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Abstract 

The USDA triangle is the most widely used model for soil texture classification. The 

problem with USDA triangle model was, it needs critical analysis for identification of soil 

textural class. To simplify the soil textural class prediction process the USDA triangle model 

was automated using finite state machine technique. The experimental results exhibited the 

equivalence between USDA triangle and automated soil textural classification model. The 

proposed automated model is efficient, reliable and user-friendly for prediction of soil 

textural class. 
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1. Introduction 

 

Soil includes supplements, water, minerals and micro-organism, which gives living 

environment to all plants. Jha and Ahmad (2018). The dirt quality varies overtime due to 

changes in properties. Karlen et al. (2003), Ghosh et al. (2017), Doran et al. (1999), Rajan et 

al. (2016). The organic and physical property of soil has immense impact on fertility. 

Schoenholtz et al. (2000), Crittenden and de Goede (2016). Soil fertility is the ability to give 

supplements to the yield development. Peigne et al. (2017). The poor soil surface influences 

hydro coherent and biochemical procedures. Moncada et al. (2017). Soil properties variation 

has high effect on irrigation management. The dirt properties and land suitability are integral 

factor for structuring water system frameworks. Cho et al. (2016). Artificial Intelligence 

approaches are efficiently used for soil classification. Wu et al. (2018), Sirsat et al. (2017). 

The dirt texture has high impact on tillage practices, plant nutrients and liming application. 

Jovic et al. (2019). Modeling soil classes play crucial role in irrigation system water 
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productivity. Zeng et al. (2016). The soil classification has long history, wherein the USDA 

triangle model is the widely used model worldwide. Hartermink (2015). The objective of the 

proposed study is automation of USDA triangle model. The finite state machine (FSM) 

approach is most widely used technique for automation of multidiscipline theoretical 

concepts. In the proposed model the USDA triangle model is automated and also retained the 

logical equivalence of manual approach over soil texture classification. In USDA triangle 

model, for many cases there are multiple transitions for a same sand, silt or clay fraction 

value, hence we have chosen non-deterministic finite state machine to design automated 

framework of USDA triangle soil texture classification. 

 

2. Materials and Methods 

The USDA triangle soil texture model and FSM concepts are integrated to design soil 

texture automation framework. An input string is passed to the model one character at a 

time, in which the model considers the current state and the new character and chooses the 

next state. In FSM model one of the states is designated as start state and consists of one or 

more final states. Final or accepting states are represented using double circle. In FSM 

model, if it runs out of the input and halts at final state then it accepts the input string 

otherwise, it rejects. The number of steps FSM executes is exactly equal to number of 

characters present in the string. The FSM has two variants, Non-Deterministic Finite State 

Machine (NDFSM) and Deterministic Finite State Machine (DFSM). In NDFSM, there will 

be multiple moves for one input symbol, the behavior is non-deterministic. In this section the 

USDA triangle model represented in Figure 1 is automated using NDFSM model. 

Groenendyket al. (2015).  

 

 

 
 

Figure 1: USDA triangle soil textural classification model 

The sand, silt and clay fraction threshold values of twelve USDA triangle model 

classes are considered to identify the input parameters for NDFSM framework. The NDFSM 

model variables are defined in Table 1. 
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Table 1: Preprocessing of USDA triangle soil texture data to fit into NDFSM 

 

Sand 

Fraction 

(%) 

Sand Input 

Variables 

Silt 

fraction 

(%) 

Silt Input 

Variables 

Clay 

fraction 

(%) 

Clay Input 

Variables 

0-20 a1 0-15 b1 0-7 c1 

20-23 a2 15-20 b2 7-10 c2 

23-42 a3 20-28 b3 10-12 c3 

42-45 a4 28-30 b4 12-15 c4 

45-50 a5 30-40 b5 15-20 c5 

50-52 a6 40-50 b6 20-27 c6 

52-65 a7 50-52 b7 27-35 c7 

65-70 a8 52-60 b8 35-40 c8 

70-80 a9 60-73 b9 40-55 c9 

80-85 a10 73-80 b10 55-60 c10 

85-90 a11 80-87 b11 60-100 c11 

90-100 a12 87-100 b12 - - 

 

2.1.1. Design of automated model for soil texture classification using NDFSM 

 

The NDFSM approach is one of easiest method of finite automata used for designing 

abstract machines. In the proposed model automated soil texture classification model is 

designed using NDFSM. NDFSM is formally defined as set of five attributes which are 

described in the following section for USDA triangle model.  

 

NDFSM = {S, Σ, F, s0, δ} 

States (S): {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, 

s20,  s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, s32, s33, s34}.  

