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Abstract

Markov chain models provide objective pre-harvest forecasts of crop yields with reasonable
precisions well in advance aiding timely decisions. However, these models require sizable dataset
for them to be stable and reliable. If the dataset is small, the estimated probabilities may not be
precise with many zeroes occurring in the transition probability matrices. This will be more so
with increase in the order of the Markov chain, because in such cases the number of states
increases very rapidly. The present study deals with development of yield forecast models for
sugarcane crop based on higher order (multiple) Markov chains built on a massive database. The
results revealed that use of such models advanced the time of forecast for the same precision and
the forecasts were found to be better when compared to that of first order Markov chain and
regression based models. Moreover, when the order of Markov chain increases and/or the
definition of states became finer, the mean yield forecasts approach the actual yield justifying the
development of models with finer definitions of states of plant conditions. For the data under
study, the principal component based third order Markov chain models are the models that give
better forecasts.

Keywords: Crop vyield; forecast; higher order (multiple); Markov chain;  simulation; growth
index; principal component; massive datasets

1 Introduction

Crop yield forecasts are quite useful in formulation of policies regarding stock, distribution
and supply of agricultural produce to different areas of any country. Prominent among the
methods of forecasting are based on models which employ regression, time series or stochastic
approaches. These methods exploit data on crop biometrical characters, weather parameters,
farmers’ eye estimates, agro-meteorological conditions and/ or remotely sensed crop reflectance
observations etc., utilized either separately or in an integrated fashion for forecasting crop yields at
successive stages in the crop growing season. One among the various statistical approaches in
vogue is the probability model based on Markov chain theory, which overcomes some of the well
known drawbacks of the widely used regression model.

Matis et al. (1985) proposed a statistical methodology for forecasting crop yields at
successive stages of the growing season of any crop using Markov chain theory. Later, Matis et
al. (1989) applied the Markov chain approach for forecasting cotton yields. Jain and Agrawal
(1992) developed First Order Markov Chain (FOMC) model for forecasting sugarcane yields.
Agrawal and Jain (1996) demonstrated the performance of Markov chain model in forecasting
sugarcane yields by using farmers’ eye estimates in addition to the biometrical characters. Singh
and Ibrahim (1996) attempted use of remotely sensed spectral data in Markov chain model for
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obtaining pre—harvest wheat yield forecasts. Jain and Ramasubramanian (1998) developed a
Second Order Markov Chain (SOMC) model using coarser states within the stages of the chain.
Ramasubramanian and Jain (1999) have developed Markov chain models by using growth indices
of the biometrical characters, through which, it was possible to use data from two stages
simultaneously for forecasting sugarcane yields. Ramasubramanian et al. (2010) have developed
yield forecast models for sugarcane crop using higher order (multiple) Markov chains by
considering different possible combinations of various aspects viz., orders of Markov chain used,
number of biometrical characters used and percentile definitions of plant condition states of
biometrical characters within stages albeit using a smaller dataset. Patel et al. (2013) have
developed user-friendly software for fitting Markov chain models.

The only assumption under an FOMC (or simply a Markov chain) set up is that the past (crop)
conditions are statistically uninformative for predicting the future (crop yield forecasts), after the
present (crop) conditions are known. As regards to higher order (say r-th order) Markov chains,
the only assumption is that, after the present r stages conditions are known, the conditions
previous to them are uninformative for predicting the future. However, the Markov chain
methodology requires sizable dataset to estimate the transition probability matrices (TPMs).
When the dataset is small, the estimated transition probabilities will not be precise. Hence, the
stability and reliability of the model have been examined in this study, by using a massive dataset
generated from the available dataset by simulation in order to find whether any improvement can
be made in the forecast and its efficiency.

The higher order (multiple) Markov chains provide a more realistic and elaborate model as
against the simple dependence structure of the FOMC model utilized by earlier workers.
However, the use of multiple Markov chains will result in increase in the number of states very
rapidly with increase in the order of Markov chain. So an attempt has also been made to study the
effect of coarser or finer definition of plant condition states (and hence smaller or larger number of
states) on the ultimate precision of the forecasts.

2 Notations and Preliminaries

Two years data on biometrical characters and yield collected by Indian Agricultural
Statistics Research Institute, New Delhi under the pilot study on pre—harvest forecasting of
sugarcane in Meerut district of U.P. state (Jha et al. 1979) were utilized for the study which is a
standard data set, collected through scientific sampling, to represent actual growth characteristics
and used by many researchers for developing/testing various forecast models (Jain and Agrawal,
1992; Agrawal and Jain, 1996; Jain and Ramasubramanian, 1998; Ramasubramanian and Jain,
1999; Ramasubramanian et al., 2010; Patel et al., 2013) . As the aim was to propose a simulation
based Markov chain based forecasting methodology upon a massive dataset generated from this
basic dataset and the proposed models can be conveniently compared with earlier models for
judging their forecasting performance.

