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Abstract
Split-plot designs are widely used in agricultural experiments because of its ability

to allocate different factors to plots of different sizes. In standard split-plot designs, main
plot treatments are allocated either in a completely randomized design or in a randomized
complete block design and subplot treatments are allocated within each main plot. In this
paper, we consider split-plot designs where main plot treatments are allocated in a connected
incomplete block design. We propose a method of construction and present a catalogue of
such designs. We also propose a method of analysis of such split-plot designs. We have
implemented proposed construction and analysis methods using R language.
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Prologue

Today, we are all united in our desire to pay our respect to Late Prof. Calyampudi
Radhakrishna Rao. Prof. Rao, an Oracle in the field of Statistics, left an indelible mark on
the fields of statistics, mathematics, and scientific research worldwide. His groundbreaking
contributions have influenced diverse areas, including economics, genetics, anthropology, and
medicine. Rao received numerous accolades, including the US National Medal of Science in
2002, and was awarded the International Prize in Statistics in 2023 - a distinction often
likened to the ‘statistics’ equivalent of the Nobel Prize. His legacy continues to inspire
generations, and he remains one of the most influential statisticians of all time. It gives us
immense pleasure to know that the Society of Statistics, Computer and Applications has
decided to bring out a Special Issue of the Statistics and Applications in memory of Late
Prof. C R. Rao. This paper is a tribute in honour and loving memory of Late Prof. C R
Rao who had a strong bondage with ICAR-Indian Agricultural Statistics Research Institute
(ICAR-IASRI), New Delhi and the Indian Society of Agricultural Statistics. He visited the
Institute during 2001 to receive Sankhyiki Bhusan Title conferred upon him by the Indian
Society of Agricultural Statistics. His keynote address on ‘Has Statistics a Future ? If So, in

Corresponding Author: Rajender Parsad
Email: rajender.parsad@icar.gov.in

http://www.ssca.org.in/journal.html


244
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

B. N. MANDAL, RAJENDER PARSAD AND SUKANTA DASH [Vol. 22, No. 3

What Form?’ during the 60th Annual Conference of Indian Society of Agricultural Statistics
and International Conference on Statistics and Informatics organized by ICAR-IASRI, New
Delhi was published in the Journal of the Indian Society of Agricultural Statistics. The paper
had set the tone for the requirement of transformation in Statistics in the era of Information
and Communication Technology and Big Data. He has made monumental contributions to
Design of Experiments. We have also prepared a Technical Bulletin entitled ‘CR Rao’s Life
Sketch and its Influence on Designing of Experiments with a special reference to Agricultural
Sciences’ available at http://krishi.icar.gov.in/jspui/handle/123456789/41295.

By giving us an opportunity to contribute to the Special Issue, we have been given
a chance to say thank you, Prof Rao, for paving the way and developing the playground of
Statistics where all statisticians like us are working. We express our profound thankfulness
to the Guest Editors of this Special Issue and the Chair Editor of Statistics and Applications
for giving this opportunity to contribute in such an invaluable Special Issue.

1. Introduction

A split-plot design is a special kind of design in which two factors A and B with
m and s levels, respectively, are allocated such that m levels of factor A (also called main
plot treatments) are allocated in main plots using a suitable design and s levels of factor B
(also called subplot treatments) are allocated to s smaller subplots within each main plot.
These designs were originally developed by Fisher (1925). Popular choice of suitable design
for levels of factor A is either a completely randomized design or a randomized complete
block design. In a split-plot design, the main effect of B and interaction AB are estimated
with higher precision and main effect of A are estimated with lesser precision. The main
advantage of a split plot design is that the design can accommodate two different plot sizes
for two different factors and is, thus, used in many agricultural and other experiments where
one of the factor requires comparatively bigger plot size than the other factor. For example,
consider an experiment involving irrigation methods (factor A) and fertilizer doses (factor B).
It is possible to apply fertilizer doses in smaller plots but application of irrigation methods
require bigger plots. So one can apply irrigation methods to bigger plots first and then
each bigger plot is subdivided into smaller plots for application of different fertilizer doses.
Other such experiments include study of tillage systems (factor A) and various management
practices such as doses of fertilizer, pesticides etc. as factor B. Split plot designs are adopted
in all such experiments where it is not practical to apply both the levels of factor A and B
to plots of same size.

In certain situations it may not be possible to allocate all the m levels of factor A
in a randomized complete block design and the number of main plots in each block may
be restricted to k such that k < m. When m is moderately large, then it may not be
possible to maintain homogeneity within the blocks with m main plots as these plots are
bigger in size. Hence, it is advisable to use lesser number of main plots in such cases and as
a result, an incomplete split-plot designs with blocks being incomplete with respect to main
plot treatments is preferable. Robinson (1970) pioneered the idea of incomplete split-plot
designs in which he arranged the levels of factor A and B in balanced incomplete block (BIB)
designs. Bhargava and Shah (1975) considered incomplete split-plot design with main plot
treatments in an incomplete block design where they considered unequal block sizes for main
plot treatments and mainly studied tests for main effects of factor B and interaction AB.

http://krishi.icar.gov.in/jspui/handle/123456789/41295
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Mathew and Sinha (1992) went a step further and presented various optimum and exact
tests under fixed, random and mixed effects models in the case of unbalanced split-plot
designs where main plot treatments are replicated unequal number of times. Mejza (1985)
considered incomplete split-plot designs with main plot treatments in incomplete blocks and
presented an analysis procedure with a different model than we study here.