Start State is s0 and ∈ S.  

A state is a circumstance of a framework relying upon past sources of info and causes a 

response on current information sources. States indicate the step by step procedure for soil 

textural class identification based on the sand, silt and clay fraction input. Suppose if sand 

fraction is 85-100%, silt fraction is 0-15% and clay fraction is 0-10% then in the FSM model 

state transitions takes place in the path s0->s1->s2->s3. The state s0 is the initial state, s1 

and s2 are intermediate states and s3 is the final state, which represents sand soil textural 

class. Suppose if sand fraction is 70-90%, silt fraction is 0-30% and clay fraction is 0-15% 

then in the FSM model state transitions takes place in the path s0->s4->s5->s6. The state s0 

is the initial state, s4 and s5 are intermediate states and s6 is the final state, which represents 

loamy sand textural class. Similarly for all the 12 soil  texture classes there are different state 

transition paths based on the sand, silt and clay fraction values which are represented in 

Figure 2.  

Input Alphabets (Σ): {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b1, b2, b3, b4, 

b5, b6, b7, b8, b9, b10, b11, b12, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11}.  The sand 

fraction values are represented using the template “ai”, in which the symbol ‘a’ represents the 

sand fraction and ‘i’ represents the parameter number. The parameter number is assigned 
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based on the sand fraction threshold values of USDA triangle model soil textural classes. 

Suppose if sand fraction value is 0-20% then the corresponding input parameter is mapped as 

“a1”. Suppose if sand fraction value is 20-23% then the corresponding input parameter is 

mapped as “a2”. Likewise, for all the unique sand fraction range the input parameters are 

assigned, which are reported in Table 1. 

 

The silt fraction values are represented using the template “bi”, in which the symbol ‘b’ 

represents the silt and ‘i’ represents the parameter number. The parameter number is assigned 

based on the silt fraction threshold values of USDA triangle model soil textural classes. 

Suppose if silt fraction value is 0-15% then the corresponding input parameter is mapped as 

“b1”. Suppose if silt fraction value is 15-20% then the corresponding input parameter is 

mapped as “b2”. Likewise, for all the unique silt fraction range the input parameters are 

assigned, which are reported in Table 1.  

 

The clay fraction values are represented using the template “ci”, in which the symbol 

‘c’ represents the clay and ‘i’ represents the parameter number. The parameter number is 

assigned based on the clay fraction threshold values of USDA triangle model soil textural 

classes. Suppose if clay fraction value is 0-7% then the corresponding input parameter is 

mapped as “c1”. Suppose if clay fraction value is 7-10% then the corresponding input 

parameter is mapped as “c2”. Likewise, for all the unique clay fraction range the input 

parameters are assigned, which are reported in Table 1. 

 

Final States (F): {s3, s6, s9, s12, s15, s18, s21, s24, s26, s29, s31, s34} 

In USDA triangle model there are 12 soil texture classes accordingly in FSM model 12 

final states are defined. Each final state represents a soil texture class. The state “s3” 

represents sand class, “s6” represents loamy sand class, “s9” represents sandy loam, “s12” 

represents loam, “s15” represents silty loam, “s18” represents silt, “s21” represents sandy 

clay loam, “s24” represents clay loam, “s26” represents silty clay loam, “s29” represents 

sandy clay, “s31” represents silty clay and “s34” represents clay soil texture. For all valid 

input patterns the FSM model halts at one of the final state based on sand, silt and clay 

fraction values. 

 

Transition functions (δ): It maps from S (state) × Σ (Input symbol) = S (States), the 

outcome of transition function can have set of states in NDFSM}.In the following section the 

NDFSM model is designed for soil texture classification considering the transition functions 

represented in Table 2. 
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Figure 2: USDA triangle automated model for soil textural classification 

 

Transition functions of proposed NDFSM model are highlighted in the following 

section over all the input symbols.  For each state the possible movements on all the input 

parameters are represented using transition function. Suppose if the input comprises of sand 

fraction 91% then form start state s0 on input “a12” FSM moves to state “s1”, followed by 

suppose if silt fraction is 5% then from state s1 on input “b1” FSM moves to state “s2” and 

followed by suppose if clay fraction is 6% then from state “s2” on input “c1” FSM moves to 

state “s3” and the corresponding input pattern is accepted as sand soil texture class.  

