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Abstract
It is well-known that a standardised U -statistic based on i.i.d. observations is asymp-

totically normal. We first give a proof of this using cumulants. Then we consider U -statistics
which are based on non-commutative variables. We show that a standardised U -statistics
of freely independent identically distributed non-commutative random variables converges
to a semi-circle variable. The proof is based on free cumulants. We also discuss briefly the
degenerate case.
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1. Introduction

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random variables,
defined on a probability space (Ω,A,P) and with a common distribution F . Suppose h :
Rm → R is a Borel measurable function which is symmetric in its arguments. Let

Un =
(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , ..., Xim). (1)

Then Un is the well-known U-statistic with kernel h and has found extensive uses in statistics.
Bose and Chatterjee (2018) contains a wealth of material on the properties of U -statistics.
A fundamental distributional limit result for U -statistic is the U -statistics Central Limit
Theorem (UCLT).

Theorem 1: (UCLT) Let {Xi}∞i=1 be i.i.d. random variables with a common distribution
F and ∫

Rm
|h(x1, ..., xm)|2dF (x1)...dF (xm) <∞.
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Let σ2
1 := V ar(E(h(X1, X2, ..., Xm)|X1)) > 0. Then

√
n(Un − θ) w→ N(0,m2σ2

1)

where w→ denotes weak convergence, N(0,m2σ2
1) denotes the normal distribution with mean

0 and variance m2σ2
1 and θ =

∫
Rm h(x1, ..., xm)dF (x1)...dF (xm).

The standard proof proceeds by considering the sum of projections of Un on the sub-
space Ln := {ψ1(X1) + · · ·+ ψn(Xn) : ψ1, . . . , ψn ∈ L2(F )} and showing that in the limiting
case, as n → ∞, the contribution of this sum is most important. The remaining terms are
negligible. Then the classical CLT for the sample mean is applied to complete the proof.

With Theorem 1 as the backdrop, our goal in this article is three-fold.

(i) Show how Theorem 1 can be derived using cumulants and thereby avoid projections.

(ii) Establish the CLT for U -statistics in the non-commutative set up, by using
free cumulants.

(iii) Establish a limit theorem for degenerate U -statistics in the non-commutative set up.

We address these three goals in the next three sections.

2. Proof of UCLT Based on Cumulants

Suppose Y1, . . . Yn are random variables with joint moment generating function

MY1,...,Yn(t1, . . . , tn) = E
[

exp
{ n∑
j=1

tjYj
}]
, t1, . . . , tn ∈ R.

which is finite in a neighbourhood N of 0 in Rn. In that case, the joint cumulant generating
function is defined as

CY1,...,Yn(t1, . . . , tn) = logMY1,...,Yn(t1, . . . , tn), (t1, . . . , tn) ∈ N

which also has a power series expansion of the form

CY1,...,Yn(t1, . . . , tn) =
∞∑

k1,...,kn=0

tk1
1 . . . tkn

n

k1! . . . kn!ck1,...,kn(Y1, . . . , Yn), (t1, . . . , tn) ∈ N.

The real numbers ck1,...,kn(Y1, . . . , Yn) are called the cumulants of {Yi : 1 ≤ i ≤ n}. If
kj 6= 0 for at least two indices j, then ck1,...,kn(Y1, . . . , Yn) is called a mixed cumulant of
{Yi : 1 ≤ i ≤ n}. We shall use the notation

cj(Y1, . . . Yj) for c1,1,...1(Y1, . . . Yj).

It is easily seen that the if Y, Y1, Y2 are random variables, then

c1(Y ) = E(Y ), c2(Y ) = Var(Y ) and c1,1(Y1, Y2) = c1,1(Y2, Y1) = Cov(Y1, Y2). (2)
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In general moments and cumulants are in 1 − 1 correspondence and this can be expressed
via the well-known Möbius function on the set of all partitions of {1, . . . , n}, n ≥ 1. For
details of this and other facts, see Nica and Speicher (2006). See also Brillinger (2001) where
cumulants have been used extensively to prove limit theorems in time series. We shall need
the following facts about cumulants.

