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Abstract 

 

      Markov chain models provide objective pre-harvest forecasts of crop yields with reasonable 

precisions well in advance aiding timely decisions.  However, these models require sizable dataset 

for them to be stable and reliable.  If the dataset is small, the estimated probabilities may not be 

precise with many zeroes occurring in the transition probability matrices.  This will be more so 

with increase in the order of the Markov chain, because in such cases the number of states 

increases very rapidly.  The present study deals with development of yield forecast models for 

sugarcane crop based on higher order (multiple) Markov chains built on a massive database.  The 

results revealed that use of such models advanced the time of forecast for the same precision and 

the forecasts were found to be better when compared to that of first order Markov chain and 

regression based models. Moreover, when the order of Markov chain increases and/or the 

definition of states became finer, the mean yield forecasts approach the actual yield justifying the 

development of models with finer definitions of states of plant conditions. For the data under 

study, the principal component based third order Markov chain models are the models that give 

better forecasts. 

 

Keywords: Crop yield; forecast; higher order (multiple); Markov chain;   simulation; growth 

index; principal component; massive datasets 

 

 

1 Introduction 
  

Crop yield forecasts are quite useful in formulation of policies regarding stock, distribution 

and supply of agricultural produce to different areas of any country.  Prominent among the 

methods of forecasting are based on models which employ regression, time series or stochastic 

approaches. These methods exploit data on crop biometrical characters, weather parameters, 

farmers’ eye estimates, agro-meteorological conditions and/ or remotely sensed crop reflectance 

observations etc., utilized either separately or in an integrated fashion for forecasting crop yields at 

successive stages in the crop growing season.  One among the various statistical approaches in 

vogue is the probability model based on Markov chain theory, which overcomes some of the well 

known drawbacks of the widely used regression model.   

  

    Matis et al. (1985) proposed a statistical methodology for forecasting crop yields at 

successive stages of the growing season of any crop using Markov chain theory.  Later, Matis et 

al. (1989) applied the Markov chain approach for forecasting cotton yields.  Jain and Agrawal 

(1992) developed First Order Markov Chain (FOMC) model for forecasting sugarcane yields.  

Agrawal and Jain (1996) demonstrated the performance of Markov chain model in forecasting 

sugarcane yields by using farmers’ eye estimates in addition to the biometrical characters. Singh 

and Ibrahim (1996) attempted use of remotely sensed spectral data in Markov chain model for 
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obtaining pre harvest wheat yield forecasts.  Jain and Ramasubramanian (1998) developed a 

Second Order Markov Chain (SOMC) model using coarser states within the stages of the chain.  

Ramasubramanian and Jain (1999) have developed Markov chain models by using growth indices 

of the biometrical characters, through which, it was possible to use data from two stages 

simultaneously for forecasting sugarcane yields.  Ramasubramanian et al. (2010) have developed 

yield forecast models for sugarcane crop using higher order (multiple) Markov chains by 

considering different possible combinations of various aspects viz., orders of Markov chain used, 

number of biometrical characters used and percentile definitions of plant condition states of 

biometrical characters within stages albeit using a smaller dataset.  Patel et al. (2013) have 

developed user-friendly software for fitting Markov chain models. 

 

The only assumption under an FOMC (or simply a Markov chain) set up is that the past (crop) 

conditions are statistically uninformative for predicting the future (crop yield forecasts), after the 

present (crop) conditions are known. As regards to higher order (say r-th order) Markov chains, 

the only assumption is that, after the present r stages conditions are known, the conditions 

previous to them are uninformative for predicting the future.  However, the Markov chain 

methodology requires sizable dataset to estimate the transition probability matrices (TPMs).  

When the dataset is small, the estimated transition probabilities will not be precise.  Hence, the 

stability and reliability of the model have been examined in this study, by using a massive dataset 

generated from the available dataset by simulation in order to find whether any improvement can 

be made in the forecast and its efficiency.  

  

The higher order (multiple) Markov chains provide a more realistic and elaborate model as 

against the simple dependence structure of the FOMC model utilized by earlier workers.  

