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Abstract
E and MV optimality results are established for several series of 3-rowed row-column

designs. All of these designs are generalized binary in rows, and their column component
designs have completely symmetric information matrices. Included are optimal designs which
are nonbinary in columns, and which are superior to any competitor that is binary in columns.
The optimality of designs with BIBD column components is extended beyond that of regular
Youden designs.
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1. Introduction

Block designs are useful for experiments where it is important to eliminate an iden-
tified source of heterogeneity in experimental units. In many experimental situations, the
position that a unit occupies within a block can also affect observed responses. In such
cases, row-column designs can often be used to additionally eliminate heterogeneity in this
second, orthogonal direction. Applications of row-column designs range from agriculture to
psychology to industry and beyond, and an abundance of examples can be found in design
textbooks, for example Bailey (2008) or Dean et al. (2017).

Consider then bk experimental units arranged in a k × b array to which v treatments
are to be assigned. Determining optimal row-column designs, aside from situations where
treatments can either be equally replicated in each row or equally replicated in each column
(which includes such well-known designs as Latin squares and regular Youden designs), has
proven to be a challenging task. The limited results up to about 1989 are summarized in the
monograph Shah and Sinha (1989), and from there to 2015 in Morgan (2015). There has
been little progress since.

We proceed with the standard, additive linear model with uncorrelated, equi-variable
errors, and in which the expected response arising from the unit in row l, column j is the
sum of the effect of row l, the effect of column j, and the effect of the treatment employed in
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that cell. With this model, the v×v treatment information matrix Cd for a k×b row-column
design d can be written (see, for instance, Shah and Sinha, 1989, p. 66) as

Cd = diag(rd1, . . . , rdv)−
1
k
NdN

′
d −

1
b
MdM

′
d + 1

bk
rdr
′
d (1)

where

• Nd denotes the v × b treatment-column incidence matrix whose entries ndij are non-
negative integers indicating the number of times treatment i occurs in column j,

• Md denotes the v×k treatment-row incidence matrix whose entries mdil are nonnegative
integers indicating the number of times treatment i occurs in row l,

• rd denotes the v × 1 vector with entries rdi, where rdi is the replication of treatment i
in design d (i.e. the number of experimental units to which treatment i is assigned).

The ith row sum of both Nd and Md is rdi. The matrices NdN
′
d and MdM

′
d are respectively

the column-concurrence and row-concurrence matrices for d, with entries denoted by λdii′
and µdii′ respectively. The individual entries of Cd can be displayed thusly:

cdii′ = rdiδii′ −
1
k
λdii′ −

1
b
µdii′ +

1
bk
rdirdi′ (2)

where δii′ is the Kronecker delta.

Cd is known to be symmetric and nonnegative definite with zero row and column
sums. Hence the rank of Cd satisfies r(Cd) ≤ v − 1. Here only designs with r(Cd) = v − 1
are considered. These are exactly the designs for which every contrast ∑i liτi (∑i li = 0) is
estimable, commonly termed the connected designs. For given v, b, and k, D(v, b, k) will
denote the class of all connected k × b row-column designs for v treatments.

For a given class D(v, b, k), define the replication target r by r = b bk
v
c, and so bk =

vr + p where p ∈ {0, 1, . . . , v − 1} is the plot excess, that is, the number of experimental
units available beyond that needed for equal replication. Also define λ = b r(k−1)

(v−1) c as the
concurrence target for the column component design. Then λ(v − 1) = r(k − 1) + q where
q ∈ {0, 1, . . . , v − 1} is the (column) concurrence excess for a treatment replicated r times.
In this paper we study settings D(v, b, k) for which q = 0, which is henceforth assumed,
allowing frequent use of the equality r(k − 1) = λ(v − 1).

Each row-column design d ∈ D(v, b, k) can be associated with two block designs: the
column component design dN and the row component design dM , having respective infor-
mation matrices CdN

= diag(rd1, . . . , rdv)− 1
k
NdN

′
d and CdM

= diag(rd1, . . . , rdv)− 1
b
MdM

′
d.

The assignment of treatment i in design d is said to be generalized binary in columns (rows)
if ndij ∈ {bkvc, b

k
v
c + 1} for all j = 1, . . . b (mdil ∈ {b bvc, b

b
v
c + 1} for all l = 1, . . . k).

The component block design dN (dM) is called generalized binary if the assignment of every
treatment to columns (rows) is generalized binary. A generalized binary assignment in which
the two counts are 0 and 1 is said to be binary.

Following Kiefer (1975), the treatment information matrix for a design is said to be
completely symmetric if its elements are constant on the diagonal and constant off the
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diagonal. The condition q = 0 allows the possibility that CdN
is completely symmetric,

which will play an important role in the optimality proofs in this article. When CdN
is

completely symmetric, dN will be termed a completely symmetric design, or CSD for short.

From (1), Cd can be written as

Cd = CdN
− 1
b
Md(Ik −

1
k
Jk)M ′

d (3)

≤ CdN
(4)

where “≤” in (4) is with respect to the Loewner ordering, by virtue of the fact that Md(Ik−
1
k
Jk)M ′

d is nonnegative definite. These relationships will be useful in what follows. It can
be immediately noted that for any optimality criterion respecting the Loewner ordering,
a design d whose column component design is optimal, and for which MdM

′
d − 1

k
rr′ =

Md(Ik − 1
k
Jk)M ′

d = 0, is optimal over D(v, b, k). Now Md(Ik − 1
k
Jk)M ′

d = 0 if, and only
if, mdil is constant in l for each i, so mdil = mdi (say) for i = 1 . . . , v; row-column designs
fulfilling this condition are said to be of Youden type (Das and Dey, 1990). If further mdi is
constant in i, the design is said to be row-regular. This is the basis for proving optimality of
regular Youden designs, which are row-regular row-column designs with optimal, completely
symmetric, column component designs (see pp. 66-7 of Shah and Sinha, 1989). The settings
explored in this article preclude row-regularity for designs that are equireplicate or nearly
so.