In all, 144 plots data were available in 1977-78 (hereinafter called first year) whereas 156
plots data were available in 1978-79 (second year). The selected biometrical characters are:—
number of plants per plot (X;) and average plant height per plant (X;). The various stages of
observations on X; and X; are 3-4, 4-5, 5-6, 6—7 and 7—8 months after planting. At harvest (12
months after planting), the actual yield i.e. weight of canes per plot (YY) were also available. These
original stages are denoted by si, S, S3, S, S5 and the harvest stage, by ss. Let X i denote the b™
biometrical character (b = 1, 2) in the i" original stage (i = 1, 2, 3, 4, 5). For a multiple Markov
chain model, say, an SOMC model developed, first year data on these stages, when combined two
by two, gave rise to four composite stages. These composite stages of SOMC are denoted by S,
forr =1, 2, 3, 4 with S, obtained through combination of original stages as respectively (s1, S2),
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(S2, S3), (S3, Sa) and (S4, Ss). The harvest stage Sg is denoted as the stage Ss in the SOMC chain.
Note also that states in a composite stage are the combination of states of individual stages
involved in the composite stage. For example, consider the composite stage S; of SOMC model
that has been obtained by combining the two original stages s; and s, (of FOMC). Suppose
original stage s; has k states and stage s, has | states then composite stage S; will contain (kxl)
states as composite states with the final stage Ss having ten states (as deciles of yield were used
for defining states). Similarly, let T1, T,, T3 denote the composite stages of a Third Order Markov
Chain (TOMC) model formed by combining the original stages as respectively (s, Sz, S3), (S2, Ss,
S4) and (Ss, S4, S5). Let T, denote the harvest stage of TOMC model (original stage sg)

Several Markov chain models have been developed in the present study based on different
combinations of the following three criteria: (restricting the number of states in any TPM
considered being at the most sixteen only for the present study)

(i) Order of Markov chain restricted to one, two or three (i.e.) FOMC, SOMC or TOMC.

(it) Definition of (plant condition) states on the basis of median (M) of the biometrical character
plant population (X;) and median (M) of the biometrical character average plant height (X5),
refer this as definition MxM or quartiles (Q) of the biometrical character X; and quartiles (Q)
of the biometrical character X, refer this as definition QxQ. (In addition, the options of
considering median (M) of the biometrical character X; and quartiles(Q) of the biometrical
character Xy, refer this as definition MxQ or quartiles(Q) of the biometrical character X; and
median (M) of the biometrical character X, refer this as definition QxM have also been
considered but only in developing FOMC models because they are not valid in case of higher
order Markov chain models as such definitions of states will not make the latter’s stages to
follow conditional dependence of the Markov chain property).

(iii) Untransformed data (simulated large dataset considered as such) or transformed data viz.
growth indices and principal components of the simulated large dataset (discussed
subsequently).

Use of Growth Indices (Gls) and Principal Components (PCs) of the biometrical characters in
multiple Markov chain models facilitates reduction in the number of variables within a composite
stage so that the number of states in the multiple Markov chains is kept at manageable level. Thus
by using Gl or PC, it is possible to use both X; and X, together in the model even when defining
finer plant condition states on the basis of quartiles(QxQ).

The growth indices are obtained as weighted accumulations of observations on biometrical
characters in different stages, weights being the partial correlation coefficients between yield (Y)
and biometrical characters (X; or X>) at different stages of crop growth. The growth index of the
b™ biometrical character is given by

Gui=D TcXbe (=S, Sy S, o)
C

where i is used for composite stage identification, the summation extends over the initial and final
stages considered in developing the index of the character, ry is the partial correlation coefficient
between yield and b™ biometrical character at ¢™" stage, Xy is the value of the b™" biometrical
character at the ¢ stage. At composite stage Sy, there will be Gls Gy; and G,y instead of (Xus,
X12) and (X21, X22) and similarly for other stages S,, Ss and S,.