However, the use of multiple Markov chains will result in increase in the number of states very 

rapidly with increase in the order of Markov chain.  So an attempt has also been made to study the 

effect of coarser or finer definition of plant condition states (and hence smaller or larger number of 

states) on the ultimate precision of the forecasts.  

 

2 Notations and Preliminaries 

Two years data on biometrical characters and yield collected by Indian Agricultural 

Statistics Research Institute, New Delhi under the pilot study on pre harvest forecasting of 

sugarcane in Meerut district of U.P. state (Jha et al. 1979) were utilized for the study which is a 

standard data set, collected through scientific sampling, to represent actual growth characteristics  

and used by many researchers  for developing/testing various forecast models (Jain and Agrawal, 

1992; Agrawal and Jain, 1996;  Jain and Ramasubramanian, 1998;  Ramasubramanian and Jain, 

1999; Ramasubramanian et al., 2010; Patel et al., 2013) . As the aim was to propose a simulation 

based Markov chain based forecasting methodology upon a massive dataset generated from this 

basic dataset and the proposed models can be conveniently compared with earlier  models for 

judging their forecasting performance. 

   

In all, 144 plots data were available in 1977 78 (hereinafter called first year) whereas 156 

plots data were available in 1978 79 (second year).  The selected biometrical characters are:  

number of plants per plot (X1) and average plant height per plant (X2).  The various stages of 

observations on X1 and X2 are 3 4, 4 5, 5 6, 6 7 and 7 8 months after planting.  At harvest (12 

months after planting), the actual yield i.e. weight of canes per plot (Y) were also available. These 

original stages are denoted by s1, s2, s3, s4, s5 and the harvest stage, by s6.  Let X bi denote the b
th

 

biometrical character (b = 1, 2) in the i
th

 original stage (i = 1, 2, 3, 4, 5). For a multiple Markov 

chain model, say, an SOMC model developed, first year data on these stages, when combined two 

by two, gave rise to four composite stages.  These composite stages of SOMC are denoted by Sr 

for r = 1, 2, 3, 4 with Sr obtained through combination of original stages as respectively (s1, s2), 
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(s2, s3), (s3, s4) and (s4, s5).  The harvest stage s6 is denoted as the stage S5 in the SOMC chain. 

Note also that states in a composite stage are the combination of states of individual stages 

involved in the composite stage.  For example, consider the composite stage S1 of SOMC model 

that has been obtained by combining the two original stages s1 and s2 (of FOMC).  Suppose 

original stage s1 has k states and stage s2 has l states then composite stage S1 will contain (kxl) 

states as composite states with  the final stage S5 having ten states (as deciles of yield were used 

for defining states).  Similarly, let T1, T2, T3 denote the composite stages of a Third Order Markov 

Chain (TOMC) model formed by combining the original stages as respectively (s1, s2, s3), (s2, s3, 

s4) and (s3, s4, s5).  Let T4 denote the harvest stage of TOMC model (original stage s6) 

  

Several Markov chain models have been developed in the present study based on different 

combinations of the following three criteria: (restricting the number of states in any TPM 

considered being at the most sixteen only for the present study) 

 

(i) Order of Markov chain restricted to one, two or three (i.e.) FOMC, SOMC or TOMC. 

 

(ii) Definition of (plant condition) states on the basis of median (M) of the biometrical character 

plant population (X1) and median (M) of the biometrical character average plant height (X2),  

refer this as definition MxM or quartiles (Q) of the biometrical character X1  and quartiles (Q) 

of the biometrical character X2, refer this as definition QxQ.  (In addition, the options of 

considering median (M) of the biometrical character X1 and quartiles(Q) of the biometrical 

character X2, refer this as definition MxQ or quartiles(Q) of the biometrical character X1  and 

median (M) of the biometrical character X2, refer this as definition QxM have also been 

considered but only in developing FOMC models because they are not valid in case of higher 

order Markov chain models as such definitions of states will not make the latter’s stages to 

follow conditional dependence of the Markov chain property). 

 

(iii) Untransformed data (simulated large dataset considered as such) or transformed data viz. 

growth indices and principal components of the simulated large dataset (discussed 

subsequently). 