Table 2: Transition functions defined for automated soil texture classification 

 

Transition functions for states 

s0,s1,s2,s4,s5,s6,s7 

Transition functions 

for states 

s8,s10,s11,s13,s14 

Transition functions 

for states 

s16,s17,s19,s20,s22 

Transition functions 

for states 

s23,s25,s27,s28, 

s30,s31,s32,s33 

Transitions from state s0: 

(s0, a1) = (s13, s16, s32) 

(s0, a2) = (s13, s19, s32) 

(s0, a3) = (s10, s13, s19, s32) 

(s0, a4) = (s7, s10, s13, s19, 

s32) 

(s0, a5) = (s7, s10, s13, s22, 

s27) 

(s0, a6) = (s7, s10, s22, s27) 

(s0, a7) = (s7, s22, s27) 

(s0, a8) = (s7, s22) 

(s0, a9) = (s4, s7, s22) 

(s0, a10) = (s4, s7) 

Transitions from 

state s8:  

(s8, c1) = (s9) 

(s8, c2) = (s9) 

(s8, c3) = (s9) 

(s8, c4) = (s9) 

(s8, c5) = (s9) 

Transitions from 

state s10:  

(s10, b4) = (s11) 

(s10, b5) = (s11) 

(s10, b6) = (s11) 

Transitions from 

Transitions from 

state s16: 

 (s16, b11) = (s17) 

(s16, b12) = (s17) 

(s16, b6) = (s25) 

(s16, b7) = (s25) 

(s16, b8) = (s25) 

(s16, b9) = (s25) 

(s16, b6) = (s30) 

(s16, b7) = (s30) 

(s16, b8) = (s30) 

Transitions from 

state s17:  

Transitions from state 

s23:  

(s23, c6) = (s24) 

(s23, c7) = (s24) 

Transitions from state 

s25:  

(s25, c7) = (s26) 

(s25, c8) = (s26) 

Transitions from state 

s27:  

(s27, b1) = (s28) 

(s27, b2) = (s28) 

Transitions from  



260 PRADEEP H.K. ET AL. [Vol. 19, No. 2 

 

3. Results and Discussions 

 

An analysis has been planned to scrutinize 12 classes in USDA soil textural triangle and 

its soil fraction ranges and developed a soft computing model to arrive at textural class. The 

objective of the proposed work is automation of USDA triangle soil texture classification 

concept using NDFSM. The data set comprises of 5000 records, in which each sample has 

sand, silt and clay particle size distribution. The summation of all three parameters particle 

size must be exactly 100 for all input samples. The 70% data was used for training, 20% data 

was used for testing and 10% data was used for validation. The testing and validation phase 

of experiment results exhibited the equivalence between USDA triangle model and FSM 

based automated software model. The model has been traced for many observed input 

patterns using JFALP. Rodger and Gramond (1998).The validation phase of the NDFSM soil 

texture classification model also obtained equivalence with USDA triangle over soil texture 

classification. 

 

(s0, a11) = (s1,s4) 

(s0, a12) = (s1) 

Transitions from state s1: 

(s1, b1) = (s2) 

Transitions from state s2:  

(s2, c1) = (s3) 

(s2, c2) = (s3) 

Transitions from state s4:  

(s4, b1) = (s5) 

(s4, b2) = (s5) 

(s4, b3) = (s5) 

(s4, b4) = (s5) 

Transitions from state s5:  

(s5, c1) = (s6) 

(s5, c2) = (s6) 

(s5, c3) = (s6) 

(s5, c4) = (s6) 

Transitions from state s7: 

(s7, b1) = (s8) 

(s7, b2) = (s8) 

(s7, b3) = (s8) 

(s7, b4) = (s8) 

(s7, b5) = (s8) 

(s7, b6) = (s8) 

 

state s11:  

(s11, c2) = (s12) 

(s11, c3) = (s12) 

(s11, c4) = (s12) 

(s11, c5) = (s12) 

(s11, c6) = (s12) 

Transitions from 

state s13:  

(s13, b7) = (s14) 

(s13, b8) = (s14) 

(s13, b9) = (s14) 

(s13, b10) = (s14) 

(s13, b11) = (s14) 

Transitions from 

state s14: 

 (s14, c1) = (s15) 

(s14, c2) = (s15) 

(s14, c3) = (s15) 

(s14, c4) = (s15) 

(s14, c5) = (s15) 

(s14, c6) = (s15) 

 

(s17, c1) = (s18) 

(s17, c2) = (s18) 

(s17, c3) = (s18) 

Transitions from 

state s19:  

(s19, b2) = (s20) 

(s19, b3) = (s20) 

(s19, b4) = (s20) 

(s19, b5) = (s20) 

(s19, b6) = (s20) 

(s19, b7) = (s20) 

Transitions from 

state s20:  

(s20, c7) = (s21) 

(s20, c8) = (s21) 