Instead of using growth indices for developing multiple Markov chain models, alternatively
PCs can also be used. Principal components are generally not warranted in situations where there
are only two variables. However, considering variable-set for each composite stage and
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transforming the original two variables variable-wise separately into PCs and taking only the first
(significant) PC from each of them will rapidly reduce the number of states within (composite)
stages of the multiple Markov chain models considered. That is, if say a PC based SOMC model
is to be developed and if X; and X, are the two variables at each of the stages s; and s, then the
PCs of Xi; and X, are obtained separately and that of X,; and Xy, obtained separately. Let PCy;
denote the first principal component of the b™ biometrical character (b = 1, 2) for the i"" composite
stage (i = S, Sy, S3, Sy) for an SOMC model. At stage S; (stages s; ans s, combined), the PCs
PCi11) & PCiyp) from variables (Xi1, X12) and PCs PC 211y & PC 21(2) from variables (Xz1, X22)
were obtained as

(el el
PCiy2) X1z PCay X2

where Kj is the matrix with rows as the characteristic vectors of the corresponding covariance
matrix Z; (uncorrected for mean) of (Xi1, X2), the variance of PCyy(y is the 1% characteristic root
A1 of matrix X4, accordingly for PCyy) etc. Hereinafter PCy1(1y will be referred to as PCy1 and so
on. Accordingly, at composite stage S; of SOMC model the variables are PCy; and PCy; instead of

(X11, X12) and (Xz1, X22) and similarly for other stages S, S; and S,. Similar treatment is followed
for developing PC based TOMC models.

3 Model Development

Multiple Markov chains have been developed by constructing Markov chains with orders
greater that one which are collectively referred to as higher orders. Let any multiple Markov chain
model have s (composite) stages. Let m;,i=1, 2, ..., s denote the number of states defined on the
basis of percentiles of observations of the selected biometrical characters within stage i. Let Aj,i+1
= ‘kg ; i=12,..s—-1;k=1,2,..,m; g=1, 2, ..., mjyy) denote the (mixm;.;) TPMs which

give the transition probabilities pyq of a group of plants moving from any possible state k of stage i
to any possible state g of stage (i+1), each row summing to one. For a given stage i, the predicted

s-1
yield distributions (PYDs) are obtained as the product HAMH which is of order (mjxms). This
a=i
matrix thus will give as many PYDs as the number of states in stage i. In the final (harvest) stage
s, the yield information is available in as many class intervals as is the number of states in it i.e.
ms. The midpoints of these yield classes can be formed as a summary mean vector yn,, of order (ms
x 1).

Means of PYDs for each of the states of a stage for the first year can be calculated by simply
multiplying the PYDs with ym. Thus at each stage i, means of PYDs can be obtained as

o _(T
y :(J—Ii Aa,a+1jym

of order (m; x 1). The vector y® will contain elements as y;js with j ranging from 1 to m;.

To forecast yield of second year, the second year data can be classified as per the states of a
stage in first year. This will result in number of observations of second year say fj;, falling in
various states 1, 2, ..., m; of a particular stage i in first year. Weighted mean of means of
predicted yield distributions for each of the states of a stage can be worked out, weights being the
number of observations of second year falling in different states/stages of the first year data,
which would give mean vyield forecast Y at each stage i for the second year.  This (weighted)
mean Yyield forecast at stage i can be mathematically written as
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m;
Zfij Yij .
Yr = J=n]:]i = n zfij yij (say),

D
-1

where n:Zfij is the total number of observations available in the second year at each stage i,
j=1

however, since irrespective of any stage same number of observations are used hence 'n' not
suffixed by i.

As the actual yield data upon second year were already available the forecast errors (FE) can
be calculated at different stages as

[mzf G- Y -’1%
DI

i
j=1

FE. (’Fi }

where fj, Yrij and Yo denote the number of observations, yield forecast and observed yield
respectively, corresponding to the jth state of the ith stage.

4 Simulation of Massive Dataset

Multiple Markov chain modeling requires sizable dataset for the developed models to be
stable and reliable. If the dataset is small, the estimated probabilities may not be precise with
many zero probabilities occurring in the TPMs. This will be more so with increase in the order of
the Markov chain, because in such cases the number of states increases very rapidly resulting in
very large and unmanageable TPMs. Inflation of data through simulation enables all types of
variations in the crop growth system to reflect in the dataset in order that it can mimic natural
happenings connected with growth of sugarcane crop in question. Thus any data point that might
have occurred but did not occur in the collected sample but for the limited sample size can also be
taken into account. The simulated dataset is generated to appear similar to the available sample
dataset.