There are some other works on incomplete split plot designs where particular classes
of incomplete block designs were used either to allocate main plot and / or subplot treat-
ments. Ozawa et al. (2004) obtained incomplete split-plot designs using Kronecker product
of two component designs, one for levels of factor A and another for levels of factor B. Ozawa
and Kuriki (2006) constructed incomplete split-plot designs using semi-Kronecker product of
two types of α-resolvable designs. Kuriki and Nakajima (2007) constructed incomplete split-
plot designs by semi-Kronecker product of two resolvable designs with second design being a
square lattice design for factor B. Kristensen (2012) proposed four methods of constructing
incomplete split-plot designs using α-designs. Works on incomplete split-plot designs consid-
ering subplot treatments in an incomplete block design are also available, see, for example,
Robinson (1967); Mejza and Mejza (1984) and Mandal et al. (2020).

In this article, we consider incomplete split-plot designs where m levels of factor A
are arranged in a connected incomplete block design with blocks of each of size k such that
k < m and s levels of factor B are allocated in s subplots within each main plot. We propose
a methodology of analysis of data from experiments conducted using such designs following
the standard fixed effects additive linear model approach. Since in agricultural experiments,
generally factors and their levels are only a carefully chosen entities among which comparisons
are desired, and blocks are also not a random sample from bigger population of blocks,
random effects and mixed effects models for analysis of split-plot designs are not considered
here and thus, we restrict ourselves to fixed effects model only.

2. Construction

In this section, we present construction of incomplete split plot designs where m levels
of factor A are arranged in a connected proper binary incomplete block design with blocks
of same size and s levels of factor B are arranged randomly within each main plot. To
construct a design, take a binary connected proper incomplete block design D with number
of treatments m, number of blocks b and block size k < m. Arrange the m levels of factor
A using design D. Within each level of factor A, apply s subplot treatments at random.
Obtained design is an incomplete split plot design where blocks are incomplete with respect
to factor A and whole plots are complete with respect to factor B.

We illustrate the construction with an example.

Example 1: Let m = 5, s = 5, b = 5, k = 3. So a connected binary proper incomplete block
design D for factor A is

(1 4 5)
(2 3 5)
(1 3 4)
(2 3 4)
(1 2 5)
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In D, there are 5 blocks and in each block, three main plot treatments are allocated. Now,
randomly assign each of the s levels of factor B in each of the main plots. We get the
following incomplete split-plot design.

Block 1 1 ( 5 4 3 1 2 ) 4 ( 5 4 3 1 2 ) 5 ( 2 3 4 5 1 )
Block 2 2 ( 3 4 2 1 5 ) 3 ( 2 3 4 5 1 ) 5 ( 4 1 5 3 2 )
Block 3 1 ( 3 4 1 5 2 ) 3 ( 3 4 1 5 2 ) 4 ( 3 4 2 1 5 )
Block 4 2 ( 3 4 1 5 2 ) 3 ( 3 4 2 1 5 ) 4 ( 4 1 5 3 2 )
Block 5 1 ( 4 1 5 3 2 ) 2 ( 2 3 4 5 1 ) 5 ( 5 4 3 1 2 )

Remark 1: We recommend that the design D should be so chosen that it has high A- and
D-efficiency. One can use the available efficient incomplete block designs in literature for
this purpose. We utilized A-efficient incomplete block designs generated by the R package
ibd (Mandal, 2019). If the design D is equireplicate with r replications for each of the m
levels of factor A, then in the incomplete split-plot design, each AB combination appears
r times. Had a complete split-plot design with b blocks been chosen, each AB treatment
combination would have appeared b times. Since number of main plots in an incomplete
split-plot design is k in each block, it is expected that blocks would be more homogeneous
than a block containing m main plots. This will increase precision of comparisons among
main effects of factor A. Further, whenever r < b, incomplete split-plot designs is expected
to be more resource efficient because then they will require lesser number of main plots. For
example, consider an experiment conducted by Pandey et al. (2000) who used m = 5 levels
of irrigation regimes as factor A and s = 5 levels of Nitrogen doses as factor B and they used
complete split-plot design with four blocks. This experiment required 20 main plots and 100
subplots in total. Had an incomplete split-plot design as given in Example 1 with 5 blocks
with block size 3 been used, only 15 main plots and 75 subplots would have been required.

