2020 
California 3/30/2020 0.161 3/4/2020 
Colorado 3/25/2020 0.256 3/10/2020 
Connecticut 4/5/2020 0.151 3/10/2020 
Delaware 4/5/2020 0.166 3/12/2020 
D. C. 3/31/2020 0.175 3/11/2020 
Florida 4/2/2020 0.156 3/1/2020 
Illinois 3/25/2020 0.296 3/9/2020 
Indiana 3/30/2020 0.220 3/6/2020 
Iowa 4/8/2020 0.168 3/9/2020 
Kansas 3/26/2020 0.289 3/9/2020 
Kentucky 4/6/2020 0.119 3/9/2020 
Louisiana 4/1/2020 0.276 3/11/2020 
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Maine 3/27/2020 0.106 3/15/2020 
Maryland 4/2/2020 0.186 3/5/2020 
Massachusetts 3/27/2020 0.328 3/10/2020 
Michigan 3/31/2020 0.205 3/11/2020 
Mississippi 4/2/2020 0.115 3/4/2020 
Missouri 3/31/2020 0.185 3/13/2020 
Nebraska 4/8/2020 0.156 3/13/2020 
Nevada 3/28/2020 0.221 3/12/2020 
New Hampshire 3/28/2020 0.173 3/13/2020 
New Jersey 3/29/2020 0.237 3/9/2020 
New Mexico 4/6/2020 0.120 3/11/2020 
New York 3/22/2020 0.436 3/7/2020 
North Carolina 3/26/2020 0.243 3/10/2020 
Ohio 4/2/2020 0.144 3/9/2020 
Pennsylvania 4/3/2020 0.187 3/6/2020 
Rhode Island 4/8/2020 0.157 3/9/2020 
South Carolina 3/31/2020 0.168 3/13/2020 
South Dakota 4/8/2020 0.254 3/13/2020 
Tennessee 3/30/2020 0.143 3/12/2020 
Texas 4/5/2020 0.141 3/13/2020 
Utah 3/27/2020 0.229 3/6/2020 
Virginia 3/31/2020 0.189 3/12/2020 
Washington 3/26/2020 0.159 2/29/2020 

1: the date of the declaration of state emergency is from wikipedia.org 
(https://en.wikipedia.org/wiki/U.S._state_and_local_government_response_to_the_COVID-
19_pandemic) 

3. Results and Discussions 

For the US data, from Table 2 the fitted equation is given by 

𝐸(𝑦) = 132 + 0.287𝑥 − 5.143 × 10<X𝑥. − 0.01278(𝑥 − 277279)1
+ 5.170 × 10<X(𝑥 − 277279)1. + weekly	effect 

= F 132 + 0.287𝑥 − 5.143 × 10
<X𝑥. + weekly	effect,

43424 − 0.01248𝑥 + 2.7 × 10<=𝑥. + weekly	effect,
			 				before	04	April	2020after	04	April	2020  

Here, 𝛽U-	= 0.287 suggested that at the early stage when the total number of confirmed cases 
was small, each patient had 28.7% chance to infect another healthy person each day. Since a 
Covid-19 patient usually recovered within 2 weeks, R0 value can be estimated by 
0.287 × 14 = 4.01, which was consistent with the published results (median value 5.7 with 
95% confidence interval: 3.8 - 8.9, Steven Sanche, et. al., 2020). 𝛽U-.	< 0 indicated that even 
before the change point, the rate was decreasing from 0.287. In fact, the rate at 04 April 2020 
can be calculated as 0.287 − 5.143 × 10<X × 277279 = 0.144, which was only half of the 
original rate. In our study of the state data, we found that several states had their change points 
in late March. This could be the due to the reason that the rate was decreased to 0.144, as 
several states had already slowed down. 

For the whole US data, the change point was 04 April 2020. Because the median 
incubation time of Covid-19 was 4-5 days, implying that what led to the change point should 
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have played the role at least one week before 04 April 2020. This seems to indicate that the 
change point could be resulted from the issuance of National Emergency on 13 March 2020. If 
it was true, it suggested that the effect of people’s behavior would be reflected by the change 
point about 21 days later. The same lag effect was also observed at the state level. 

Listed in Table 5 are the fitting results for the data from individual states. Washington 
State was the first with the outbreak of Covid-19. The scatter plot of the data superimposed 
with the fitted curve is shown in Figure 4A. Before the change point, the daily new cases were 
increasing. After 26 March 2020, however, the number started to decrease. But the number 
seemed to comeback recently. The estimate was 𝛽U-= 0.154, indicating that the initial rate in 
Washington States was less than the average rate (0.287) of the US. The state emergency was 
declared on 29 February 2020, and the change point was on 26 March 2020, thus it showed 
about 25-day delay.  

A B  

C D  
Figure 4: The scatter plot of state data. The y-axis is the number of daily new cases, and the 
x-axis is the total number of cases up to the previous day. A: Washington State. B: New York 
State. C: California State. D: Texas State.  