To start with, at every stage in the actual crop growth process, the central limit theorem
considerations render procedures that treat the data to have come from distributions as if it has
come from distributions somewhat close to normal distribution as the standards due to large
number of data points upon the available variables. Having assumed that the sample have come
from a Gaussian population, the simulations can be based exclusively on the mean vector and the
covariance matrix over all stages as the latter takes care of the interrelationships between the
variables at various stages under consideration. Attempts were made to include transition
probability matrices also as additional parameters but by doing so we could only get more of the
same data with replications rather than similar data hence could not be considered. Thus even
though the basic setting of the multivariate simulation lends itself very naturally to the utilization
of normal distribution, the Markov conditional dependencies between the stages of the chain
compel one to put restrictions between each of the same variables observed at different stages. In
effect, parameter estimates of the simulated data set compared well with those of the original data
set, notwithstanding the specificity of the underlying distribution which initially was used in the
simulation. Thus it is relevant that the simulation algorithm used with the given restrictions
represent actual growth characteristics up to the extent where complexities in modeling such
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systems mathematically can be coped with. Thus a massive population similar to the one of the
original dataset has been arrived.

The original dataset has 144 data points for first year upon eleven variables viz. Y, Xj; (b=1,2
;1 =1,2,3,4,5) where b represents biometrical character and i the stage at which the character has
been observed. Shapiro-Wilk test for normality revealed that all the variables follow normal
distribution except for the variables X;; and Xj; at stage-1. The first year dataset has been
distended into a massive dataset of 5000 data points upon the same eleven variables preserving
Markov chain properties. For achieving this, a computer program for simulation was written in
Fortran language to generate eleven-variate normally distributed population by using the estimates
of parameters mean p vector and variance-covariance ¥ matrix calculated from the available
dataset. In order to preserve Markov chain property in the simulated dataset as well the following
restrictions were also imposed:

(i) The biometrical character plant population i.e.Xy; (i =1,2,3,4,5) is restricted to lie within the
corresponding range (i.e. between maximum and minimum values) of the baseline dataset.

(i) The biometrical character average plant height is restricted to fulfil the inequality condition
x21 S>(22 SXZB S)<24 < >(25

Though the simulation has been subjected to the ascending inequality restriction for the
variable plant height, the same could not be made for the other variable plant numbers as such a
condition does not suit the latter. This is because, in the growth process of the crop, the number of
plants per plot may increase or decrease according as new plants emerge out or some plants
wilt/die. This causes the plant population to change with the growth of the plant, more so in the
initial stages but not in an increasing manner. However, to simulate data set with similar settings,
this variable is restricted to lie between its corresponding range in the available dataset.

The massive population has been obtained by using the algorithm given by Scheuer and
Stoller(1962) which is briefly discussed here. Let the 11-variate vectors to be generated 5000
times be denoted by (v + p). To start with, assuming normality, generate 5000 standard normal
multivariate vectors u~N@,1,,  whose elements uy, U, ... , uy; are independent standard normal

variates. Then by setting

Gll 612 Y Jln
v=Cu ~N©,CC 3N ©,x (say), where c-€ Jnd x=| "% 2 2| with n=11 and
O-nl O'nz O'nn

assumingxz=cc’ calculate the elements of C matrix as follows:

i-1
(I) Cilzo-il ,1S|S11 (il) cii= O-“—chzk ,1<|S11
VO k=1

l<j<i<il  (iv) ¢j=0,i<j<11

i
Once cjj’s are obtained, then vi’s can be obtained as V; =), Cij Uj, i=12..11 to obtain v=Cu.
j=1

Then v~N@©,= 3nd hencev+p~N€,= . Thus 5000 such v vectors each of size 11x1 were

generated. The known estimates of parameters p and £ from the available first year data were
utilised to get the massive Markov chain population of 5000 data points upon the same eleven
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variables. The estimates of p and X of simulated population (Table 1) compared well with that of
those obtained from the available first year dataset.

5 Results and Discussion

Summary statistics of the simulated first year data and available second year data are given
in Table 1. Table 2 gives the percentiles of biometrical characters of untransformed and of their
transformations viz. principal components and growth indices used in the definition of plant
condition states for various Markov chain models developed upon simulated first year data. The
results (mean yield forecasts) for second year based on various first year Markov chain models
using simulated first year data are presented in Table 3. It also provides description about the
definition and number of states, name and type of model developed. As an illustration, the model
MMC6 (Table 3) is taken to discuss the steps involved in model development. MMCS6 is an
SOMC model wherein growth indices of the two biometrical characters X; (plant population) and
X, (average plant height) are used with definition of plant condition states as MxM i.e.
medians(M) of growth indices (Table 2). Growth indices are formed by using partial correlation
coefficients between yield(Y) and biometrical characters of simulated data of first year at various
stages i=1,2,3,4,5 (0.46387, 0.54700, 0.54192, 0.54660, 0.55892 for Y with X;; and 0.20579,
0.42559, 0.35262, 0.31053, 0.41122 for Y with Xy).