 

Use of Growth Indices (GIs) and Principal Components (PCs) of the biometrical characters in 

multiple Markov chain models facilitates reduction in the number of variables within a composite 

stage so that the number of states in the multiple Markov chains is kept at manageable level. Thus 

by using GI or PC, it is possible to use both X1 and X2 together in the model even when defining 

finer plant condition states on the basis of quartiles(QxQ).  

 

The growth indices are obtained as weighted accumulations of observations on biometrical 

characters in different stages, weights being the partial correlation coefficients between yield (Y) 

and biometrical characters (X1 or X2) at different stages of crop growth.  The growth index of the 

b
th

 biometrical character is given by  

c

bcbcbi xrG  (i = S1, S2, S3, S4) 

where i is used for composite stage identification, the summation extends over the initial and final 

stages considered in developing the index of the character, rbc is the partial correlation coefficient 

between yield and b
th

 biometrical character at c
th

 stage, Xbc is the value of the b
th

 biometrical 

character at the c
th

 stage.  At composite stage S1, there will be GIs G11 and G21 instead of (X11, 

X12) and (X21, X22) and similarly for other stages S2, S3 and S4.   

  

Instead of using growth indices for developing multiple Markov chain models, alternatively 

PCs can also be used.  Principal components are generally not warranted in situations where there 

are only two variables.  However, considering variable-set for each composite stage and 
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transforming the original two variables variable-wise  separately into PCs and taking only the first 

(significant) PC  from each of them will rapidly reduce the number of states within (composite) 

stages of the multiple Markov chain models considered.  That is, if say a PC based SOMC model 

is to be developed and if X1 and X2 are the two variables at each of the stages s1 and s2 then the 

PCs of X11 and X12 are obtained separately and that of X21 and X22 obtained separately.  Let PCbi 

denote the first principal component of the b
th

 biometrical character (b = 1, 2) for the i
th

  composite 

stage (i = S1, S2, S3, S4) for an SOMC model. At stage S1 (stages s1 ans s2 combined), the PCs 

PC11(1) & PC11(2) from variables (X11, X12) and PCs PC 21(1) & PC 21(2) from variables (X21, X22) 

were obtained  as 
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where K1 is the matrix with rows as the characteristic vectors of the corresponding covariance 

matrix 1 (uncorrected for mean) of (X11, X12), the variance of PC11(1)  is the 1
st
 characteristic root 

1 of matrix 1,  accordingly for PC11(2) etc. Hereinafter PC11(1) will be referred to as PC11 and so 

on. Accordingly, at composite stage S1 of SOMC model the variables are PC11 and PC21 instead of  

(X11, X12) and (X21, X22) and similarly for other stages S2, S3 and S4.  Similar treatment is followed 

for developing PC based TOMC models.  

 

3 Model Development 
 

Multiple Markov chains have been developed by constructing Markov chains with orders 

greater that one which are collectively referred to as higher orders. Let any multiple Markov chain 

model have s (composite) stages.  Let mi, i = 1, 2, …, s denote the number of states defined on the 

basis of percentiles of observations of the selected biometrical characters within stage i.  Let Ai,i+1 

= kgp  (i = 1, 2, …, s  1; k=1, 2,…, mi; g=1, 2, …, mi+1) denote the (mixmi+1) TPMs which 

give the transition probabilities pkg of a group of plants moving from any possible state k of stage i 

to any possible state g of stage (i+1), each row summing to one.  For a given stage i, the predicted 

yield distributions (PYDs) are obtained as the product 
1s

ia

1aaA ,  which is of order (mixms).  This 

matrix thus will give as many PYDs as the number of states in stage i. In the final (harvest) stage 

s, the yield information is available in as many class intervals as is the number of states in it i.e. 

ms. The midpoints of these yield classes can be formed as a summary mean vector ym of order (ms 

x 1). 

  
Means of PYDs for each of the states of a stage for the first year can be calculated by simply 

multiplying the PYDs with   ym. Thus at each stage i, means of PYDs can be obtained as 

  

m1aa

1s

ia

i A yy ,
)(  

 

of order (mi x 1).  The vector y
(i)

 will contain elements as yij's with j ranging from 1 to mi. 