Fact 1. Suppose Yi are independent bounded random variables. Then all their mixed cumu-
lants vanish. This follows easily since the moment generating function factorises.

Fact 2. Cumulants are multi-linear functions of the random variables. This follows from
definition.

Fact 3. Y is normally distributed with mean µ and variance σ2 if and only if its first two
cumulants are c1(Y ) = µ and c2(Y ) = σ2 and all other cumulants of Y vanish. This follows
immediately from the moment generating function of Y .

Fact 4. Suppose {Yn} is a sequence of random variables such that c1(Yn)→ µ, c2(Yn)→ σ2

and ck(Yn) → 0 for all k ≥ 3. Then Yn
w→ N(0, σ2) where w→ denotes weak convergence.

This is obtained as follows: from the specific nature of the 1 − 1 correspondence, it follows
that all moments of Yn converge, and converge to the normal moments. Since the normal
distribution is the unique distribution with the normal moments, weak convergence follows.

Proof: [Proof of Theorem 1] We first prove Theorem 1 under the additional assumption
that

h is bounded. (3)

By linearity of cumulants, c1(Un) = θ and therefore c1(
√
n(Un − θ)) = 0.

Define

ζk(h) = Cov(h(X1, ..., Xk, Xk+1, ..., Xm), h(X1, ..., Xk, Xm+1, ..., X2m−k)).

Note that ζ1(h) = σ2
1. The following formula is standard. It can also be proved easily by

using the symmetry of h, equation (2) and linearity of cumulants.

c2(
√
n(Un − θ)) = n

(
n

m

)−2 m∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
ζk(h).

For any fixed natural number a, we have
(
n
a

)
∼ na

a! as n → ∞. Therefore, for 1 ≤ k ≤ m,
we have(

n

k

)(
n− k
m− k

)(
n−m
m− k

)
∼ nk(n− k)m−k(n−m)m−k

k!(m− k)!(m− k)! ∼ n2m−k

k!(m− k)!(m− k)! .

Thus
lim
n→∞

c2(
√
n(Un − θ)) = lim

n→∞

m!m!
n2m−1

m∑
k=1

n2m−k

k!(m− k)!(m− k)!ζk(h).
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Note that if 1 < k ≤ m then n2m−k

n2m−1 → 0. Therefore, only the k = 1 term will survive and
we get

lim
n→∞

c2(
√
n(Un − θ)) = m2ζ1(h) > .0

Now we will show that cj(
√
n(Un−θ))→ 0 for all j ≥ 3. We observe that, by multi-linearity

of cumulants,

cj(
√
n(Un − θ)) = nj/2(

n
m

)j ∑
I1,I2,...,Ij

cj(h(XI1), ..., h(XIj
)) (4)

where I1, ..., Ij are ordered m−tuples (i1 < i2 < · · · < im) with each 1 ≤ ir ≤ n for
1 ≤ r ≤ m, and h(XI) := h(Xi1 , ..., Xim) if I = (i1, ..., im).

Now we make the following observations. Fix I1. Suppose at least one of I2, ..., Ij does
not have any index common with I1. Then by independence, the corresponding cj = 0.

Let us count the remaining cases. If we fix I1, then are Om(nm−1) such choices for each
of I2, ..., Ij, giving a total of Om,j(n(m−1)(j−1)) choices. Finally, I1 can be chosen in

(
n
m

)
=

Om(nm) ways. Therefore, the total count of the remaining cases is Om,j(nm+(m−1)(j−1)). Note
that the we have a common uppper bound for all the cumulants cj that correspond to these
cases.

Hence if j ≥ 3,

cj(
√
n(Un − θ)) = Om,j(

nj/2

nmj
× nm+mj−j−m+1) = Om,j(n1−(j/2))→ 0 as n→∞.