Thus, at composite stage S; (original stages s; and s, combined), the growth indices are given by
Gy = 0.46387 X3 + 0.54700 X2 and Gy = 0.20579 Xy + 0.42559 X,, The different composite
states within the composite stage, for say, S; , are accordingly formed by combination of the
following conditions:

(i) Gua is classified on the basis of median (159.02) and thus we get two classes viz.
G171 < 159.02 and G171 > 159.02

(if) Gy is classified on the basis of median (0.42) and thus we get two classes viz.
G2 < 0.42 and Gy, > 0.42

In all, we get four ‘composite states’ within the composite stage S1

(I) Gq11 £ 159.02, Gy < 0.42
(II) Gy £ 159.02, Gy > 0.42
(iii) Gu1 > 159.02, Gy < 0.42
(IV) Gll > 15902, sz_ > 0.42

Similarly, for other composite stages in the SOMC model such composite states were defined. The
observed frequencies of the plants moving from one plant condition class(composite state) of a
composite stage, say, S; (i=1, 2, 3, 4) to different condition classes(composite state) of the next
composite stage Si+; (i=1, 2, 3) were calculated. For instance, the frequency matrix of transition
from S; to S; is given by,
States of stage S,
(i) (ii) (iii) (iv)

(i) 1189 80 125 11
States of stage S; (i) 150 815 20 111
(iii) 165 4 805 125

(iv) 6 90 95 1210
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And other transition frequency matrices i.e. from S, to S; and from S3 to S, were obtained as
matrices of order 4. The final frequency matrix i.e. from S, to Ss has been obtained as a 4x10
matrix which is given by

States of stage Ss
0] (i)  (iii) (iv) (V) (vi) (vii) (viii) (X)) (X)

(i) 394 340 295 230 188 125 84 39 20 0
(i) 45 65 100 140 135 75 105 75 35 10
(iii) 35 60 85 85 125 85 85 95 60 89
(iv) 10 24 41 64 100 195 254 254 329 424

States of stage S,

These frequencies were then utilised to compute various transition probabilities by noting that row
sum of any TPM is unity. Thus each row element was divided by its corresponding row sum. This
gave rise to TPM’s A i i«1 (i= S1, Sy, S3, S4). Each matrix will be of order 4x4 except for the last
TPM whose order is 4x10 because in the final stage, only information upon Y is there and it has
been classified on the basis of deciles. Thus from the above frequency matrix, the TPM of
transition from S; to S, has been obtained as

0.846 0.057 0.089 0.008
0.137 0.744 0.018 0.101
0.150 0.004 0.732 0.114
0.004 0.064 0.068 0.864

Similarly, other TPMs i.e. A i«1 for i = S, and S; as (4x4) matrices and TPM A ; i1 for i=S,as a
(4x10) matrix have been obtained which are not presented here for brevity.

Predicted yield distributions (PYDs) from first year data multiple Markov chain models were used
to forecast yield of second year at various stages of crop growth. The product HA i,i+1 fori=

S1, Sy, S3, S4 gives a 4x10 matrix which gives four PYDs, one for each of the four composite states
in composite stage S;. The product HA i,i+1 fori=Sy, Ss, Sq again gives a 4x10 matrix which

gives four predicted yield distributions, one for each of the four composite states in composite
stage S,. Likewise PYDs for Sz and S, have also been obtained. Means of PYDs for each of the
composite states of a composite stage for the first year were worked out by simply multiplying
these PYDs separately with the midpoints of the yield class intervals formed on the basis of
deciles (which is a 10x1 vector; refer Table 2). Thus at each composite stage, means of PYDs are
obtained as

composite states — (1) (i) (iii) (iv)

Stage S; —» 59.64 58.02 55.51 53.68
Stage S; —» 67.68 67.88 65.77 65.34
Stage S; —> 67.96 68.24 71.05 70.95
Stage S; —> 77.71 79.27 81.39 83.18

To forecast yield of second year, the second year data were classified as per the composite states
of a composite stage in first year. This resulted in number of observations falling in various
composite states of a particular composite stage in first year. It may be noted that the row sum is
equal to the number of data points (i.e. 156) in second year at each stage.