We have used the method to construct incomplete split-plot designs in the restricted
parametric range of m ≤ 6, s ≤ 6 and b ≤ 10. The list of parameters for which design has
been generated is available, see Mandal et al. (2019c). However, the proposed method is
general and works for any m, s, b, k provided a suitable connected incomplete block design
D with parameters (m, b, k) exists and is available in literature.

3. Analysis

In this section, we present a methodology for analysis of data from experiments
conducted using incomplete split-plot designs considered in this paper. We consider fixed
effect additive linear model for this purpose:

yjil = µ + ρj + αi + γji + βl + δil + ϵjil (1)

where yjil denote the observation from the experimental unit in jth block receiving ith level
of factor A and lth level of factor B, µ is the general mean, ρj is the effect of jth block,
αi is the main effect of ith level of factor A, γji is the interaction terms between blocks
and ith level of factor A, βl is the main effect of lth level of factor B, δil is the interaction
effect of ith level of factor A and lth level of factor B and ϵjil is the random subplot error
with zero mean and constant variance σ2, j = 1, 2, ..., b; i = 1, 2, ..., m; l = 1, 2, ..., s. Here
all the effects are fixed effects except subplot error. Note here that data do not exist for
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all (j, i, l) combinations since all levels of factor A do not appear within each block. Here
it may be mentioned that Mathew and Sinha (1992) also considered a model similar to (1).
However, they considered unbalanced cases, i.e., the blocks may be of unequal sizes and may
contain different number of main plot treatments and they also considered cases of random
and mixed effects scenarios. In our case, each block is of constant size k and contains k < m
main plot treatments and we do not consider random and mixed effect models.

In matrix notation, the model (1) may be represented as
y = µ1 + X1ρ + X2α + X3γ + X4β + X5δ + ϵ (2)

where y denotes the vector of n observations, 1 denotes the vector of ones, X1 denotes
n × b observation versus block incidence matrix, ρ denotes b × 1 vector of block effects, X2
denotes n × m observation versus factor A incidence matrix, α denotes m × 1 vector of
main effects of factor A, X3 denotes n × bk observation versus block-A incidence matrix, γ
denotes bk × 1 vector of block versus factor A interactions, X4 denotes n × s observation
versus factor B incidence matrix, β denotes s × 1 vector of main effects of factor B, X5
denotes n ×ms observation versus AB interaction incidence matrix, δ denotes ms×1 vector
of AB interaction effects and ϵ denotes n×1 vector of errors. We assume that errors are i.i.d.
normal with E(ϵ) = 0 and Var(ϵ) = σ2In. Under the given set-up of design construction,
n = bks and X1 = Ib ⊗ 1ks. The model (2) can be written as

y = Xθ + ϵ (3)
where X = (1 : X1 : X2 : X3 : X4 : X5) and θ = (µ, ρ′, α′, γ ′, β′, δ′)′.

Normal equations are given by
X′Xθ = X′y

where

X′X =



1′1 1′X1 1′X2 1′X3 1′X4 1′X5
X′

11 X′
1X1 X′

1X2 X′
1X3 X′

1X4 X′
1X5

X′
21 X′

2X1 X′
2X2 X′

2X3 X′
2X4 X′

2X5
X′

31 X′
3X1 X′

3X2 X′
3X3 X′

3X4 X′
3X5

X′
41 X′

4X1 X′
4X2 X′

4X3 X′
4X4 X′

4X5
X′

51 X′
5X1 X′

5X2 X′
5X3 X′

5X4 X′
5X5

 . (4)

Now, following relations can be verified:
X′

11 = ks1b X′
21 = sr

X′
31 = s1bk X′

41 = bk1s

X′
51 = r ⊗ 1s X′

1X1 = ksIb

X′
2X1 = sN1, say X′

3X1 = s1k ⊗ I′
b

X′
4X1 = k1s1′

b X′
5X1 = N3, say

X′
2X2 = sR X′

3X2 = N2, say
X′

4X2 = r′ ⊗ 1s X′
5X2 = R ⊗ 1s

X′
3X3 = sIbk X′

4X3 = 1s1′
bk, say

X′
5X3 = N4, say X′

4X4 = bkIs

X′
5X4 = r ⊗ Is, say X′

5X5 = R ⊗ Is
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with r being the vector of replications of levels of factor A and R being diagonal matrix with
elements of r. Therefore, equation (4) can be written as

X′X =



bks ks1′
b sr′ s1′

bk bk1′
s r′ ⊗ 1′

s

ks1b ksIb sN′
1 s1′

k ⊗ Ib k1b1′
s N′

3
sr sN1 sR N′

2 r ⊗ 1′
s R ⊗ 1′

s

s1bk s1k ⊗ Ib N2 sIbk 1bk1′
s N′

4
bk1s k1s1′

b r′ ⊗ 1s 1s1′
bk bkIs r′ ⊗ Is

r ⊗ 1s N3 R ⊗ 1s N4 r ⊗ Is R ⊗ Is

 . (5)

It may be seen that

X′y = (y... : y′
B.. : y′

.M. : y′
BM. : y′

.S. : y′
.MS)′

where y... denote the gross total of all observations, yB.. is the vector of block totals, y.M.

is the vector of totals for m levels of factor A, yBM. is the vector of totals corresponding to
block-factor A combinations, y..S is the vector of totals for s levels of factor B and y.MS is
the vector of totals corresponding to AB combinations.