Hence the proof is complete by an application of Fact 4, under the extra condition (3).

To relax this assumption, we use a standard truncation argument. Define

h̃(x1, . . . , xm) = h(x1, . . . , xm)I(|h(x1, . . . , xm)| ≤ B).

Let Ũ (B)
n be the corresponding U -statistic. Since h̃ satisfies (3),

√
n(U (B)

n − θ(B)
n ) w→ N(0, m2ζ̃1(h̃)) as n→∞.

It is not hard to show that (use DCT)

ζ1(h̃)→ ζ1(h) as B →∞.

Moreover, it is also easy to show, by using the variance formula developed above for any
U -statistics, that

lim
B→∞

lim
n
V
(√

n(U (B)
n − θ(B)

n )−
√
n(Un − θ)

)
= 0.

This completes the proof of Theorem 1.
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Remark 1: (a) The special case of m = 1 yields the standard CLT for the mean: if {Xi}
are i.i.d. with mean 0 and variance 1, then ∑n

i=1 Xi/
√
n converges weakly to the standard

normal distribution. This cumulant based proof avoids the use of characteristic function.

(b) By extending the above argument, and an appropriate extension of Fact 4 to multivariate
normal, it can be shown that if we have several U -statistics then after the needed centering
and scaling, they converge jointly to a multivariate normal distribution. We omit the details.

3. UCLT for Free Variables

Free Probability refers to an extension of classical probability to certain non-
commutative spaces. One of its central notions is free independence which is a natural
notion of independence available in different types of non-commutative probability spaces.
Very strong connections between free independence and random matrices were discovered by
Voiculescu (see Voiculescu (1991)). A nice combinatorial introduction to free probability is
available in Nica and Speicher (2006). Probabilists and statisticians have been increasingly
drawn to aspects of free probability, specially in the context of high dimensional random
matrices. For some flavour of its application in high dimensional time series, see Bose and
Bhattacharjee (2018).

The non-commutative probability space that we shall work with is the ∗-probability
space. We shall briefly describe its basic ingredients. For a detailed introduction see Nica
and Speicher (2006).

Recall that, an algebra A over complex numbers is called a ∗-algebra if it contains a
unity 1A, and is endowed with an antilinear ∗ operation which maps a ∈ A to a∗ ∈ A and
which satisfies (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.

A ∗-probability space is a pair (A, ϕ) where A is a ∗-algebra and ϕ is a linear functional
on A which satisfies ϕ(1A) = 1, ϕ(a∗) = ϕ(a), and ϕ(a∗a) ≥ 0 for all a ∈ A.

The elements of A are called random elements. An element a ∈ A is called self-adjoint
if a∗ = a. Recall that the expectation operator is also linear and satisfies E(1) = 1. Thus, it
helps to think of ϕ as an analogue of the expectation operator.

Example 1: Suppose (Ω,F , P ) is a classical probability space and E is the expectation
operator. Let A be the set of (complex valued) random variables with all moments finite,
where random variables that are almost surely equal, are identified as same. Then (A,E) is
trivially a ∗-probability space. In this case elements of A commute.

Example 2: A typical example of a ∗-probability space is the algebra A of all n×n matrices
with random variable entries all whose moments are finite, and for any A ∈ A, ϕ(A) =
n−1 E Trace(A). The unity is the n×n identity matrix I, for which ϕ(I) = n−1 E Trace(I) =
1. With ∗ denoting the usual matrix adjoint, ϕ(A∗) = n−1 E Trace(A∗) = n−1E Trace(A) =
ϕ(A) since the diagonal entries of A∗ are complex conjugates of those of A, and ϕ(A∗A) =
n−1 E Trace(A∗A) ≥ 0 since all diagonal entries of A∗A are non-negative.
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Given random elements {a1, . . . , an}, its moments are the quantities {ϕ(b1 · · · bk), k ≥
1, bj ∈ {a1, . . . , an} for all 1 ≤ j ≤ k}. Analogous to cumulants of random variables, there is
a concept of free cumulants of random elements. These are in 1− 1 correspondence with the
moments via the Möbius function on non-crossing partitions of {1, . . . , n}, n ≥ 1. We shall
avoid a formal definition. The free cumulants will be denoted by a generic κ. We may note
here that for any two random elements a and b, κ1(a) = ϕ(a) and κ2(a, b) = ϕ(ab)−ϕ(a)ϕ(b).
Note that in general κ2(a, b) 6= κ2(b, a).