The determination of optimal row-column designs is pursued here in terms of two
distinct optimality criteria. Let zd0 = 0 < zd1 ≤ zd2 ≤ . . . ≤ zdv−1 denote the eigenvalues of
the information matrix Cd associated with d ∈ D(v, b, k). The E optimality criterion aims
to maximize the smallest positive eigenvalue zd1 of Cd. In terms of contrast variances, an
E-optimal design minimizes, over d ∈ D, the maximum of V ard(

∑̂v
i=1 liτi) over all possible

choices of normalized (∑i l
2
i = 1) contrast coefficients. The MV criterion requires minimizing,

over d ∈ D, the maximum variance over all elementary treatment contrasts τ̂i − τi′ . That is,
an MV-optimal design minimizes over d ∈ D the quantity

Υd = max
i 6=i′

V ard(τ̂i − τi′)
σ2 .

The E and MV criteria are both minimax criteria, and both criteria respect the Loewner
ordering.

This article examines row-column designs with k = 3 from the perspectives of the
E and MV optimality criteria. Section 2 develops a series of bounds that are useful in
constructing the optimality arguments. The main results are in Section 3. Concluding
discussion comprises Section 4.

2. Preliminaries

Useful lemmas, to be employed in the optimality proofs in Section 3, are established
here. At the heart of these are two results, stated first, due to M. Jacroux. For information
matrix Cd = (cdii′) define the quantity θdii′ for each i 6= i′ by θdii′ = cdii + cdi′i′ − 2cdii′ .
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From (2), θdii′ may be written as

θdii′ = rdi + rdi′ −
1
bk

[b
b∑

j=1
(ndij − ndi′j)2 + k

k∑
l=1

(mdil −mdi′l)2] + (rdi − rdi′)2

bk
(5)

Lemma 1: (Jacroux, 1982) Let d ∈ D(v, b, k) have information matrix Cd = (cdii′).

(i) If M is a subset of {1, 2, . . . , v} of size m, 1 ≤ m ≤ v − 1, then
zd1 ≤ (v/m(v −m))(∑i∈M cdii +∑

i∈M
∑
i′( 6=i)∈M cdii′);

(ii) zd1 ≤ θdii′/2 for i, i′ = 1, . . . , v (i 6= i′).

Moreover, in light of (4), d in the right-hand side of each of these two inequalities can be
replaced by dN , providing two additional (and possibly less sharp) upper bounds for zd1.

Lemma 2: (Jacroux, 1983) Let d ∈ D(v, b, k) have information matrix Cd = (cdii′). For any
i 6= i′,

(1/σ2)V ard ̂(τi − τi′) ≥
4
θdii′
≥ 4
θdN ii′

.

Proofs for Lemmas 1 and 2 may be found in the cited papers. Proofs for the lemmas
that follow appear in the appendix.

Lemma 3: A row-column design d ∈ D(v, b, 3) for which the column design is a CSD with
cd∗N ii = r(k−1)

k
for all i = 1, . . . , v satisfies

zd1 = λv

3 −
1
2b

(
a1d +

√
2a2d − a2

1d

)
where a1d = tr(Bd) and a2d = tr(B2

d) for the matrix Bd = MdM
′
d − 1

k
rdr
′
d.

Lemma 4: A row-column design d ∈ D(v, b, 3) for which rdi ≤ r − 1 for some i satisfies

θdii′ ≤
2λv
3 + 2[v(q − 1) + p]

3(v − 1) .

for some i′ 6= i.

Lemma 5: A row-column design d ∈ D(v, b, k) for which some treatment with replication r
is nonbinary in columns satisfies

θdii′ ≤
2vr(k − 1)
k(v − 1) −

2
k

+ p(k − 1)− 4
k(v − 1)

for some i 6= i′.

Lemma 6: For the row-column setting D(v, b, k) with p ≤ v − 2, let d ∈ D(v, b, k) have
rdi ≥ r for all i. If two treatments i 6= i′ with rdi = r = rdi′ have λdii′ ≤ λ− 1, then

θdii′ ≤
2(λv + q − 1)

k
.
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Lemma 7: Let d ∈ D(v, b, 3) satisfy

(i) rd1 = . . . = rd,v−p = r,

(ii) rd,v−p+1 = . . . = rdv = r + 1, and

(iii) the treatments with replication r + 1 are generalized binary in rows.

If some treatment with replication r is not generalized binary in rows, where r ≡ 1 (mod 3)
and p < (v + 3)/2, or where r ≡ 2 (mod 3), then

θdii′ ≤ 2r − 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 18]

for some i 6= i′ with i, i′ ≤ v − p.

Lemma 8: Let d ∈ D(v, b, 3) satisfy

(i) rd1 = . . . = rd,v−p = r, and

(ii) rd,v−p+1 = . . . = rdv = r + 1.

If some treatment with replication r+1 is not generalized binary in rows, where r ≡ 1 ( mod
3) and p < (v + 3)/2, or where r ≡ 2 (mod 3) and p < (v + 6)/4, then

θdii′ ≤ 2r + 1− 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 14]

for some i ≤ v − p and some i′ ≥ v − p+ 1.

3. Main Results

As stated in Section 1, design classes D(v, b, k) for which the concurrence excess is q = 0
are the focus in the theorems to follow. Optimality results for the E and MV criteria will
now be derived for the plot excess p taking the values p = 1 and p = 0. The same techniques
can be successfully applied for some larger p, but for reasons of space are not pursued here.

3.1. Designs with p = 1

Theorem 1: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess is p = 1, the concurrence excess is q = 0, and b > v + 2. If the target replication r
satisfies r ≡ 1 (mod 3) and d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a CSD with cd∗N ii = r(k−1)
k

for all i = 1, . . . , v, and

(ii) the row design of d∗ is generalized binary,
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then d∗ is E-optimal in D(v, b, 3), and any design failing either (i) or (ii) is E-inferior to d∗.
In particular, any design which is binary in columns is E-inferior to d∗.