One can verify that the number of rows in X′X is 1 + b + m + bk + s + ms, but
there are total 1 + 1 + (m + b − 1) + 1 + (m + s − 1) = 1 + b + 2m + s linearly dependent
rows and they are as follows: sum of 2nd to (b + 1)th row is equal to the first row, sum of
(b + 2)th row to (b + m + 2)th row is equal to the first row, summing rows for each level of
γji over i keeping j fixed gives row corresponding to jth (j = 1, 2, ..., b) block and similarly
summing rows for each level of γji over j keeping i fixed gives row corresponding to row of
ith (i = 1, 2, ..., m) level of factor A, summing of rows corresponding to s levels of factor
B gives the first row, summing rows for each level of δil over i keeping l fixed gives row
corresponding to lth (l = 1, 2, ..., s) level of factor B, summing rows for each level of δil over
l keeping i fixed gives row corresponding to ith level of factor A. Therefore, to get a solution
to the normal equations (3), one can set (1 + b + 2m + s) parameter estimates to zero. We
set µ̂ = 0, ρ̂j = 0, α̂i = 0, β̂l = 0∀j, i, l and we also set every sth component of δ̂ as zero, i.e.,
δ̂s = 0, δ̂2s = 0, ..., δ̂ms = 0. As a result, we get,

(
sIbk Ñ′

4
Ñ4 R ⊗ Is−1

)
=
(

γ̂

δ̂(−m)

)
=
(

yBM.

ỹ.MS

)
(6)

where Ñ4 is the matrix obtained after removing every sth row of N4, δ̂(−m) is the vector
after removing every sth element of δ̂ and ỹ.MS is the vector obtained after removing every
sth element of y.MS. From (6), we get,

γ̂ = 1
s

(
yBM. − Ñ′

4δ̂(−m)
)

.

After a little algebra, it may be seen that

δ̂(−m) = C−1
MSQMS

where CMS =
(
R ⊗ Is−1 − 1

s
Ñ4Ñ′

4

)
and QMS =

(
ỹ.MS − 1

s
Ñ4yBM.

)
.
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Denoting the model sum of squares due to fitting parameters µ, ρ, α, γ, β, δ with
R(µ, ρ, α, γ, β, δ), we get

R(µ, ρ, α, γ, β, δ) = γ̂ ′X′
3y + δ̂′X′

5y = 1
s

y′
BM.yBM. + Q′

MSC−1
MSQMS.

Similarly, it may be verified that

R(µ, ρ, α, γ, β) = γ̂ ′X′
3y + β̂′X′

4y = 1
s

y′
BM.yBM. + Q′

SC−1
S QS

where CS = bkIs−1 − bk
s

1s−11′
s−1 and QS = ỹ..S − y...

s
1s−1

R(µ, ρ, α, γ) = ρ̂′X′
1y + α̂′X′

2y + γ̂ ′X′
3y = 1

s
y′

BM.yBM.

R(µ, ρ, α) = ρ̂′X′
1y + α̂′X′

2y = 1
ks

y′
B..yB.. + Q′

MC−1
M QM

where CM = sRm−1 − s
k
Ñ1Ñ′

1 and QM = ỹ.M. − 1
k
Ñ1yB..

R(µ, ρ) = ρ̂′X′
1y = 1

ks
y′

B..yB..

and
R(µ) = 1

bks
y...2

Residual sum of squares after fitting the model (3) is given by

SSE = y′y − 1
s

y′
BM.yBM. − Q′

MSC−1
MSQMS. (7)

Theorem 1: Under model (3), SSE/σ2 ∼ χ2
bks−bk−ms+m.

Proof: It is well known that in a fixed effects linear model (3), SSE/σ2 ∼ χ2
n−rank(X). Here,

rank(X) = rank(X′X) = bk + ms − m. So the result follows.

3.1. Testing significance of interactions between A and B

Consider the null hypothesis H0 : δi1 = δi2 = · · · = δis∀i = 1, 2, ..., m versus H1 : At
least two of them are different. Under the null hypothesis, the reduced model is

y = µ1 + X1ρ + X2α + X3γ + X4β + ϵ.

The residual sum of squares under reduced model is

SSE1 = y′y − R(µ, ρ, α, γ, β) = y′y − 1
s

y′
BM.yBM. − Q′

SC−1
S QS.