 

To forecast yield of second year, the second year data can be classified as per the states of a 

stage in first year.  This will result in number of observations of second year say fij, falling in 

various states 1, 2, …, mi  of a particular stage i in first year. Weighted mean of means of 

predicted yield distributions for each of the states of a stage can be worked out, weights being the 

number of observations of second year falling in different states/stages of  the first year data, 

which would give mean yield forecast YFi at each stage i for the second year.    This (weighted) 

mean yield forecast at stage i can be mathematically written as 
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where 
im

1j

ijfn is the total number of observations available in the second year at each stage i, 

however, since irrespective of any stage same number of observations are used hence 'n' not 

suffixed by i. 

 

As the actual yield data upon second year were already available the forecast errors (FE) can 

be calculated at different stages as 
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where fij, YFij and YOij denote the number of observations, yield forecast and observed yield 

respectively, corresponding to the jth state of the ith stage. 

 

4 Simulation of Massive Dataset 
 

Multiple Markov chain modeling requires sizable dataset for the developed models to be 

stable and reliable.  If the dataset is small, the estimated probabilities may not be precise with 

many zero probabilities occurring in the TPMs.  This will be more so with increase in the order of 

the Markov chain, because in such cases the number of states increases very rapidly resulting in 

very large and unmanageable TPMs.  Inflation of data through simulation enables all types of 

variations in the crop growth system to reflect in the dataset in order that it can mimic natural 

happenings connected with growth of sugarcane crop in question.  Thus any data point that might 

have occurred but did not occur in the collected sample but for the limited sample size can also be 

taken into account.  The simulated dataset is generated to appear similar to the available sample 

dataset. 

 

To start with, at every stage in the actual crop growth process, the central limit theorem 

considerations render procedures that treat the data to have come from distributions as if it has 

come from distributions somewhat close to normal distribution as the standards due to large 

number of data points upon the available variables.  Having assumed that the sample have come 

from a Gaussian population, the simulations can be based exclusively on the mean vector and the 

covariance matrix over all stages as the latter takes care of the interrelationships between the 

variables at various stages under consideration. Attempts were made to include transition 

probability matrices also as additional parameters but by doing so we could only get more of the 

same data with replications rather than similar data hence could not be considered.  Thus even 

though the basic setting of the multivariate simulation lends itself very naturally to the utilization 

of normal distribution, the Markov conditional dependencies between the stages of the chain 

compel one to put restrictions between each of the same variables observed at different stages.  In 

effect, parameter estimates of the simulated data set compared well with those of the original data 

set, notwithstanding the specificity of the underlying distribution which initially was used in the 

simulation.  Thus it is relevant that the simulation algorithm used with the given restrictions 

represent actual growth characteristics up to the extent where complexities in modeling such 
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systems mathematically can be coped with.  Thus a massive population similar to the one of the 

original dataset has been arrived. 

  

The original dataset has 144 data points for first year upon eleven variables viz. Y, Xij (b=1,2 

; i = 1,2,3,4,5) where b represents biometrical character and i the stage at which the character has 

been observed.  Shapiro-Wilk test for normality revealed that all the variables follow normal 

distribution except for the variables X11 and X21 at stage-1.  The first year dataset has been 

distended into a massive dataset of 5000 data points upon the same eleven variables preserving 

Markov chain properties. For achieving this, a computer program for simulation was written in 

Fortran language to generate eleven-variate normally distributed population by using the estimates 

of parameters mean  vector and variance-covariance  matrix calculated from the available 

dataset.  In order to preserve Markov chain property in the simulated dataset as well the following 

restrictions were also imposed: 

 

(i) The biometrical character plant population i.e.X1i (i =1,2,3,4,5) is restricted to lie within the 

corresponding range (i.e. between maximum and minimum values) of the baseline dataset.  