Proof: Condition (i) implies that rd∗1 = . . . = rd∗v−1 = r and thus rd∗v = r + 1. It then
further implies that treatment v is nonbinary in columns of d∗.

For each treatment i, define the vector of row counts mdi for design d as mdi =
(mdi1,mdi2,mdi3), the ith row of Md. With appropriate labeling of treatments and order-
ing of rows, condition (ii) implies that md∗v = ( r+2

3 , r+2
3 , r−1

3 ) and so md∗i = ( r+2
3 , r−1

3 , r−1
3 )

for i = 1, . . . , v−2
3 ; md∗i = ( r−1

3 , r+2
3 , r−1

3 ) for i = v+1
3 , . . . , 2(v−2)

3 ; and md∗i = ( r−1
3 , r−1

3 , r+2
3 )

for i = 2v−1
3 , . . . , v − 1. With Md∗ so determined, write v1 = v2 = (v − 2)/3, v3 = (v + 1)/3

and v4 = 1 for the frequencies of its four distinct rows. It follows that the symmetric matrix
Bd∗ = Md∗(I3 − 1

3J3)M ′
d∗ is the partitioned block matrix with diagonal blocks 2

3Jvgvg for
g = 1, . . . , 4, and blocks −1

3Jvgvh
for g < h ≤ 3, 1

3Jvgv4 for g = 1, 2, and −2
3Jv3v4 above the

diagonal. It is now simple to calculate a1d∗ = tr(Bd∗) = 2v
3 and a2d∗ = tr(B2

d∗) = 2(v2+4)
9 , so

that by Lemma 3,
zd∗1 = λv

3 −
(v + 2)

3b .

Let d be any other design with rd1 ≤ . . . ≤ rdv. Suppose d has rdi ≤ r − 1 for some
i = 1, . . . , v. Then d is E-inferior to d∗, as by Lemma 1, and Lemma 4 with p = 1,

zd1 ≤
λv

3 + v(q − 1) + p

3(v − 1) = λv

3 −
1
3 <

λv

3 −
(v + 2)

3b = zd∗1, (6)

the last inequality due to the condition b > v + 2.

So assume d has rdi ≥ r for all i; with appropriate labeling of treatments, rdi = rd∗i
for all i. If d has some treatment with replication r nonbinary in columns, Lemmas 1 and 5
give

zd1 ≤
vr(k − 1)
k(v − 1) −

1
k

+ p(k − 1)− 4
2k(v − 1) = λv

3 −
1
3 −

1
3(v − 1) <

λv

3 −
(v + 2)

3b = zd∗1 (7)

and again d is E-inferior to d∗.

So now suppose d has treatments 1, . . . , v − 1 each binary in columns. If λdii′ ≤ λ− 1
for some i, i′ ≤ v − 1 (i 6= i′), then by Lemmas 1 and 6,

zd1 ≤
λv

3 −
1
3 <

λv

3 −
(v + 2)

3b = zd∗1 (8)

and again d is E-inferior to d∗.

Thus for d to be E-admissible, it must have rd1 = . . . = rdv−1 = r, and all treatments
replicated r times are binary in columns with λdii′ = λ for all i 6= i′ where i, i′ = 1, . . . , v−1.
If in addition treatment v is binary in columns then ∑v−1

i=1 λdvi = 2(r + 1), implying
v−2∑
i=1

v−1∑
i′=i+i

λdii′ =
v−1∑
i=1

v∑
i′=i+i

λdii′ −
v−1∑
i=1

λdvi = 3b− 2(r + 1) = (v − 2)r − 1,
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the last equality because bk = 3b = vr+ 1. Thus the average concurrence among treatments
replicated r times is

(v − 2)r − 1
(v − 1)(v − 2)/2 = (v − 2)r − 1

(v − 2)r/λ = λ− 1
(v − 2)r

so that λdii′ < λ for some i 6= i′, i, i′ < v. As shown above (see (8)), this implies d is
E-inferior to d∗, so d cannot have treatment v binary in columns.

Now cdvv ≤ cdNvv = r + 1 − (∑b
j=1 n

2
dvj) and nonbinarity of treatment v in columns

implies ∑b
j=1 n

2
dvj ∈ {r+3, r+5, r+7 . . .}. If ∑b

j=1 n
2
dvj ≥ r+5 then cdvv ≤ (r+1)−(r+5)/3 =

2(r − 1)/3 and by Lemma 1(i),

zd1 ≤
(

v

v − 1

)
cdvv = 2v(r − 1)

3(v − 1) = λv(r − 1)
3r

⇒ 3r(zd∗1 − zd1) ≥ λvr − (v + 2)r
b

− λv(r − 1) = λv − (v + 2)r
b

= λ+ 2r − (v + 2)r
b

> 0,

again invoking b > v + 2. So d must have ∑b
j=1 n

2
dvj = r + 3 ⇒ cdNvv = 2r/3 = cdN ii for

i = 1, . . . , v− 1. The same argument as in (8) implies λdvi ≥ λ for i < v and hence λdii′ ≥ λ
for all i 6= i′ ⇒ λdii′ = λ for all i 6= i′. This establishes that E-admissibility of d requires
CdN

= Cd∗N , that is, d and d∗ have identical information matrices for their column component
designs. If Cd differs from Cd∗ , it can do so only in the term MdM

′
d.

If the row design of d is generalized binary in rows then d fulfills the conditions of the
theorem, that is, d is a version of d∗. So suppose d is not generalized binary in rows. Then
a1d = ∑

i(µdii −
r2

di

k
) ≥ (2 +∑

i µd∗ii)− (∑i
r2

d∗i

k
) = a1d∗ + 2 = 2(v+3)

3 . By Lemma 3,

zd1 = λv

3 −
1
2b(a1d +

√
2a2d − a2

1d) ≤
λv

3 −
1
2ba1d ≤

λv

3 −
(v + 3)

3b <
λv

3 −
(v + 2)

3b = zd∗1,

completing the proof.