Theorem 2: SSE1/σ2 ∼ χ2
bks−bk−s+1.
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Proof: The rank of the model matrix Xr1 = (1 : X1 : X2 : X3 : X4) is bk + s − 1 since out
of (1 + b + m + bk + s) rows of X′

r1Xr1, there are b + m + 2 dependencies. Hence, the result
follows. Now, SSE1 − SSE = Q′

MSC−1
MSQMS − Q′

SC−1
S QS. Therefore, the test statistic

for testing H0 : δi1 = δi2 = · · · = δis∀i = 1, 2, ..., m is

F1 = (SSE1 − SSE)/(m − 1)(s − 1)
SSE/(bks − bk − ms + m)

= (Q′
MSC−1

MSQMS − Q′
SC−1

S QS)/(m − 1)(s − 1)
SSE/(bks − bk − ms + m) ∼ F(m−1)(s−1),(bks−bk−ms+m)

under null hypothesis. Null hypothesis is rejected whenever calculated value of F1 >
Fα,(m−1)(s−1),(bks−bk−ms+m) where Fα,(m−1)(s−1),(bks−bk−ms+m) denotes the upper α percent point
of an F-distribution with (m − 1)(s − 1) and (bks − bk − ms + m) degrees of freedom.

3.2. Testing significance of main effects of factor B

Assuming that interactions between A and B is absent, we consider the null hypothesis
H0 : β1 = β2 = ... = βs = β, say versus the alternative H1 : At least two of them are different.
Consider the following test statistic

F2 = Q′
SC−1

S QS/(s − 1)
SSE/(bks − bk − ms + m)

which follows F(s−1),(bks−bk−ms+m), See Appendix for proof. One can reject the null hypothesis
when calculated value of F2 > Fα,(s−1),(bks−bk−ms+m).

3.3. Testing significance of main effects of factor A

Since main effects of A can be tested when interactions of A with B and with blocks
is absent, we assume that interactions between A and B is absent and then we consider the
null hypothesis H0 : α1 = α2 = ... = αm = α, say versus the alternative H1 : At least two of
them are different. One can see that

F3 = Q′
MC−1

M QM/(m − 1)
SSW/(bk − b − m + 1) ∼ F(m−1),(bk−b−m+1).

SSW = R(γ|µ, ρ, α) = R(µ, ρ, α, γ) − R(µ, ρ, α) = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM .

Above results can be summarized in the form of analysis of variance (ANOVA) table
as given in Table 1 where,

SSR = 1
ks

y′
B..yB.. − 1

bks
y...2 SSA = Q′

MC−1
M QM

SSW = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM . SSB = Q′

SC−1
S QS

SSAB = Q′
MSC−1

MSQMS − Q′
SC−1

S QS SST = y′y − 1
bks

y...2

Remark 2: The model formulation under a split-plot design often involves a whole-plot
error and a split-plot error, both of which are assumed to be random, satisfying the usual
normality assumptions. This formulation leads to two ANOVA tables: a whole-plot ANOVA
and a split-plot ANOVA. The present work considers a model that includes only one random
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Table 1: ANOVA table depicting analysis of incomplete split plot designs

Source Degrees of free-
dom

Sum of
squares

Mean squares F

Blocks b − 1 SSR - -
A m − 1 SSA MSA = SSA/(m − 1) F3 = MSA/MSW

Block × A bk − b − m + 1 SSW MSW = SSW/(bk −
b − m + 1)

B s − 1 SSB MSB = SSB/(s − 1) F2 = MSB/MSE
AB (m − 1)(s − 1) SSAB MSAB =

SSAB/(m − 1)(s − 1)
F1 =
MSAB/MSE

Error bks−bk−ms+m SSE MSE = SSE/(bks −
bk − ms + m)

-

Total bks − 1 SST - -

error term. For testing the significance of the main effects due to whole plot factor, we
assume that A × B interaction and block × A interactions are absent and then use the
mean square due to block × A interaction in the denominator of the F ratio and this F ratio
coincides with the corresponding F ratio in the whole-plot ANOVA.

3.4. Estimation of treatment contrasts

First we consider estimation of treatment contrasts of factor B. It may be seen that

β̂s−1 = C−1
S QS.

Thus, we can write
β̂ = C∗−

S Q∗
S (8)

where C∗
S = bkIs − bk

s
1s1′

s and Q∗
S = y..S − y...

s
1s.

Theorem 3: Let p′β be a linear parametric function such that p′1 = 0. Then p′β is
estimable.

Proof: Consider the estimator p′β̂ where β̂ is given by equation (8). Then,

E(p′β̂) = E(p′C∗−
S Q∗

S)

= p′C∗−
S E(y..S − y...

s
1s)

= p′C∗−
S (X′

4 − 1
s

X′
4X3X′

3)E(y)

= p′C∗−
S (X′

4 − 1
s

X′
4X3X′

3)(µ1 + X1ρ + X2α + X3γ + X4β)

= p′C∗−
S C∗

Sβ (after simplification)
= p′β

since p′1 = 0. This completes the proof.

It is easy to see that v(p′β̂) = p′C∗−
S pσ2 where v(.) denotes variance. So under

normality of errors in model (1), p′β̂ ∼ N(p′β, p′C∗−
S pσ2). Thus, testing of hypothesis
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H0 : p′β = b can be performed using the test statistic

Fs = (p′β̂ − b)2/(p′C∗−
S p)

SSE/(bks − bk − ms + m) .