composite states — (i) (i) (iii) (iv)
Stage S; —> 105 24 21 6
Stage S; —> 112 21 17 6
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Stage S; —> 133 14 5 4
Stage S; —> 128 9 12 7

Weighted mean of means of predicted yield distributions for each of the states of a stage was
worked out, weights being number of observations of second year in different states/stages of first
year. This gave mean yield forecasts at each stage viz. at stage S; as 62.69 kg/plot, at stage S, as
61.28 kg/plot, at stage S; as 57.59 kg/plot and at stage S, as 57.01 kg/plot, for second year (in
which actual yield was 51.82 kg/plot) based on the particular first year data multiple Markov chain
model MMC6. The forecast errors (S.E.) were also calculated at different stages by using
equation (1) of section 3 with the values of fi’s as the number of observations of second year
falling in various states of a particular stage in first year (given above). The values of yj’s are
nothing but the four mean p.y.d.’s at the j" state of the i stage. And the forecast errors were 0.35,
0.29, 0.26 and 0.15 for the mean yield forecasts at stages Si, Sy, Sz and S, respectively. In the
same fashion, the mean vyield forecasts for second year along with their forecast errors can be
obtained by developing other multiple Markov chain models upon first year data (Table 3). The
results obtained using multiple regression models for second year by Ramasubramanian and Jain
(1999) wherein the model was built on available first year data at each individual stage with yield
as regressand and the biometrical characters as regressors are presented in Table 3 as model REG
for comparison purposes.

The forecast at composite stage T, (original stages s;, S, and s3 combined), composite stage S,
(original stages s, and s3 combined) and original stage s3 are appropriate stages to be compared as
all these stages consist of the common ultimate stage s3 in them. Likewise the stages (s, and S;),
(s4, Sz and Ty) and (ss, S4 and T3) are the appropriate stages for comparisons with common
ultimate stages s, S4 and ss respectively in each of them. Perusal of the Table 3 reveals that
considerable improvement in forecasts can be obtained by using higher orders viz. two (SOMC)
and three (TOMC) in preference to first order Markov chain models. Thus it can be inferred that in
most of the cases, finer definitions of states can give better forecasts. The table also reveals
mostly better forecasts when SOMC models (Gl or PC based) are used instead of FOMC models
when comparing at corresponding same definitions of states. Both Gl based and PC based SOMC
models perform at par when compared among them as far as forecasts are concerned. The TOMC
models MMC12 and MMC13 turn out to be the best models as the differences between observed
mean yield i.e. 51.82 kg/plot and the forecast values 52.54, 52.49 and 52.48 kg/plot for MMC12
i.e. PC based TOMC model using MxM definition and 52.72, 52.53 and 52.30 kg/plot for MMC13
i.e. PC based TOMC using QxQ definition seem to be very small with lower forecast error.

6 Concluding Remarks

When the order of Markov chain increases and/or the definition of states became finer, the
mean yield forecasts approach the actual yield justifying the development of multiple Markov
chain models with finer definitions of states of plant conditions. Hence there is advancement in the
time of forecast when multiple Markov chain models are used in preference to the existing models.
For the data under study, the principal components based TOMC models are the models that give
better forecasts.

There are many advantages of using Markov chain models over other conventional
approaches such regression, time series modeling etc.  Firstly, they require less stringent
assumptions over other models. Rather, the only assumption it requires is that the future scenarios
depend only upon the present conditions which is supposed to contain all information about the
past due to the Markovian property and renders the past uninformative and how the present has
been arrived at from the past is of no consequence. Moreover, quantiles (medians, quartiles etc.)
are used in this approach as against the usually used mean elsewhere, hence in certain situations
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such as presence of outliers, extreme values etc., this method is unaffected. In this era of remote
sensing, multi-spectral data of reflectance from crops over the various stages of the growing
period can be conveniently used for forming transition matrices to build Markov chain models
(Singh and Ibrahim, 1996) rather than visiting the fields for taking measurements. Moreover, at
every stage of the crop growth period, forecasts can be obtained and hence more informative, even
though intuitively, the forecasts at later periods should be more reliable. In addition, this method
can be said to be ‘model-free’ with just the states, stages and transition probability matrices and
final conditions yielding the crop forecasts, instead of imposing model equations for the data
collected. However, there are certain limitations of Markov chain models as well. While much of
theory is well established for usual methods like regression, the properties of Markov chain
forecasts are yet to be studied in depth. For instance, for calculating prediction interval of future
observations during model fitting itself (as can be obtained for regression forecasts, see
Montgomery et al., 2012, pages 33-34), such formula are not readily available in case of Markov
chain approach and one has to get contented with standard error of forecasts (as used in this study)
for which the actual values of the future observations are also required. Thus the precision in the
forecast using this approach requires separate evaluation and further study. Also the cross
sectional cum time series data structure of this approach sometimes makes it difficult for the
practitioners for fitting such models. However, customized software (Patel et al., 2013) on
Markov chain modeling are available nowadays for fitting these models very easily once the data
set is ready.
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Table 1: Summary information about available two years data upon yield and
biometrical characters of sugarcane of Meerut district, U.P.