A random element s on a ∗-probability space (A, ϕ) is said to be a semi-circle variable
with variance σ2 if it is self-adjoint and

ϕ(sh) =

σ
2nCn = 1

n+1

(
2n
n

)
σ2n, if h = 2n

0, if h is odd.
(5)

The numbers {Ck, k ≥ 1} are known as Catalan numbers and {σ2kCk, k ≥ 1} define a unique
probability measure, known as the semi-circle distribution with variance σ2. It is well-known
that κ1(s) = 0, κ2(s, s) = 1 and all higher order free cumulants of s are 0. Thus, this is the
analogue of the standard normal variable X which has the same property for its cumulants.

In the classical set-up, bounded random variables are independent if and only if all
their mixed cumulants are 0. Analogously, random elements are “freely independent” or
simply free, if and only if all their mixed free cumulants vanish.

We also need the notion of convergence of random elements: Suppose we have a se-
quence of ∗-probability spaces (An, ϕn). Suppose an ∈ An are self-adjoint. Then {an} are
said to converge in distribution if limϕn(akn) exists for all integers k. We visualize a limit
∗-probability space A, generated by an indeterminate (self-adjoint) element a and with the
state ϕ(ak) = limϕn(akn) for all k and extended linearly to the entire algebra. Note that
convergence in distribution is not the same as the usual weak convergence. However, if
{ϕn(akn), k ≥ 1} and {ϕ(ak), k ≥ 1} determine unique probability measures,{µn} and µ with
these as their moments, then the above convergence in distribution implies µn converges to
µ weakly. Analogous notions hold for joint convergence of several variables.

We shall need the following facts about free cumulants. For proofs see Nica and Speicher
(2006).

Fact (a). Suppose Yi are freely independent random elements in some ∗-probability space.
Then all their mixed free cumulants vanish.

Fact (b). Free cumulants are multi-linear functions.

Fact (c). Suppose s is a semi-circle variable with mean 0 and variance σ2. Then the first
two free cumulants of s are κ1(Y ) = 0 and κ2(Y ) = σ2. Further all other free cumulants of
s vanish.

Fact (d). Suppose {yn} is a sequence of self-adjoint random elements such the κ1(yn) → 0,
κ2(yn) → σ2 and κk(yn) → 0 for all k ≥ 3. Then {yn} converges to a semi-circle variable
with variance σ2.
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We are now in position to give a free version of Theorem 1. Since we are working with
random elements which are elements of an algebra, we are restricted to working with only
polynomials in the variables of the algebra. Hence the statement of Theorem 1 needs to be
modified slightly now. Variables are said to be identically distributed of they have the same
moments.

Theorem 2: Suppose X1, ..., Xn are freely independent self-adjoint identically distributed
random elements on a ∗-probability space (A, ϕ). Suppose h(x1, ..., xm) is a self-adjoint
polynomial in the m variables x1, ..., xm, symmetric in its arguments. Let Un be the U -
statistics with kernel h. Let θ = ϕ(h(X1, ..., Xm)). For k = 0, 1, ...,m define

dk = κ2(h(X1, ..., Xk, Xk+1, ..., Xm), h(X1, ..., Xk, Xm+1, ..., X2m−k)).