Under null hypothesis Fs ∼ F1,bks−bk−ms+m.

Exactly on similar lines, it can be proved that for testing H0 : q′δ = d, one can use
the test statistic

Fms = (q′δ̂ − d)2/(q′C∗−
MSq)

SSE/(bks − bk − ms + m)
which follows F distribution with 1 and (bks − bk − ms + m) degrees of freedom under null
hypothesis. Here, δ̂ = C∗−

MSQ∗
MS with C∗

MS = R ⊗ Is−1 − 1
s
N4N′

4 and Q∗
MS = y.MS −

1
s
N4yBM..

Now consider a treatment contrast w′α of main effects of factor A. An estimator
of this treatment contrast is given by w′α̂ = w′C∗−

M Q∗
M where C∗

M = sRm − s
k
N1N′

1 and
Q∗

M = y.M. − 1
k
N1yB... To test H0 : w′α̂ = a, the following test statistic can be used:

Fm = (w′α̂ − a)2/(w′C∗−
M w)

SSW/(bk − b − m + 1) .

Under null hypothesis, Fm ∼ F1,(bk−b−m+1) and inferences can be made accordingly.

4. Concluding remarks

In this paper, we have proposed a method of construction of incomplete split-plot
designs where main plot treatments are allocated using a connected proper incomplete block
design. We have also presented an analysis methodology for the proposed designs. We have
implemented the proposed methods of construction and analysis using R language and the
same is available as part of an R package ‘ispd’ which can be accessed on https://cran.r-
project.org/web/packages/ispd/index.html, see (Mandal et al., 2019a). Further, we have
also implemented the construction and analysis methodology as part of an web application
which is available on http://drsr.icar.gov.in/ISPD/Home.jsp, see (Mandal et al., 2019b).
The will enable the experimenters and statisticians to use these designs with ease.

Acknowledgements

The authors sincerely acknowledges the financial support received in the form of Ex-
tra Mural Research Grant by Science and Engineering Research Board (SERB), Department
of Science and Technology, India. We are thankful to the Chair Editor and General Editors
for their valuable guidance in improving the manuscript. We are also thankful to the anony-
mous reviewers for their enlightening remarks which led to considerable improvement in the
presentation of the article.

References

Bhargava, R. and Shah, K. (1975). Analysis of some mixed-models for block and split-plot
designs. Annals of the Institute of Statistical Mathematics, 27, 365–375.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

SPLIT-PLOT DESIGNS WITH MAIN PLOT TREATMENTS IN INCOMPLETE BLOCKS 253

Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and
Boyd.

Kristensen, K. (2012). Incomplete split-plot designs based on α-designs: a compromise be-
tween traditional split-plot designs and randomised complete block design. Euphytica,
183, 401–413.

Kuriki, S. and Nakajima, K. (2007). Square lattice designs in incomplete split-plot designs.
Journal of Statistical Theory and Practice, 1, 417–426.

Mandal, B. N. (2019). ibd: Incomplete Block Designs. R package version 1.5.
Mandal, B. N., Dash, S., and Parsad, R. (2019a). ispd: Incomplete Split-Plot Designs. R

package version 0.1.
Mandal, B. N., Parsad, R., and Dash, S. (2019b). Incomplete split plot designs : Construction

and analysis. http://drsr.icar.gov.in/ISPD/how to.jsp.
Mandal, B. N., Parsad, R., and Dash, S. (2019c). Incomplete split-plot designs: Blocks are

incomplete, main plots are complete : Design resources server. http://drs.icar.gov.in.
Mandal, B. N., Parsad, R., and Dash, S. (2020). Incomplete split-plot designs: Construction

and analysis. Statistics and Probability Letters, 166, 108869.
Mathew, T. and Sinha, B. K. (1992). Exact and optimum tests in unbalanced split-plot

designs under mixed and random models. Journal of the American Statistical Asso-
ciation, 87, 192–200.

Mejza, I. and Mejza, S. (1984). Incomplete split plot designs. Statistics and Probability
Letters, 2, 327–332.

Mejza, S. (1985). A split-plot design with wholeplot treatments in an incomplete block
design. In Linear Statistical Inference, pages 211–222. Springer.

Ozawa, K. and Kuriki, S. (2006). Incomplete split-plot designs generated from α-resolvable
designs. Statistics and Probability Letters, 76, 1245–1254.

Ozawa, K., Mejza, S., Jimbo, M., Mejza, I., and Kuriki, S. (2004). Incomplete split-plot
designs generated by some resolvable balanced designs. Statistics and probability
letters, 68, 9–15.

Pandey, R., Maranville, J., and Admou, A. (2000). Deficit irrigation and nitrogen effects on
maize in a sahelian environment: I. grain yield and yield components. Agricultural
Water Management, 46, 1–13.