Transitions from 

state s22: 

(s22, b1) = (s23) 

(s22, b2) = (s23) 

(s22, b3) = (s23) 

 

 

state s28:  

(s28, c8) = (s29) 

(s28, c9) = (s29) 

Transitions from state 

s30: 

(s30, c9) = (s31) 

(s30, c10) = (s31) 

Transitions from state 

s32: 

(s32, b1) = (s33) 

(s32, b2) = (s33) 

(s32, b3) = (s33) 

(s32, b4) = (s33) 

(s32, b5) = (s33) 

Transitions from state 

s33: 

(s33, c9) = (s34) 

(s33, c10) = (s34) 

(s33, c11) = (s34) 
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Figure 3: NDFSM model step by state tracing over the sand fraction value “a7” 

 

The input pattern “a7b2c9” was traced using Java Formal Languages and Automata 

Package (JFLAP), in which the state transitions are observed over the sand fraction input 

“a7”. The transitions indicate the possible movements from state s0 over the input “a7” are 

s7, s22 and s27 which are highlighted in Figure 3. 
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Figure 4: NDFSM model step by state tracing over the silt fraction input “b2” 

 

The input pattern “a7b2c9” was traced using JFLAP, in which the state transitions are 

observed over sand fraction input “a7” followed by the silt fraction “b2”. The transitions 

indicate the possible movements over the input “a7b2” are s8, s23 and s28 which are 

highlighted in Figure 4. 

 

 

 
 

Figure 5: NDFSM model step by state tracing over the input symbol ‘c9’ 

 

The input pattern “a7b2c9” was traced using JFLAP, in which the state transitions are 

observed over sand fraction input “a7” followed by the silt fraction “b2”and followed by 

clay fraction “c9”. The transitions indicate the possible movements over the input “a7b2c9” 

are s29 which is final state highlighted in Figure 5 and represents sandy clay texture. Initially 

the execution starts from start state s0 over the input symbol “a7”, from s0 the control moves 
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to s7, s27 and s22 because from s0 there are transitions to all the above mentioned states on 

the input symbol “a7”. Further, from state s7 on input symbol “b2” the control moves to state 

s8, from state s22 on input symbol ‘b2’ control moves to state s23 and from state s27 it 

moves to state s28 over the input “b2”. Finally, the transitions are checked from the states s8, 

s23 and s28 over the input symbol “c9”, wherein only the state s28 has transition to the state 

s29. The state s29 is the accepting state because it’s represented using double circle and it 

accepts the input pattern and predicts the soil texture as Sandy clay for the input “a7b2c9”. 

The same pattern is also traced using state by state execution method, in which the path 

obtained is s0->s27->s28->s29 and the corresponding process is represented in Figure 6. 

Automated model has been validated considering soil textural data set of Jangamakotte and 

Bhaktarahallipedonds of Kolar district, Karnataka, India. Rajan et al. (2014). 

 

 

 
 

Figure 6: NDFSM model state by state tracing over the input pattern “a7b2c9” 

 

 

The input pattern “a9b9c9” was tested using automated model which is represented in Figure 

7. 
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Figure 7: The input pattern “a9b9c9” was tested using automated model 

 

The symbol “a9” of input pattern represents the sand fraction range as 70-80% and the 

symbol “b9” of input pattern represents the silt fraction range as 60-73% and also the symbol 

“c9” of input pattern represents clay fraction as 40-55%. Suppose if we consider the sample 

value of sand fraction as 71%, silt fraction as 61% and also clay fraction as 41%, then 

summation of all there particles size would be 173. For any soil texture sample the 

summation of sand, silt and clay fraction size must be exactly 100 otherwise the input sample 

is considered as invalid. The automated model rejected sample input is represented in Figure 

8.  

 

 
 

Figure 8: The input pattern “a9b9c9” was rejected by automated model 
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Additionally, multiple soil profile data records can be loaded and predicted at the same time 

using JFLAP tool and the corresponding details are represented in Figure 9. 

 

 
 

Figure 9: Validation results of automated NDFSM soil texture classification model 

 

4. Conclusion 

 

In this paper the USDA Triangle soil texture classification model is automated using 

the proposed Non-Deterministic Finite State Machine (NDFSM). The experimental results of 

NDFSM model exhibited the logical equivalence with USDA triangle model during the 

testing and validation phase over soil texture classification. The NDFSM soil texture 

classification model was validated using laboratory tested soil profile dataset. For all the 

validated patterns the predicted texture of NDFSM model was same as USDA triangle soil 

texture classification. The proposed automated model simplifies the job of soil texture class 

prediction. 
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