(ii) The biometrical character average plant height is restricted to fulfil the inequality condition 

2524232221 XXXXX  

 

Though the simulation has been subjected to the ascending inequality restriction for the 

variable plant height, the same could not be made for the other variable plant numbers as such a 

condition does not suit the latter.  This is because, in the growth process of the crop, the number of 

plants per plot may increase or decrease according as new plants emerge out or some plants 

wilt/die.  This causes the plant population to change with the growth of the plant, more so in the 

initial stages but not in an increasing manner. However, to simulate data set with similar settings, 

this variable is restricted to lie between its corresponding range in the available dataset.   

 

The massive population has been obtained by using the algorithm given by Scheuer and 

Stoller(1962) which is briefly discussed here.  Let the 11-variate vectors to be generated 5000 

times be denoted by (v + μ). To start with, assuming normality, generate 5000 standard normal 

multivariate vectors 11I0Nu ,~  whose elements u1, u2, … , u11 are independent standard normal 

variates.  Then by setting 

,,~ 0NCC0NuCv (say), where 

nn2n1n

n22221

n11211

ij andc









ΣC  with n=11 and 

assuming CC  calculate the elements of C matrix as follows: 

(i) 11i1c
11

1i
1i ,  (ii) 111c

1i

1k

2
ikiiii i,c  

(iii) 11ij1
c

cc

c
jj

1i

1k

jkikij

ij ,  (iv) cij = 0 , i < j  11 

Once cij’s are obtained, then vi’s can be obtained as 11,...2,1i,ucv
i

1j
jiji  to obtain uCv . 

Then ,μ~μv,0~v NhenceandN .  Thus 5000 such v vectors each of size 11x1 were 

generated.  The known estimates of parameters  and  from the available first year data were 

utilised to get the massive Markov chain population of 5000 data points upon the same eleven 
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variables.  The estimates of  and  of simulated population (Table 1) compared well with that of 

those obtained from the available first year dataset.   

 

5 Results and Discussion 
 

Summary statistics of the simulated first year data and available second year data are given 

in Table 1.  Table 2 gives the percentiles of biometrical characters of untransformed and of their 

transformations viz. principal components and growth indices used in the definition of plant 

condition states for various Markov chain models developed upon simulated first year data.  The 

results (mean yield forecasts) for second year based on various first year Markov chain models 

using simulated first year data are presented in Table 3.  It also provides description about the 

definition and number of states, name and type of model developed.  As an illustration, the model 

MMC6 (Table 3) is taken to discuss the steps involved in model development.  MMC6 is an 

SOMC model wherein growth indices of the two biometrical characters X1 (plant population) and 

X2 (average plant height) are used with definition of plant condition states as MxM i.e. 

medians(M) of growth indices (Table 2).  Growth indices are formed by using partial correlation 

coefficients between yield(Y) and biometrical characters of simulated data of first year at various 

stages i=1,2,3,4,5 (0.46387, 0.54700, 0.54192, 0.54660, 0.55892 for Y with X1i and 0.20579, 

0.42559, 0.35262, 0.31053, 0.41122 for Y with X2i).   

 

Thus, at composite stage S1 (original stages s1 and s2 combined), the growth indices are given by 

G11 = 0.46387 X11 + 0.54700 X12 and G21 = 0.20579 X21 + 0.42559 X22.  The different composite 

states within the composite stage, for say, S1 , are accordingly formed by combination of the 

following conditions: 

 

(i) G11 is classified on the basis of median (159.02) and thus we get two classes viz.  

 G11  159.02 and G11 > 159.02 

(ii) G21 is classified on the basis of median (0.42) and thus we get two classes viz. 