Robinson, J. (1967). Incomplete split plot designs. Biometrics, 23, 793–802.
Robinson, J. (1970). Blocking in incomplete split plot designs. Biometrika, 57, 347–350.



254
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

B. N. MANDAL, RAJENDER PARSAD AND SUKANTA DASH [Vol. 22, No. 3

Appendix

Proof of F2 following F(s−1),(bks−bk−ms+m):
First we prove that Q′

SC−1
S QS/σ2 ∼ χ2′

s−1 with non-centrality parameter θ′X′(X̃4−1
s
X31bk1′

s−1)
C−1

s (X̃′
4 − 1

s
1s−11′

bkX′
3)Xθ/2σ2.

Note that QS =
(
ỹ..S − y...

s
1s−1

)
= X̃′

4y − 1
s
X̃′

4X3X′
3y and hence Q′

SC−1
S QS =

y′(X̃4 − 1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′y. Now, (X̃4 − 1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′ is
idempotent because

(X̃4 − 1
s

X3X′
3X̃4)C−1

s (X̃4 − 1
s

X3X′
3X̃4)′(X̃4 − 1

s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′

= (X̃4 − 1
s

X31bk1′
s−1)C−1

s (X̃′
4 − 1

s
1s−11′

bkX′
3)(X̃4 − 1

s
X31bk1′

s−1)C−1
s (X̃′

4 − 1
s

1s−11′
bkX′

3)

= (X̃4 − 1
s

X31bk1′
s−1)C−1

s CsC−1
s (X̃′

4 − 1
s

1s−11′
bkX′

3)

since

(X̃′
4 − 1

s
1s−11′

bkX′
3)(X̃4 − 1

s
X31bk1′

s−1)

= X̃′
4X̃4 − 1

s
X̃′

4X31bk1′
s−1 − 1

s
1s−11′

bkX′
3X̃4 + 1

s2 1s−11′
bkX′

3X31bk1′
s−1

= bk(Is−1 − 1
s

1s−11′
s−1 − 1

s
1s−11′

s−1 + 1
s

1s−11′
s−1)

= bk((Is−1 − 1
s

1s−11′
s−1)

= Cs.

Now, under H0,
Xθ = µ1 + X1ρ + X2α + X3γ + βX41s

= µ1 + X1ρ + X2α + X3γ + β1
= (µ + β)1 + X1ρ + X2α + X3γ.

Therefore,

(X̃′
4 − 1

s
1s−11′

bkX′
3)Xθ

= (X̃′
4 − 1

s
1s−11′

bkX′
3)((µ + β)1 + X1ρ + X2α + X3γ)

= (µ + β)X̃′
41 + X̃′

4X1ρ + X̃′
4X2α + X̃′

4X3γ − µ + β

s
1s−11′

bkX′
31

− 1
s

1s−11′
bkX′

3X1ρ − 1
s

1s−11′
bkX′

3X2α − 1
s

1s−11′
bkX′

3X3γ

= (µ + β)bk1s−1 + k1s−11′
bρ + r′ ⊗ 1s−1α + 1s−11′

bkγ−
µ + β

s
1s−11′

bks1bk − 1
s

1s−11′
bks(1k ⊗ Ib)ρ − 1

s
1s−11′

bkN2α − 1
s

1s−11′
bksIbkγ
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= r′ ⊗ 1s−1α − 1
s

1s−1sr′α

= 0

As a result, the non-centrality parameter is zero. Thus, Q′
SC−1

S QS/σ2 ∼ χ2
s−1 under H0.

Here, the degrees of freedom is equal to the rank of the matrix of the quadratic form (X̃4 −
1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′ and the rank of this matrix is clearly s − 1.

To check independence of Q′
SC−1

S QS and SSE, we know that SSE = y′(I−XGX′)y
where G is a generalized inverse of X′X. Now,

(I − XGX′)(X̃4 − 1
s

X3X′
3X̃4)C−1

s (X̃4 − 1
s

X3X′
3X̃4)′

= (X̃4 − 1
s

X3X′
3X̃4 − XGX′X̃4 + 1

s
XGX′X3X′

3X̃4)C−1
s (X̃4 − 1

k
X3X′

3X̃4)′

= 0

because XGX′X̃4 = X̃4 and XGX′X3X′
3X̃4 = X3X′

3X̃4 due to properties of generalized
inverse matrix G. Hence, two quadratic forms Q′

SC−1
S QS and SSE are independent. Hence,

F2 under null hypothesis follows F-distribution with (s − 1) and (bks − bk − ms + m) degrees
of freedom. Proof of F3 ∼ F(m−1),(bk−b−m+1): where

SSW = R(γ|µ, ρ, α) = R(µ, ρ, α, γ) − R(µ, ρ, α) = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM .

First we prove that Q′
MC−1

M QM/σ2 ∼ χ2
m−1 under null hypothesis.

Q′
MC−1

M QM = (ỹ.M. − 1
k

Ñ1yB..)′C−1
M (ỹ.M. − 1

k
Ñ1yB..)