(i) Minimum, maximum and arithmetic mean values

Simulated first year data Available second year data
Variable Minimum  Maximum Mean Minimum  Maximum Mean

Y 15.79 113.39 68.68 15.69 90.63 51.82
X11 36.00 327.00 157.28 30.00 273.00 120.47
Xo1 0.10 0.88 0.37 0.09 0.99 0.30
X1z 41.00 319.00 159.01 41.00 221.00 128.63
X22 0.26 1.68 0.83 0.19 1.49 0.67
X13 13.00 208.00 108.40 30.00 142.00 83.28
X3 0.51 2.04 1.28 0.53 1.83 1.07
X4 30.00 195.00 112.08 34.00 137.00 89.46
Xo4 0.71 2.46 1.62 0.15 2.05 1.33
X5 34.00 194.00 112.72 34.00 140.00 90.53
X5 0.79 2.76 1.85 0.75 2.13 1.47

(ii) Variance—covariance matrix of simulated first year data

Y X1 X1 X12 Xo2 Xi3 Xos X4 X24 Xis Xos

Y 31790 433.68 0.71 409.32 155 327.93 246 300.54 2.84 302.08 3.56
X11 433.68 241283 151 153742 3.63 990.85 5.04 83221 5.14 810.67 5.99
Xo1 0.71 151 0.02 -0.89 0.03 1.45 0.02 1.19 0.02 1.08 0.02
Xi12 409.32 153742 -0.8 209737 -0.3 74127 2.09 660.43 3.22 657.95 4.43
X22 1.55 3.63 0.03 -0.32 0.06 2.56 0.06 2.36  0.05 2.24 0.05
X1z 32793 99085 145 74127 256 87158 3.14 676.17 3.53 651.10 4.06
X23 2.46 5.04 0.02 2.09 0.06 3.14 0.08 3.31 0.08 3.22 0.08
X1s 30054 83221 119 66043 236 676.17 3.31 65431 3.74 61954 4.10
Xos4 2.84 5.14 0.02 3.22 0.05 3.53 0.08 3.74 0.09 3.54 0.10
Xis 302.08 810.67 1.08 657.95 224 65110 3.22 61954 354 613.85 4.07
Xos 3.56 5.99 0.02 443 0.05 4.06 0.08 410 0.10 407 0.11

(iii) Variance—covariance matrix of available second year data

Y X1 X2 X12 X22 X13 X23 X4 Xo4 Xi1s Xos

Y 246.04 397.67 107 33574 209 256.21 2.63 262.75 2.86 262.14 3.02
X121 397.67 1399.30 3.03 91519 453 61237 4.93 598.84 4.42 584.68 4.28
Xo1 1.07 3.03 0.03 -0.96 0.04 1.77 0.03 1.40 0.02 1.35 0.02
X1 33574 91519 -0.9 1378.00 0.51 439.13 2.04 48510 290 480.52 3.34
X22 2.09 453 0.04 0.51 0.06 296 0.05 2.53 0.04 247 0.04
X1z 256.21 61237 1.77 439.13 296 42317 3.21 39583 3.04 392.60 3.08
Xo3 2.63 493 0.03 2.04 0.05 3.21 0.06 3.00 0.06 293 0.05
X4 26275 598.84 140 48510 253 39583 3.00 401.01 298 400.17 3.02
Xoa 2.86 442 0.02 290 0.04 3.04 0.06 298 0.06 295 0.06
X5 26214 584.68 135 480.52 247 39260 293 400.17 295 406.81 3.00
Xos 3.02 428 0.02 3.34 0.04 3.08 0.05 3.02 0.06 3.00 0.07
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Table 2:
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Quantiles of biometrical characters of untransformed and of their
transformations viz. principal components and growth indices used in the
definition of plant condition states for various Markov chain models developed
upon simulated first year data