New York State was a hot spot in March. The plot is shown in Figure 4B. The estimate 
𝛽U- is equal to 0.436, which is the highest among all states, which could be due to its high 
population density and heavy public transportation. The state emergency was declared on 07 
March 2020 and the change point was 22 March 2020, which lagged behind 15 days. After 22 
March 2020, the daily new cases stayed with high value and then dropped down. This seemed 
to indicate that the Covid-19 appeared to be controlled.  

The plot of data from California State is shown in Figure 4C. The state emergency was 
declared on 04 March 2020 and the change point was 30 March 2020, which lagged behind 
about 26 days. However, after the change point, the daily new cases were only slowing down 
and still kept increasing. To further control Covid-19, more efforts would be needed. The plot 
of data from Texas is shown in Figure 4D. The state emergency was declared on 13 March 
2020 and the change point was 05 April 2020. For Texas, the lag time was 22 days. 

As we discussed before, the estimate 𝛽U- for each state was proportional to R0 for that state 
before any prevention measures were used. Some states, similar to New York State, like 
Massachusetts and Illinois, have big metropolitan areas (Boston in MA, and Chicago in IL) 
with high population density and heavily public transportation. Thus, the estimate 𝛽U- of these 
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states were relatively higher than the rest. Other states, like Mississippi and New Mexico, have 
no such big cities, and usually had lower estimate 𝛽U-.  

Overall, the data from most states showed a change point pattern. Before the point, the 
daily new cases were proportional to the total cases, similar to the whole US data. By 
comparing the change point and the date when the state emergency was declared in Table 6, 
we found that the average delay-period is 21.8 days. This suggested that if there is another 
change point, what happen 3 weeks before would likely be the causes of the change. 

4. Consistency and Asymptotic Normality 

Here, we present consistency and asymptotic normality results and omit the proofs. What 
is novel here is that we model the change point and the possible non-linear relationship 
simultaneously, whereas a typical change point model involves in only (𝑥 − 𝛿)1. This is a 
continuous second-order free spline model with one knot. 

To prove asymptotic normality, we have to deal with the irregular criterion function 
V𝑦$ − 𝜷}𝒛𝒊(𝛿)W

.
, in which the truncated power function 𝑥1 is not differentiable. Thanks to 

Theorem 5.23 of van der Vaart (1998), we have obtained a quick result at the price of 
boundedness Assumption 4. In other words, with careful elaboration, we believe this 
assumption (and some of others as well) can be relaxed to the boundedness assumption of the 
knot parameter 𝛿 as in the case of consistency, see Wu, et. al. (2019).  

Consider that (𝑥-, 𝑦-), (𝑥., 𝑦.),… , (𝑥�, 𝑦�) satisfy the second-order free spline model, 

𝑦$ = 𝛽+ + 𝛽-𝑥$ + 𝛽.𝑥$. + 𝛽[(𝑥 − 𝛿)1 + 𝛽�(𝑥 − 𝛿)1. + 𝜖$, 𝑖 = 1,… , 𝑛, 

where 𝜖-, 𝜖.,… , 𝜖� are i.i.d. random errors with 𝐸(𝜖$) = 0	and	𝑉(𝜖$) = 𝜎. < ∞, 𝑥-,𝑥.,… , 𝑥� 
are assumed to be non-random, both 𝛽	and	𝛿 are unknown parameters to be estimated.  

Denote 𝜷 = (𝛽+, 𝛽-, 𝛽., 𝛽[, 𝛽�)} , 𝜽 = (𝜷}, 𝛿)}, and	𝒛𝒊(𝛿) = (1, 𝑥$, 𝑥.., (𝑥 − 𝛿)1,
(𝑥 − 𝛿)1. )}. Using these symbols, we can write  

𝑦$ = 𝜷}𝑧$(𝛿) + 𝜖$, 𝑖 = 1,… , 𝑛. 

We estimate 𝜽 = (𝜷}, 𝛿)} by the least squares estimate (LSE)	𝜽� = V𝜷�}, 𝛿UW
}
, that is,  

							𝜽� = argmin
𝜽
𝑆�(𝜽) , 𝑤ℎ𝑒𝑟𝑒		𝑆�(𝜽) = 𝑆�(𝜷}, 𝛿) =

1
𝑛�

V𝑦$ − 𝜷}𝒛𝒊(𝛿)W
.
.

�

$f-

															(6) 

For 𝛿 ∈ ∆⊂ 𝑅 fixed, the minimization (6) simplifies to the usual LSE problem. Let 𝒁(𝛿) 
be the 𝑛 × 5  matrix consisting of 𝒛𝟏(𝛿), 𝒛𝟐(𝛿),… , 𝒛𝒏(𝛿)  as its rows, and let 𝒚 =
(𝑦-, 𝑦., … , 𝑦�)}. If 𝒁(𝛿) has full rank 5, then the LES 𝛽U(𝛿) is given by  

𝛽U(𝛿) = [𝒁}(𝛿)𝒁(𝛿)]<-𝒁}(𝛿)𝒚.																																																							(7) 

As a result, the minimization (6) becomes minimizing the new objective over 𝛿 ∈ Δ: 

𝛿U = argmin
�∈�

𝑆��(𝛿) , 𝑆�(𝜷}(𝛿), 𝛿) =
-
�
∑ V𝑦$ − 𝜷}(𝛿)𝒛𝒊(𝛿)W

.�
$f- . 