The strict inequality b > v+2, employed in equations (6) to (8), serves only to guarantee
that any design failing either condition (i) or (ii) will be E-inferior to d∗. With that note, E
optimality of d∗ also holds for b = v + 2. Following Theorem 2, it will be shown that when
b = v + 2 it is possible to find other E-optimal designs not satisfying (i) and (ii). This issue
does not arise in the MV optimality proof of Theorem 2, which otherwise covers the same
settings D(v, b, k) as in Theorem 1.

Theorem 2: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess is p = 1, the concurrence excess is q = 0, and b ≥ v + 2. If the target replication r
satisfies r ≡ 1 (mod 3) and d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a CSD with cd∗N ii = r(k−1)
k

for all i = 1, . . . , v, and

(ii) the row design of d∗ is generalized binary,
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then d∗ is MV-optimal in D(v, b, 3), and any design failing either (i) or (ii) is MV-inferior to
d∗. In particular, any design which is binary in columns is MV-inferior to d∗.

Proof: Cd∗ , as determined in the proof of Theorem 1, has generalized group divisible struc-
ture (see e.g. Srivastav and Morgan, 1998) with four groups, call them Vg for g = 1, 2, 3, 4
with |Vg| = vg. Accordingly, V ard∗ ̂(τi − τi′) depends only on group membership for i and i′.
Writing Td∗ = Cd∗ + (λ3 −

1
3b)Jvv, a generalized inverse of Cd∗ is T−1

d∗ , from which the pairwise
variances arising from d∗, displayed in Table 1, are easily found. The reader may check that
these five variances satisfy var1 < var4 < var2 < var3 < var5. For the purposes of this proof
var5 = Υd∗ is rewritten as

Υd∗ = 6
λv

[
1 + 4

λvb− (v + 2)

]
= 6

λv

[
λvb− (v − 2)
λvb− (v + 2)

]
= 2

λv
3 −

4
3

λv
λvb−(v−2)

.

Let d be any other design with rd1 ≤ . . . ≤ rdv. First suppose d has rdi ≤ r − 1 for
some i = 1, . . . , v. Assume rd1 ≤ r − 1. From Lemmas 2 and 4,

Υd ≥
2

λv
3 −

1
3
≥ 2

λv
3 −

(v+2)
3b

>
2

λv
3 −

4
3

λv
λvb−λv

>
2

λv
3 −

4
3

λv
λvb−(v−2)

= Υd∗ (9)

and therefore d∗ is MV-better than d.

Next, suppose d has rdi ≥ r for i = 1, . . . , v. Since p = 1, there are v − 1 treatments
replicated r times and one treatment replicated r + 1 times. Assume rd1 = . . . = rdv−1 = r
and rdv = r + 1.

Suppose d has some treatment with replication r nonbinary in columns. Then by the
same calculation as in (7), there is some θdii′ ≤ 2λv

3 −
2(v+2)

3b . Applying Lemma 2 as shown
in (9) gives Υd > Υd∗ . The same θ bound, and thus the same result for Υd, is found (see
(8)) if two treatments i < i′ < v are binary in columns with λdii′ ≤ λ− 1. Thus the column
component design for d must be binary in treatments 1, . . . , v−1, and it must have λdii′ ≥ λ
for any two of these v − 1 treatments.

If treatment v is binary in columns of d, then just as shown in the proof of Theorem 2,
λdii′ ≤ λ−1 for some i < i′ < v and so, as established in the preceding paragraph, Υd > Υd∗ .
If treatment v is nonbinary in columns and ∑j n

2
dvj ≥ r+ 5, then as established in the proof

Table 1: Pairwise variances for d∗ of Theorem 2

i 6= i′ 1
σ2V ard∗ ̂(τi − τi′)

i, i′ ∈ Vg, g = 1, 2, 3 var1 = 6
λv

i ∈ V1, i
′ ∈ V2 var2 = 6

λv
[1 + 3

λvb−(v−2) ]
i ∈ V1 or V2, i

′ ∈ V3 var3 = 6
λv

[1 + 3(λvb−(v−1))
(λvb−(v+2))(λvb−(v−2)) ]

i ∈ V1 or V2, i
′ ∈ V4 var4 = 6

λv
[1 + 2(λvb−3(v−1))

(λvb−(v+2))(λvb−(v−2)) ]
i ∈ V3, i

′ ∈ V4 var5 = 6
λv

[1 + 4
λvb−(v+2) ]
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of Theorem 1, cdvv ≤ 2(r − 1)/3. This yields∑v−1
i=1 λdvi
v − 1 = 3cdvv

v − 1 ≤
2(r − 1)
v − 1 = λ(v − 1)− 2

v − 1
implying that for some i < v, say i = 1, λdv1 ≤ λ− 1. Then θdv1 is

θdv1 = 2r
3 + 2(r − 1)

3 + 2λdv1

3 ≤ 4r − 1 + 2(λ− 1)
3 = 2λv − 2

3

which upon applying Lemma 2 as shown in (9) again gives Υd > Υd∗ . Thus ∑j n
2
dvj = r+ 3,

cdNvv = 2r/3, and just as for E-admissibility in the proof of Theorem 2, it follows that that
MV-admissibility of d requires CdN

= Cd∗N .

It remains to consider the row component design for d. If the row design of d is
generalized binary in rows then d fulfills the conditions of the theorem, that is, d is a version
of d∗. So suppose d is not generalized binary in rows.

First consider if treatment i, for some i ≤ v− 1, is not generalized binary in rows, but
treatment v is. Note that ∑b

j=1(ndij − ndi′j)2 = 2(r − λ) for any i < i′ < v. Lemma 7 now
says there is θdii′ for which

θdii′ ≤ 2r − 1
3b [2b(r − λ) + 18] = 2(λvb− 9)

3b .

Employing this inequality in Lemma 2,

Υd ≥
4
θdii′

≥ 6
λv

(
λvb

λvb− 9

)
= 6

λv

(
1 + 9

λvb− 9

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

Suppose treatment v is not generalized binary in rows. It has been established above
that ∑b

j=1 n
2
dvj = r+ 3, so that treatment v occurs twice in one column, and once in each of

r − 1 columns. Let treatment 1 be the treatment that appears in the block with ndvj = 2.
Then ∑b

j=1(ndvj − nd1j)2 = 2(r − λ) + 3. Lemma 8 now says

θd1v ≤ 2r+1− 1
3b [b

b∑
j=1

(ndij−ndi′j)2+14] = λ(v−1)+1− [2(r − λ) + 3]
3 −14

3b = 2(λvb− 7)
3b .