Suppose d1 > 0. Then
√
n(Un − θ) converges in distribution to a semi-circle variable with

variance m2d1.

Example 3: Suppose {Xi} are free and identically distributed. Consider the sample vari-
ance

s2
n =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi −Xj)2

2 .

Then s2
n is a U -statistic. Suppose without loss of generality ϕ(Xi) = 0. By an application

of Theorem 2,
n1/2

(
s2
n − ϕ(X2

1 )
)
→ s

where s is a semi-circle variable with variance ϕ(X4
1 )− [ϕ(X2

1 )]2. Note that this could be 0
(for example if Xi are free Bernoulli ±1 with probability 1/2 each) in which case, s is 0.

Example 4: Suppose {Xi} are freely independent identically distributed variables where
2[ϕ(X1)]2 = θ. Let h(x, y) = xy + yx Then

√
n
(
Un − θ

)
→ s

where s is a semi-circle variable with mean 0 and variance 16ϕ(X1)2
[
ϕ(X2

1 )− [ϕ(X1)]2
]
.

Proof: [Proof of Theorem 2] The proof is almost a repetition of the proof of Theorem 1.
We sketch it. Trivially, κ1(Un) = θ and therefore κ1(

√
n(Un − θ)) = 0.

As before (we now use the fact that mixed free cumulants vanish for freely independent
variables),

κ2(
√
n(Un − θ)) = n

(
n

m

)−2 m∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
dk

and after similar steps, we get

lim
n→∞

κ2(
√
n(Un − θ)) = m2d1 > 0.
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Now we will show that κj(
√
n(Un − θ))→ 0 for all j ≥ 3. We observe that

κj(
√
n(Un − θ)) = nj/2

(
n

m

)−j ∑
I1,I2,...,Ij

κj(h(XI1), ..., h(XIj
)) (6)

where I1, ..., Ij are ordered m−tuples (i1 < i2 < · · · < im) with each 1 ≤ ir ≤ n for
1 ≤ r ≤ m, and h(XI) := h(Xi1 , ..., Xim) if I = (i1, ..., im).

Now we count as before and use vanishing of mixed free cumulants when there are at
least two freely independent variables, to obtain, for j ≥ 3,

κj(
√
n(Un − θ)) = Om,j(

nj/2

nmj
× nm+mj−j−m+1) = Om,j(n1−(j/2))→ 0 as n→∞.

The proof is complete once we use Fact (d).

Remark 2: By extending the above argument, and an appropriate extension of Fact (d),
to a semi-circle family (see next section), it can be shown that if we have several U -statistics
of non-commutative variables, then they converge jointly to a semi-circle family. We omit
the details.

4. Degenerate Case

An obvious question that arises here is what happens under degeneracy i.e. when
c1 = 0 or d1 = 0? The following result is well-known in the classical case. See Bose and
Chatterjee (2018).

Theorem 3: Let h : Rm → R be a symmetric kernel. Let {Xi}∞i=1 be i.i.d. random variables,
such that E(h(x1, X2, ..., Xm)) = 0 but

σ2
2 := V ar(E(h(X1, X2, X3, ..., Xm)|X1, X2))) > 0.

Then
nUn

w→
(
m

2

) ∞∑
k=1

λk(Vk − 1)

where Vk i.i.d.∼ χ2
1 and λk are eigenvalues of an appropriate integral operator.

The result is first proved for the case m = 2. The classical proof (see Bose and
Chatterjee (2018)) crucially uses the Fredholm representation: any symmetric kernel ψ :
R2 → R can be written as

ψ(x1, x2) =
∞∑
k=1

λkfk(x1)fk(x2)

where λk are eigenvalues of an appropriate integral operator. The theorem is easy to prove
when there are only finitely many non-zero eigenvalues and the general case is tackled by
approximation. Then the cases m ≥ 3 is proved by projections.
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The above proof is not suitable for our purposes since our variables are non-
commutative. We present a free version of the theorem for degenerate U -statistics based on
random elements but with special type of kernels of order 2. It should be possible to extend
this result to higher order kernels but we decided to stick to the simplest case.