Stage Biometrical Quantile Values
character 0 Q, Qs
(1) Untransformed
Sy X11 Quiartile 123 156 190
Xo1 Quiartile 0.25 0.35 0.47
Sy X1z Quartile 129 158 192
X22 Quartile 0.65 0.81 1.00
S3 X13 Quartile 88 108 128
X3 Quiartile 1.07 1.27 1.49
S4 X14 Quiartile 94 112 130
Xa4 Quartile 1.39 1.61 1.83
S5 Xis Quiartile 96 112 130
Xos Quiartile 1.61 1.84 2.09
(i) Transformed (Principal components)
S1 PCn Quartile 180.39 222.04 264.53
PCyx Quiartile 0.7 0.9 1.1
S, PCy, Quartile 157.79 190.17 226.39
PCs, Quiartile 1.27 1.53 1.78
S3 PCy3 Quartile 129.5 154.97 181.13
PCys Quartile 1.78 2.06 2.35
S4 PCy4 Quartile 133.89 158.39 183.83
PCy4 Quiartile 2.14 2.45 2.77
Ty PCu Quartile 202.15 246.32 292.55
PCyx Quiartile 1.30 1.57 1.83
T, PCi, Quartile 186.14 220.65 259.82
PCy Quartile 1.90 2.22 2.54
T3 PCy3 Quartile 160.61 191.78 223.15
PCy; Quiartile 2.40 2.77 3.13
(iii) Transformed (Growth indices)
S1 Gl Quartile 130.27 159.02 188.89
Gly Quartile 0.33 0.42 0.52
S, Gl Quartile 121.09 144.33 171.93
Gl Quartile 0.67 0.80 0.95
Ss Glys Quartile 99.08 119.13 140.95
Glys Quartile 0.81 0.95 1.09
S4 Glig Quartile 103.96 123.27 143.17
Glyy Quartile 1.10 1.25 1.42
T, Gl Quartile 180.20 217.44 258.88
Gly Quartile 0.72 0.87 1.04
T, Gl Quartile 174.43 205.09 242.28
Gl Quartile 1.10 1.30 1.51
T3 Glys Quartile 152.08 182.10 213.68
Glys Quartile 1.48 1.70 1.94
Se/Ss/ Ty Y Decile 45.04, 53.29, 58.67, 63.92, 69.06, 73.52, 78.70,

84.25, 92.29
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Table 3: Mean yield forecasts for second year based on various first year Markov chain
models using simulated first year data

0) Models upon untransformed data

Name and Data type Definition/ S1 SoIS1 S3fSoT1  SalS3lTy  Ss/SalT3

type of no. of
model States

REG Available - 59.86 57.17 56.34 54.84 53.15
Regression dataset (1.68) (1.72) (1.60) (1.64) (1.62)
MMC1 Untransformed MxM 66.10 64.13 62.03 58.27 56.26
FOMC 4 (0.30) (0.27) (0.24) (0.18) (0.15)
MMC2 Untransformed QxM 64.32 61.70 58.15 56.61 55.02
FOMC 8 (0.46) (0.44) (0.31) (0.20) (0.16)
MMC3 Untransformed MxQ 64.26  62.05 59.06 56.51 54.51
FOMC 8 (0.51) (0.47) (0.32) (0.21) (0.16)
MMC4 Untransformed QxQ 64.29 61.83 59.25 57.13 56.31
FOMC 16 (0.28) (0.24) (0.22) (0.19) (0.14)
MMC5 Untransformed MxMxMxM - 61.68 58.91 57.54 56.99
SOMC 16 (0.14) (0.10) (0.07) (0.05)
(i1) Models upon transformed data

MMC6 G.l MxM - 62.69 61.28 57.59 57.01
SOMC 4 (0.35) (0.29) (0.26) (0.15)
MMC7 G.l QxQ - 6223 61.31 59.05 58.72
SOMC 16 (0.45) (0.39) (0.23) (0.17)
MMC8 P.C MxM - 6282 61.65 58.90 57.12
SOMC 4 (0.35) (0.38) (0.20) (0.14)
MMC9 P.C QxQ - 5961 58.58 56.23 54.83
SOMC 16 (0.26) (0.22) (0.14) (0.12)
MMC10 G.l MxM - - 60.22 60.07 58.43
TOMC 4 (0.25) (0.21) (0.12)
MMC11 G.l QxQ - - 59.97 59.43 57.20
TOMC 16 (0.19) (0.15) (0.09)
MMC12 P.C MxM - - 52.54 52.49 52.48
TOMC 4 (0.29) (0.23) (0.15)
MMC13 P.C QxQ - - 52.72 52.53 52.30
TOMC 16 (0.20) (0.15) (0.10)

Observed mean yield = 51.82 kg/plot
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