By Lemma 2,

Υd ≥
4
θdiv

≥ 6
λv

(
λvb

λvb− 7

)
= 6

λv

(
1 + 7

λvb− 7

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

Example 1: Consider these designs d1, d2 ∈ D(5, 7, 3):

d1 :
5 1 3 2 4 4 3
5 2 1 5 2 3 4
4 5 5 3 1 1 2

d2 :
4 1 1 2 5 4 3
1 2 5 3 2 3 4
5 5 3 1 4 5 2
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Design d1 satisfies the conditions of Theorems 1 and 2, and so is E-optimal and MV-optimal
in D(5, 7, 3). As discussed following the proof of Theorem 1, since b = v+2 the E optimality
may not be unique. Design d2 fails both conditions (i) and (ii) of Theorem 1, but has the
same E value as d1. Thus d2 is also E-optimal, even while being MV-inferior to d1.

Example 2: Consider this design d∗ for v = 8, b = 19, and k = 3:

1 2 3 4 5 6 7 1 3 4 5 8 8 7 2 6 1 2 7
2 3 4 5 6 7 1 8 2 8 4 5 6 1 7 3 3 4 8
4 5 6 7 1 2 3 2 8 3 8 6 1 4 5 7 5 6 8

All conditions of Theorem 1 and Theorem 2 are satisfied, so d∗ is E- and MV-optimal in
D(8, 19, 3). Any design that is binary in columns, or which is row-regular, is inferior to d∗
on both of these criteria.

The column component designs for the design in Example 2, and for d1 in Example 1,
are two instances of an infinite series of completely symmetric block designs with k = 3
constructed by Morgan and Uddin (1995). Those designs have, for each t ≥ 1, parameters

v = 3t+ 2, b = 3t2 + 3t+ 1, k = 3, r = 3t+ 1, λ = 2, p = 1, q = 0. (10)

Also, each of these block designs has cdii = r(k − 1)/k = 2r/3 for all i, so if the blocks
are arranged as columns of a 3× b row-column design, condition (i) of the theorems will be
satisfied. To satisfy condition (ii), treatments must then be ordered in each column so that
each treatment appears in each row either t or t + 1 times. Examples 1 and 2 demonstrate
that this can be done for t = 1, 2. That it can be done for all t can be proven using systems
of distinct representatives, illustrating application of a result due to Das and Dey (1989).

Lemma 9: (Das and Dey, 1989) If a block design with v treatments in b blocks of size k
has treatment replication numbers ri = kmi for integer values mi and i = 1, . . . v, then the
blocks can be arranged as columns of a k × b row-column design so that, for i = 1, . . . v,
treatment i occurs in each row mi times.

The row-column arrangement guaranteed by Lemma 9 is a Youden type design.

The Morgan and Uddin (1995) construction of CSDs with parameters (10) is divided
into four cases. One of those (their Case 2(a)) will be employed here to show how condi-
tion (ii) can be achieved; the other three cases are handled similarly. Designs in this case
comprise the subseries of (10) with t = 4w + 2 having v = 12w + 8 and r = 12w + 7.
The treatment symbols in that construction are ∞1, ∞2, and the integers (mod 12w + 6).
To apply Lemma 9, partition the blocks of this subseries into four subdesigns as shown in
Table 2. Counting replications in each of the subdesigns S1, S2, and S3 shows that, by
Lemma 9, each can can be arranged as a Youden type design on the treatments involved.
Thus taken together, these three subdesigns form a 3 × (b − (v + 1)/3) row-column design
on all v treatments that is row-regular, all treatments being replicated r − 1 times. Adding
the (v + 1)/3 columns of S4 as displayed in Table 2, for which each treatment except ∞1
appears exactly once, gives the required design satisfying condition (ii) of the theorems.

Example 2 contains the Case 2(a) design with w = 0. In that example, the first seven
columns (making a Youden design) are subdesign S1, the next nine (making a Youden type
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design) are subdesign S3, and the last three are subdesign S4. Since w = 0, subdesign S2 is
empty.

For other CSDs having block size k = 3 with plot excess p ≥ 1, to which the methods
of this article can be applied, see Morgan and Srivastav (2002).

3.2. Designs with p = 0

Theorem 3: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess p and the concurrence excess q are both zero. If d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a BIBD, and

(ii) the row design of d∗ is generalized binary,

then d∗ is E-optimal and MV-optimal in D(v, b, 3).

Proof: If r = bk/v is a multiple of 3 then d∗ is a regular GYD, for which the result is
already known. So only r = λ(v − 1)/2 which is not a multiple of 3 need be considered.
Condition (i) then implies that v is a multiple of 3, see (15) and (16) below. Write r1 = br/3c
and r2 = r1 + 1.

Letmdi = (mdi1,mdi2,mdi3). For any equireplicated d which satisfies (ii), mdil ∈ {r1, r2}
for every i and l, that is, mdi is some permutation of (r1, r1, r2) or (r1, r2, r2) as r ≡ 1 ( mod 3)
or r ≡ 2 ( mod 3). In either case, there are exactly v

3 treatments corresponding to each of the
three permutations, so that generalized binarity in rows induces a grouping of the treatments.
By “treatments in group g” is meant those i for which mdig is the distinct member of mdi,
g = 1, 2, 3. For generalized binary d, µdii′ = µ1 = r2−1

3 if i, i′ are in different groups, and
µdii′ = µ1+1 otherwise. Since the column design for d∗ is a BIBD and d∗ is generalized binary
in rows, Cd∗ has group divisble structure. In addition, Bd∗ may be written in partitioned
block form with matrices 2

3J v
3 ,

v
3

along the main diagonal and matrices −1
3J v

3 ,
v
3

along the
off-diagonal. It follows that tr(Bd∗) = 2v

3 and tr(B2
d∗) = 2v2

9 . By Lemma 3, and the fact that

Table 2: Partition of blocks for CSDs with t = 4w+2 in (10). Blocks are displayed
as rows for compactness. All integers are reduced mod (12w + 6).