Theorem 4: Let h(x1, x2) := ∑K
k=1 ak(fk(x1)fk(x2) + fk(x2)fk(x1)) where fk(x) are self ad-

joint polynomials in the variable x, and ak are constants. Let X1, ..., Xn be freely independent
self adjoint identically distributed random variables such that the following are true.

(a) For each 1 ≤ k ≤ K, ϕ(fk(X1)) = 0 and ϕ(f 2
k (X1)) = 1.

(b) For each 1 ≤ k 6= l ≤ K, ϕ(fk(X1)fl(X1)) = 0.

Define Un =
(
n
2

)−1∑
1≤i1<i2≤n h(Xi1 , Xi2). Then,

nUn → 2
K∑
k=1

ak(s2
k − 1)

where s1, ..., sK are freely independent standard semi-circular variables.

Example 5: (Examples 3 and 4 continued) Consider the kernel h(x, y) = xy + yx but we
now assume that ϕ(Xi) = 0 and ϕ(X2

i ) = 1. Then it is easy to see that K = 1 and conditions
(a) and (b) hold.

nUn = n

(
n

2

)−1 ∑
1≤i1<i2≤n

(Xi1Xi2 +Xi2Xi1)→ 2(s2 − 1)

where s is a semi-circle variable with variance 1.

Recall the sample variance s2
n. Now suppose that Xi are free and identically distributed

as classical Bernoulli ±1 with equal probability. Then ϕ(Xi) = 0 and ϕ(X4
i ) = [ϕ(X2

i )]2, so
that n1/2(s2

n − 1) converges to 0. It can be checked that

n(s2
n − 1) = n

[ 1
n− 1[

n∑
i=1

X2
i − nX̄2]− 1

]
= n[ n

n− 1 − 1]− n

n− 1
(√

nX̄
)2
→ −(s2 − 1)

where s is a semi-circle variable with variance 1.

As preparation for the proof, we need to extend some of the notions intro-
duced earlier. Suppose (An, ϕn), n ≥ 1 is a sequence of ∗-probability spaces. Let
{ai,n, 1 ≤ i ≤ k} be random elements from An, n ≥ 1. They are said to converge jointly if
ϕn
(
P (ai,n, a∗i,n, 1 ≤ i ≤ k)

)
converges for every k ≥ 1 and every polynomial P . Then we can

define a limit ∗-probability space (A, ϕ) where A is the ∗-algebra generated by polynomials
in indeterminates {ai, 1 ≤ i ≤ k} and the state ϕ is determined by the limit. That is, for
all k ≥ 1 and all polynomials

ϕ (P (ai, a∗i , 1 ≤ i ≤ k)) = limϕn
(
P (ai,n, a∗i,n, 1 ≤ i ≤ k)

)
.
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We write
(ai,n, 1 ≤ i ≤ k)→ (ai, 1 ≤ i ≤ k).

This is equivalent to saying that for all j ≥ 1 and for all 1 ≤ i1, ..., ij ≤ k,

κj(ai1,n, · · · , aij ,n)→ κj(ai1 , · · · , aij ).

A collection (s1, ..., sk) of random elements from a ∗-probability space (A, ϕ) is said to be
a semi-circular family if these are self-adjoint semi-circle variables and moreover all mixed
free cumulants of order greater than 2 are 0. Note that they are then free if all second order
mixed free cumulants are also 0.

We shall also need the following free Central Limit Theorem. This can be proved easily
in a few lines by using free cumulants—along the lines mentioned in Remark 1—simply use
free cumulants instead of usual cumulants. See Nica and Speicher (2006) for a moment based
proof.