= (X̃′
2y − 1

k
Ñ1X′

1y)′C−1
M (X̃′

2y − 1
k

Ñ1X′
1y)

= y′(X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)y

= y′Ay

where A = (X̃2 − 1
k
X1Ñ′

1)C−1
M (X̃′

2 − 1
k
Ñ1X′

1). Now,

AA = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1).

It may be seen that

(X̃′
2 − 1

k
Ñ1X′

1)(X̃2 − 1
k

X1Ñ′
1) = X̃′

2X̃2 − 1
k

X̃′
2X1Ñ′

1 − 1
k

Ñ1X′
1X̃2 + 1

k2 Ñ1X′
1X1Ñ′

1

= X̃′
2X̃2 − s

k
Ñ1Ñ′

1 − s

k
Ñ1Ñ′

1 + ks

k2 Ñ1Ñ′
1

= sRm−1 − s

k
Ñ1Ñ′

1

= CM .
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As a result,

AA = (X̃2 − 1
k

X1Ñ′
1)C−1

M CMC−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)

= A

Hence, the matrix of the quadratic form of Q′
MC−1

M QM/σ2 is idempotent. Thus, Q′
MC−1

M QM/σ2

∼ χ2
m−1 with non-centrality parameter 1

2σ2 θX′AXθ where Xθ = µ1 + Xρ + X2α since the
rank of the matrix A is m − 1. Under null-hypothesis, α = α1m. So the non-centrality
parameter can be shown to be zero as

AXθ = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(µ1 + X1ρ + αX21m)

= (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1){(µ + α)1 + X1ρ}

= (X̃2 − 1
k

X1Ñ′
1)C−1

M

{
(µ + α)X̃′

21 + X̃2X1ρ − µ + α

k
Ñ1X′

11 − 1
k

Ñ1X′
1X1ρ

}
= (X̃2 − 1

k
X1Ñ′

1)C−1
M

{
(µ + α)srm−1 + sÑ1ρ − µ + α

k
Ñ1ks1b − 1

k
Ñ1ksIbρ

}
= (X̃2 − 1

k
X1Ñ′

1)C−1
M

{
(µ + α)srm−1 + sÑ1ρ − (µ + α)srm−1 − sÑ1ρ

}
= 0.

Thus, Q′
MC−1

M QM/σ2 ∼ χ2
m−1.

Now note that

SSW = 1
s

y′
BM.yBM. − 1

ks
y′

B..yB.. − Q′
MC−1

M QM

= 1
s

y′X3X′
3y − 1

ks
y′X1X′

1y − y′Ay

= y′By

where B = 1
s
X3X′

3 − 1
ks

X1X′
1 − A.

To check independence of Q′
MC−1

M QM and SSW , we need to prove that AVB = 0
where A, B are as defined above and here V = σ2I. So it suffices to show that AB = 0.
Now,

AB = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A).

The last two terms of AB may be simplified as

(X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A)

= 1
s

X̃′
2X3X′

3 − 1
ks

X̃′
2X1X′

1 − X̃′
2A − 1

ks
Ñ1X′

1X3X′
3 + 1

k2s
Ñ1X′

1X1X′
1 + 1

k
Ñ1X′

1A (9)

= 1
s

X̃′
2X3X′

3 − 1
ks

sÑ1X′
1 − X̃′

2A − 1
ks

Ñ1X′
1X3X′

3 + 1
k2s

ksÑ1X′
1 + 1

k
Ñ1X′

1A.
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It may be checked that

X̃′
2A = (X̃′

2X̃2 − 1
k

X̃′
2X1Ñ′

1)C−1
M (X̃′

2 − 1
k

Ñ′
1X′

1)

= (sRm−1 − 1
k

sÑ1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ′

1X′
1)

= X̃′
2 − 1

k
Ñ′

1X′
1.

Also,

1
k

Ñ1X′
1A = 1

k
Ñ1(X′

1X̃2 − 1
k

X′
1X1Ñ′

1)C−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= 1
k

Ñ1(sÑ′
1 − 1

k
ksÑ′

1)C−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= 0.

Hence, equation (9) can be simplified as

(X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A)

= 1
s

X̃′
2X3X′

3 − X̃′
2 + 1

k
Ñ′

1X′
1 − 1

ks
Ñ′

1X′
1X3X′

3

= X̃′
2 − X̃′

2 + 1
k

Ñ′
1X′

1 − 1
k

Ñ′
1X′

1

= 0.

Thus, two quadratic forms Q′
MC−1

M QM and SSW are independent and hence, under null
hypothesis, the test statistic F3 follows F-distribution with (m − 1) and (bk − b − m + 1)
degrees of freedom. Null hypothesis should be rejected whenever calculated value of F3
exceeds Fα,(m−1),(bk−b−m+1) where Fα,(m−1),(bk−b−m+1) denotes the upper α percent point of
an F-distribution with (m − 1) and (bk − b − m + 1) degrees of freedom.
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