Subdesign Blocks

S1 blocks of a BIBD(k = 3, λ = 1) on the v − 1 treatments ∞2 and 1, 2, . . . , 12w + 6

S2
(j, 5w+3−i+j, 5w+2+i+j) and (j, 3w+1−i+j, 3w+1+i+j)

for i = 1, 2, . . . , w and j = 1, 2, . . . , 12w + 6
S3 (∞1, i, 3w+1+i) for i = 1, 2, . . . , 12w + 6, (∞2, j, 6w+3+j) for i = 1, 2, . . . , 6w + 3.

S4 (j, 4w+2+j, 8w+4+j) for j = 1, 2, . . . , 4w + 2, and (∞1,∞1,∞2)



268 J. P. MORGAN AND SIRILUCK JERMJITPORNCHAI [Vol. 19, No. 1

r > 3 (see (15) and (16) below),

zd∗1 = λv

3 −
2

λ(v − 1) = λv

3 −
1
r
>

λv − 1
3 . (11)

Calculation of pairwise variances 1
σ2V ard∗ ̂(τi − τi′) with d∗ follows easily from the generalized

group divisible form of Bd∗ (and hence of Cd∗). They take only two values: var1 = 6
λv

, which
is the “same group” variance, and var2 = 6

λv
[1 + 3

λvb−v ], which is the “different group”
variance. This gives

Υd∗ = 6
λv

(
1 + 3

λvb− v

)
= 2

λv
3 −

λv
λvb−(v−3)

<
2

λv−1
3
. (12)

Now consider any d ∈ D(v, b, k) that does not satisfy (i). If d has rdi ≤ r−1 for some i,
then putting p = 0 in Lemma 4, there is i′ 6= i such that

θdii′ ≤
2λv
3 − 2v

3(v − 1) <
2(λv − 1)

3 . (13)

With (13), it is immediate from Lemma 1(ii) and (11), and from Lemma 2 and (12), that d
is E-inferior and MV-inferior to d∗.

Next, suppose d has rdi = r for all i but is nonbinary in columns. By Lemma 5 with
p = 0, there is i 6= i′ for which

θdii′ ≤
2λv
3 − 2

3 −
4

3(v − 1) <
2(λv − 1)

3 . (14)

The bound (14) is the same as found in (13), so again Lemmas 1(ii) and 2 show d is E-inferior
and MV-inferior to d∗.

So now suppose d is equireplicate and binary in columns, but has λdii′ < λ for some
i 6= i′, say λd12 ≤ λ − 1. Now Lemma 6 with p = 0 says θdii′ ≤ 2(λv−1)

3 and yet again
Lemmas 1(ii) and 2 show immediately that d is E-inferior and MV-inferior to d∗.

Now consider any d which satisfies (i) but not (ii). Since d is not generalized binary in
rows,

a1d =
∑
i

(µdii −
r2
di

k
) ≥ (2 +

∑
i

µd∗ii)− (
∑
i

r2
d∗i

k
) = a1d∗ + 2 = 2v

3 + 2 = 2(v + 3)
3 .

By Lemma 3,

zd1 = λv

3 −
1
2b(a1d +

√
2a2d − a2

1d) ≤
λv

3 −
1
2ba1d ≤

λv

3 −
(v + 3)

3b <
λv

3 −
1
r

= zd∗1.

Thus d∗ is E-better than d.

To complete the proof, note that by virtue of (i), ∑b
j=1(ndij − ndi′j)2 = 2(r − λ) for

every i 6= i′. Lemma 7 with p = 0 says

θdii′ ≤ 2r − 1
3b [2b(r − λ)b+ 18] = 2b(2r + λ)− 18

3b = 2(λvb− 9)
3b
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for some i 6= i′. By Lemma 2,

Υd ≥
6
λv

(
λvb

λvb− 9

)
= 6

λv

(
1 + 9

λvb− 9

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

and therefore d∗ is MV-better than d.

The BIBDs with k = 3 for which r is not a multiple of 3 are those with parameters

v = 6t+ 3, b = λv(v − 1)
6 , k = 3, r = λ(v − 1)

2 , λ ≡ 1 or 2 (mod 3), (15)

and those with parameters

v = 6t, b = λv(v − 1)
6 , k = 3, r = λ(v − 1)

2 , λ ≡ 2 or 4 (mod 6), (16)

and any t ≥ 1. All of these designs are known (Hanani, 1961). Invoking Theorem 3.2
of Agrawal (1966) (also see Chai, 1998), they can all be arranged as row-column designs
satifying condition (ii) of Theorem 3. Thus all produce row-column designs that are E-
optimal and MV-optimal. Moreover, as can be seen in the proof, these designs are superior,
with respect to both of these optimality criteria, to any design failing either condition (i)
or (ii) of Theorem 3.

Example 3: The two designs shown here:
1 1 3 3 4 2 2 5 5 6
4 2 1 1 6 3 3 6 4 5
2 5 5 6 1 4 6 2 3 4

and
1 1 5 2 9 6 8 3 3 2 4 7
9 4 1 6 7 4 2 8 5 3 5 6
3 7 8 1 5 9 9 4 6 7 2 8

are E-optimal and MV-optimal in D(6, 10, 3) and D(9, 12, 3), respectively.