Theorem 5: Suppose {Xi,j, 1 ≤ i ≤ k}, j ≥ 1 are self-adjoint variables which are identically
distributed as well as free across j ≥ 1 in some ∗-algebra such that for all i, j, ϕ(X1,j) = 0.
Then

1√
n

(Xi,1 + · · ·+Xi,n, 1 ≤ i ≤ k)→ (s1, · · · , sk)

which is a semi-circle family in some ∗-probability space (A, ϕ0) with κ2(si, sj) =
κ2(Xi,1, Xj,1) for all 1 ≤ i, j ≤ k.

Proof: [Proof of Theorem 4]

We observe that
∑

1≤i1<i2≤n

K∑
k=1

ak(fk(Xi1)fk(Xi2) + fk(Xi2)fk(Xi1)) =
K∑
k=1

ak(
n∑
i=1

fk(Xi))2 −
K∑
k=1

n∑
i=1

akf
2
k (Xi).

Therefore

nUn = 2n
n− 1

K∑
k=1

ak
( 1√

n

n∑
i=1

fk(Xi)
)2
− 2n
n− 1

K∑
k=1

ak
1
n

n∑
i=1

f 2
k (Xi).

By the free Central Limit Theorem 5,

1√
n

(
n∑
i=1

f1(Xi), · · · ,
n∑
i=1

fK(Xi),
n∑
i=1

(f2
1 (Xi)− 1), · · · ,

n∑
i=1

(f2
K(Xi)− 1)

)
→ (s1, · · · , sK , t1, · · · , tK)

which is a semi-circular family. Moreover, using conditions (a) and (b), s1, · · · , sK are all
freely independent identically distributed semi-circle variables with variance 1. The exact
parameters for (t1, · · · , tK) shall not be important to us.

Let

An,k,1 = 1√
n

n∑
i=1

fk(Xi) and An,k,0 = 1√
n

n∑
i=1

(f 2
k (Xi)− 1), 1 ≤ k ≤ K.
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Also let
bk,0 = sk, bk,1 = tk, 1 ≤ k ≤ K.

Then by definition of joint convergence, for any j ≥ 1, for any k1, ..., kj ∈ {1, ..., K} and for
any ε1, ..., εj ∈ {0, 1},

κj(An,k1,ε1 , · · · , An,kj ,εj )→ κj(bk1,ε1 , · · · , bkj ,εj ).

If j > 1 and ε1, ..., εj are not all 0, say ε1 = 1 without loss of generality, then using the
fact that constants are free of everything,

κj(An,k1,ε1 , · · · , An,kj ,εj ) = κj(
1√
n

n∑
i=1

f 2
k1(Xi), An,k2,ε2 , · · · , An,kj ,εj )→ κj(tk1 , bk2,ε2 , · · · , bkj ,εj )

and therefore, κj(
1
n

∑n
i=1 f

2
k1(Xi), An,k2,ε2 , · · · , An,kj ,εj ) → 0. Further, if j = 1, then for any

1 ≤ k ≤ K, κ1( 1
n

∑n
i=1 f

2
k (Xi) − 1) = 0 and hence κ1( 1

n

∑n
i=1 f

2
k (Xi)) → 1. This shows the

following joint convergence:

( 1√
n

n∑
i=1

f1(Xi), · · · ,
1√
n

n∑
i=1

fK(Xi),
1
n

n∑
i=1

f2
1 (Xi), · · · ,

1
n

n∑
i=1

f2
K(Xi))→ (s1, · · · , sK , 1, · · · , 1)

Therefore, we have

nUn = 2n
n− 1

K∑
k=1

ak(
1√
n

n∑
i=1

fk(Xi))2 − 2n
n− 1

K∑
k=1

ak
1
n

n∑
i=1

f 2
k (Xi)→ 2

K∑
k=1

ak(s2
k − 1).

We have crucially used the representation of the kernel. It is not clear how to obtain
a limit theorem for a more general kernel. We intend to pursue this direction in future.
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