2020] CHANGE POINT MODELING OF COVID-19 DATA IN THE UNITED STATES   317 

Assumption 1. There exists a compact subset Δ of ℝ and a matrix function	𝑴(𝛿-, 𝛿.),  
𝛿-, 𝛿. ∈ Δ, such that 

1
𝑛�𝒛𝒊(𝛿-)𝒛$(𝛿.)}

�

$f-

→ 𝑴(𝛿-, 𝛿.), 

uniformly in 𝛿-, 𝛿. ∈ Δ, that 𝑴(𝛿, 𝛿) is positive definite on Δ, and that 𝑻(𝛿) = 𝑴(𝛿+, 𝛿+) −
𝑴(𝛿+, 𝛿)𝑴<𝟏(𝛿, 𝛿)𝑴(𝛿+, 𝛿) has a unique zero solution at 𝛿 = 𝛿+. 

Assumption 2. For large	𝑛, sup
-¡$¡�

{|𝑥$|} ≤ 𝑀£ < ∞ for some constant 𝑀£.  

Note Assumption 1 ensures that the maximizer is well-separated and unique. It is a 
typical assumption for establishing consistency of M-estimators, see Chapter 5 of Van der 
Vaart (1998), Yu and Ruppert (2002) and Wu, et al. (2019).   

Theorem 1.  Assume Assumptions 1 and 2. Then the LSE 𝜽� converges in probability 
the	true	value	𝜽𝟎 = (𝜷𝟎}, 𝛿+) of parameter, i.e.,𝜽� → 𝜽𝟎, in probability. 

Remark. If 𝑋$  are random, consistency still holds provided that 𝜖$  and 𝑋$  are 
independent with 𝐸𝑋. < ∞, and the convergence in Assumption 1 is modified to convergence 
in probability. 

We need the following assumptions to assure asymptotic normality. 

Assumption 3. 𝑋-, 𝑋., … , 𝑋�  are i.i.d. with a common continuous density function 𝑓, 
𝑋$	and 𝜖$ are independent for all i, and  𝐸(𝑋Y) < ∞. 

Because 𝑥1 is not differentiable, asymptotic normality was proved using the empirical 
process theory. This requires the square-integrability of the envelope function, which is a 
polynomial of 𝑥 of fourth degree, leading to finite 8th moment assumption.     

Assumption 4. There exists a neighborhood of	𝜽𝟎, such that ∀𝜽 ∈ 𝑁(𝜽𝟎), ‖𝜽‖ ≤ 𝐵+ <
∞ for some	constant	𝐵+ > 0. 

Let 𝜇(𝜽) = 𝐸V𝑺�(𝜷}, 𝛿)W, 𝜇̇(𝜽) =
°
°𝜽
𝜇(𝜽) be the 6-dimensioinal derivative vector  and 

𝑽(𝜽𝟎) = 𝜇̈(𝜽) = °³

°𝜽°𝜽´
𝜇(𝜽) be the 6-by-6 matrix of second partial derivatives. 

Assumption 5. 𝜇̇(𝜽𝟎) = 𝟎 and the matrix 𝑉(𝜽𝟎) is nonsingular. 

Theorem 2. Assume Assumptions 3-5. If the LSE is consistent, i.e.,  𝜽�𝒏 → 𝜽𝟎 in 
probability, then  𝜽�𝒏 is asymptotically linear,  

√𝑛V𝜽�𝒏 − 𝜽𝟎W = −𝑽<𝟏(𝜽𝟎)
1
√𝑛

�𝑚̇𝜽𝟎(𝑋𝒊, 𝑌$)
�

$f-

+ 𝑜¹(1)	 

where 𝒎̇»(𝑥, 𝑦) =
°

°(𝜷´,�)´
V𝑦 − 𝜷}𝒛(𝛿)W

.
. Hence, 𝜽�𝒏	is	asymptotically	normal,	 

√𝑛V𝜽�𝒏 − 𝜽𝟎W ⟹ 𝑁 x0,𝑽<𝟏(𝜽𝟎)𝐸½𝒎̇𝜽𝟎(𝑋-, 𝑌-)𝒎̇𝜽𝟎(𝑋-, 𝑌-)
}¾𝑽<-(𝜽𝟎)z. 
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5. Future study 

During the preparation of this paper, we have noticed that there was a second outbreak 
in the US at the end of June. Our approach can be easily generalized to multiple change points. 
Currently, we work on the theoretical development in the framework of time series model with 
multiple change points. 
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