4. Discussion

An often employed property in determining optimal designs is maximal trace of the
information matrix over the class of competing designs. The designs shown here to be E-
optimal and MV-optimal do not have this property. The upper bound for tr(Cd), achieved by
Youden type designs with binary column components, is 2b. Designs d∗ satisfying Theorems 1
and 2 have tr(Cd∗) = 2b− 2(v+ b)/3b, and those for Theorem 3 have tr(Cd∗) = 2b− (2v/3b).
All designs satisfying any of Theorems 1 to 3 are superior to any competing, maximal
trace design. Indeed, they are superior to any competing design having larger trace, be that
maximal or not. This is a property, see Kiefer (1975), shared with the nonregular generalized
Youden designs, which also enjoy optimality properties without being of Youden type. The
Youden designs are, however, binary or generalized binary in both rows and columns, while
the designs satisfying Theorems 1 and 2 have nonbinarity in columns.
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APPENDIX

A. Proof of Lemma 3

Proof: From (3), the information matrix Cd for design d is

Cd = CdN
− 1
b
Bd

whereBd = Md(I3− 1
3J3)M ′

d is nonnegative definite. By assumption, CdN
has v−1 eigenvalues

equal to λv
3 . Since CdN

is completely symmetric, and since Bd and CdN
each have zero row

sums, it follows that Cdu = λv
3 u− 1

b
Bdu, where u is any eigenvector of Bd satisfying u′1 = 0.

Thus the nonzero eigenvalues of Cd are λv
3 −

1
b
ξi where ξd1 ≥ ξd2 ≥ . . . ≥ ξd,v−1 are the

eigenvalues of Bd corresponding to eigenvectors u as identified above.

Next, since Bd is nonnegative definite, and since r(Bd) ≤ r(I3 − 1
3J3) = 2, it follows

that ξdi = 0 for i ≥ 3.

Write a1d = tr(Bd) = ξd1+ξd2 and a2d = tr(B2
d) = ξ2

d1+ξ2
d2. Solving these two equations

for the eigenvalues in terms of the trace terms gives

ξd1 = 1
2[a1d +

√
2a2d − a2

1d] and ξd2 = 1
2[a1d −

√
2a2d − a2

1d].

so that zd1 = λv
3 −

ξd1
b

as claimed.

B. Proof of Lemma 4

Proof: For any d ∈ D(v, b, k) (for any k ≥ 2),

θdii′ ≤ θdN ii′ = cdN ii + cdN i′i′ − 2cdN ii′

= rdi −
λdii
k

+ rdi′ −
λdi′i′

k
+ 2λdii′

k
(17)

≤ k − 1
k

(rdi + rdi′ +
2λdii′
k − 1), (18)

the last inequality because λdii ≥ rdi and λdi′i′ ≥ rdi′ . Now write θ̄di = ∑
i′ 6=i θdii′/(v − 1).

Then under the conditions of the lemma, setting k = 3,

θ̄di ≤
2

3(v − 1)
∑
i′ 6=i

(rdi + rdi′ + λdii′) ≤
2

3(v − 1)[(v − 1)rdi + (vr + p− rdi) + 2rdi]

≤ 2
3(v − 1)[v(r − 1) + (vr + p)] = 2

3(v − 1)[λv(v − 1) + v(q − 1) + p)].

Since for some i′ 6= i, θdii′ ≤ θ̄di, the result is proven.

C. Proof of Lemma 5

Proof: Suppose treatment i having rdi = r is nonbinary in columns. So λdii ≥ r + 2 and
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∑
i′ 6=i λdii′ ≤ r(k − 1)− 2. Then from (17),

v∑
i′ 6=i

θdii′ ≤
v∑
i′ 6=i

[rdi −
λdii
k

+ rdi′ −
λdi′i′

k
+ 2λdii′

k
]

≤ (v − 1)r − (r + 2)
k

+ (k − 1
k

)[(v − 1)r + p] + 2[r(k − 1)− 2]
k

= 1
k
{2vr(k − 1)− 2(v − 1) + [p(k − 1)− 4]} .

Since for some i′, θdii′ ≤ θ̄di. = ∑v
i′ 6=i θdii′/(v − 1), the result follows.

D. Proof of Lemma 6

Proof: From (18),

θdii′ ≤
k − 1
k

(rdi + rdi′ +
2λdii′
k − 1) ≤ 2

k
[r(k − 1) + λ− 1].

E. Proof of Lemma 7

Proof: For any two treatments i 6= i′ having replication r, equation (5) says

θdii′ = 2r − 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 3
3∑
l=1

(mdil −mdi′l)2].

It will be shown that for some such i 6= i′, ∑3
l=1(mdil −mdi′l)2 ≥ 6, establishing the result.

This is done in two cases, depending on the r (mod 3) value.

Case 1: r ≡ 1 (mod 3) and p < (v + 3)/2.

Suppose treatment 1 is not generalized binary in rows. Then without loss of generality
(WLOG), md11 ≤ (r − 4)/3. There are two subcases to consider.

Case 1(a): mdi1 ≥ (r + 2)/3 for some i ≤ v − p. So take md21 ≥ (r + 2)/3 and write
mi(1) = ∑3

l=2 mdil/2. We have

m1(1) ≥
r − r−4

3
2 = r + 2

3 and m2(1) ≤
r − r+2

3
2 = r − 1

3

so that
3∑
l=1

(md1l −md2l)2 ≥ (md11 −md21)2 + 2(m1(1) −m2(1))2

≥
(

(r − 4)
3 − (r + 2)

3

)2

+ 2
(

(r + 2)
3 − (r − 1)

3

)2

= 6.
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Case 1(b): mdi1 ≤ (r − 1)/3 for i = 2, . . . , v − p. Then
v∑
i=1

mdi1 = b = vr + p

3 ≤ r − 4
3 + (v − p− 1)r − 1

3 +
v∑

i=v−p+1
mdi1

⇒
v∑

i=v−p+1
mdi1 ≥

v + pr + 3
3

Also, since treatments i > v− p are generalized binary in rows, ∑v
i=v−p+1 mdi1 ≤ p(r+ 2)/3.

Hence we must have

p(r + 2)/3 ≥ v + pr + 3
3 ⇔ p ≥ v + 3

2

contradicting the requirement on p and thus showing that Case 1(b) cannot occur.

Case 2: r ≡ 2 (mod 3)

Suppose treatment 1 is not generalized binary in rows. Then WLOG md11 ≥ (r+ 4)/3.
Again there are two subcases to consider.

Case 2(a): mdi1 ≤ (r− 2)/3 for some i ≤ v− p. So take md21 ≤ (r− 2)/3 and with the
notation employed in Case 1(a),

m1(1) ≤
r − r+4

3
2 = r − 2

3 and m2(1) ≥
r − r−2

3
2 = r + 1

3
so that

3∑
l=1

(md1l −md2l)2 ≥ (md11 −md21)2 + 2(m1(1) −m2(1))2

≥
(

(r + 4)
3 − (r − 2)

3

)2

+ 2
(

(r − 2)
3 − (r + 1)

3

)2

= 6.

Case 2(b): mdi1 ≥ (r + 1)/3 for i = 2, . . . , v − p. Since treatments i > v − p are
generalized binary in rows, mdi1 = (r + 1)/3 for i = v − p+ 1, . . . , v. Thus

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
r + 4

3 + (v − p− 1)r + 1
3 + p

(r + 1)
3

]
= vr + p+ 3,

a contradiction, showing that Case 2(b) cannot occur.

F. Proof of Lemma 8

Proof: For any two treatments i 6= i′ having replication r and r+1 respectively, equation (5)
says

θdii′ = 2r + 1− 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 3
3∑
l=1

(mdil −mdi′l)2 − 1].
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It will be shown that for some such i 6= i′, ∑3
l=1(mdil −mdi′l)2 ≥ 5, establishing the result.

This is done in two cases, depending on the r (mod 3) value.

Case 1: r ≡ 1 (mod 3) and p < (v + 3)/2.

Suppose treatment v is not generalized binary in rows. Then WLOG mdv1 ≥ (r+5)/3.
There are two subcases to consider.

Case 1(a): mdi1 ≤ (r − 1)/3 for some i ≤ v − p. So take md11 ≤ (r − 1)/3 and write
mi(1) = ∑3

l=2 mdil/2. We have

m1(1) ≥
r − r−1

3
2 = 2r + 1

6 and mv(1) ≤
r − r+5

3
2 = r − 1

3
so that

3∑
l=1

(md1l −mdvl)2 ≥ (md11 −mdv1)2 + 2(m1(1) −mv(1))2

≥
(

(r − 1)
3 − (r + 5)

3

)2

+ 2
(

(r − 1)
3 − (2r + 1)

6

)2

= 41
2 ,

and hence the integer ∑3
l=1(md1l −mdvl)2 is at least 5.

Case 1(b): mdi1 ≥ (r + 2)/3 for i = 1, . . . , v − p. Here p must satisfy p ≥ 2, for
otherwise,

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
(v − 1)r + 2

3 + (r + 5)
3

]
= vr + 2v + 3,

a contradiction. It is now claimed that mdi1 ≤ r−4
3 for some i ≥ v−p+1, for if not, employing

the condition p < (v + 3)/2,

0 = 3[(
v∑
i=1

mdi1)− b] = 3
[
(v − p)r + 2

3 + (p− 1)(r − 1)
3 + (r + 5)

3 − (vr + p)
3

]

= 2v − 4p+ 6 > 2v − 4v + 3
2 + 6 = 0,

another contradiction. Hence WLOG mdv−1,1 ≤ (r − 4)/3, so that with the same notation
as in Case 1(a),

m1(1) ≤
r − r+2

3
2 = r − 1

3 and mv−1(1) ≥
r + 1− r−4

3
2 = 2r + 7

6 .

Consequently,
3∑
l=1

(md1l −mdv−1,l)2 ≥ (md11 −mdv−1,1)2 + 2(m1(1) −mv−1(1))2

≥
(

(r + 2)
3 − (r − 4)

3

)2

+ 2
(

(r − 1)
3 − (2r + 7)

6

)2

= 81
2 .
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Case 2: r ≡ 2 (mod 3)

Suppose treatment v is not generalized binary in rows. Then WLOG mdv1 ≥ (r+4)/3.
Again there are two subcases to consider.

Case 2(a): mdi1 ≤ (r− 2)/3 for some i ≤ v− p. So take md11 ≤ (r− 2)/3 and with the
notation employed in Case 1(a),

m1(1) ≥
r − r−2

3
2 = r + 1

3 and mv(1) ≤
r + 1− r+4

3
2 = 2r − 1

6
so that

3∑
l=1

(md1l −mdvl)2 ≥ (md11 −mdv1)2 + 2(m1(1) −mv(1))2

≥
(

(r − 2)
3 − (r + 4)

3

)2

+ 2
(

(r + 1)
3 − (2r − 1)

6

)2

= 41
2

implying ∑3
l=1(md1l −mdvl)2 ≥ 5.

Case 2(b): mdi1 ≥ (r+ 1)/3 for i = 1, . . . , v− p. As in Case 1(b), p must satisfy p ≥ 2,
for otherwise

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
(v − 1)r + 1

3 + (r + 4)
3

]
= vr + v + 3,

a contradiction. It is now claimed that mdi1 ≤ r−5
3 for some i ∈ {v − p+ 1, . . . , v − 1}, for if

not, employing the condition p < (v + 6)/4,

0 = 3[(
v∑
i=1

mdi1)− b] = 3
[
(v − p)r + 1

3 + (p− 1)(r − 2)
3 + (r + 4)

3 − (vr + p)
3

]

= v − 4p+ 6 > v − 4v + 6
4 + 6 = 0,

another contradiction. Hence WLOG mdv−1,1 ≤ (r − 5)/3, so that with the same notation
as in Case 1(a),

m1(1) ≤
r − r+1

3
2 = 2r − 1

6 and mv−1(1) ≥
r + 1− r−5

3
2 = r + 4

3 .

Consequently,
3∑
l=1

(md1l −mdv−1,l)2 ≥ (md11 −mdv−1,1)2 + 2(m1(1) −mv−1(1))2

≥
(

(r + 1)
3 − (r − 5)

3

)2

+ 2
(

(2r − 1)
6 − (r + 4)

3

)2

= 81
2 .