 G21  0.42 and G21 > 0.42 

In all, we get four ‘composite states’ within the composite stage S1 

 

(i) G11  159.02, G21  0.42 

(ii) G11  159.02, G21 > 0.42 

(iii) G11 > 159.02, G21  0.42 

(iv) G11 > 159.02, G21 > 0.42 

 

Similarly, for other composite stages in the SOMC model such composite states were defined. The 

observed frequencies of the plants moving from one plant condition class(composite state) of a 

composite stage, say, Si (i=1, 2, 3, 4) to different condition classes(composite state) of the next 

composite stage Si+1 (i=1, 2, 3) were calculated. For instance, the frequency matrix of transition 

from S1 to S2 is given by,  

  States of stage S2 

  (i) (ii) (iii) (iv) 

 (i) 1189 80 125 11 

States of stage S1  (ii) 150 815 20 111 

 (iii) 165 4 805 125 

 (iv) 6 90 95 1210 
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And other transition frequency matrices i.e. from S2 to S3 and from S3 to S4 were obtained as 

matrices of order 4.  The final frequency matrix i.e. from S4 to S5 has been obtained as a 4x10 

matrix which is given by 

  States of stage S5 

S
ta

te
s 

o
f 

st
ag

e 
S

4
  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) 

(i) 394 340 295 230 188 125 84 39 20 0 

(ii) 45 65 100 140 135 75 105 75 35 10 

(iii) 35 60 85 85 125 85 85 95 60 89 

(iv) 10 24 41 64 100 195 254 254 329 424 

 

These frequencies were then utilised to compute various transition probabilities by noting that row 

sum of any TPM is unity. Thus each row element was divided by its corresponding row sum.  This 

gave rise to TPM’s A i , i+1 (i= S1, S2, S3, S4). Each matrix will be of order 4x4 except for the last 

TPM whose order is 4x10 because in the final stage, only information upon Y is there and it has 

been classified on the basis of deciles. Thus from the above frequency matrix, the TPM of 

transition from S1 to S2 has been obtained as  

 

0.846 0.057 0.089 0.008 

0.137 0.744 0.018 0.101 

0.150 0.004 0.732 0.114 

0.004 0.064 0.068 0.864 

 

Similarly, other TPMs i.e. A i, i+1 for i = S2 and S3 as (4x4) matrices and TPM A i, i+1 for i=S4 as a 

(4x10) matrix have been obtained which are not presented here for brevity. 

 

Predicted yield distributions (PYDs) from first year data multiple Markov chain models were used 

to forecast yield of second year at various stages of crop growth. The product 1i,iA  for i= 

S1, S2, S3, S4 gives a 4x10 matrix which gives four PYDs, one for each of the four composite states 

in composite stage S1. The product 1i,iA  for i= S2, S3, S4 again gives a 4x10 matrix which 

gives four predicted yield distributions, one for each of the four composite states in composite 

stage S2.  Likewise PYDs for S3 and S4 have also been obtained.  Means of PYDs for each of the 

composite states of a composite stage for the first year were worked out by simply multiplying 

these PYDs separately with the midpoints of the yield class intervals formed on the basis of 

deciles (which is a 10x1 vector; refer Table 2).  Thus at each composite stage, means of PYDs are 

obtained as 

 

composite states  (i) (ii) (iii) (iv) 

Stage S1  59.64 58.02 55.51 53.68 

Stage S2  67.68 67.88 65.77 65.34 

Stage S3  67.96 68.24 71.05 70.95 

Stage S4  77.71 79.27 81.39 83.18 

To forecast yield of second year, the second year data were classified as per the composite states 

of a composite stage in first year.  This resulted in number of observations falling in various 

composite states of a particular composite stage in first year.  It may be noted that the row sum is 

equal to the number of data points (i.e. 156) in second year at each stage. 

  

composite states  (i) (ii) (iii) (iv) 

Stage S1  105 24 21 6 

Stage S2  112 21 17 6 
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Stage S3  133 14 5 4 

Stage S4  128 9 12 7 

 

Weighted mean of means of predicted yield distributions for each of the states of a stage was 

worked out, weights being number of observations of second year in different states/stages of first 

year.  This gave mean yield forecasts at each stage viz. at stage S1 as 62.69 kg/plot, at stage S2 as 

61.28 kg/plot, at stage S3 as 57.59 kg/plot and at stage S4 as 57.01 kg/plot, for second year (in 

which actual yield was 51.82 kg/plot) based on the particular first year data multiple Markov chain 

model MMC6.  The forecast errors (S.E.) were also calculated at different stages by using 

equation (1) of section 3 with the values of fij’s as the number of observations of second year 

falling in various states of a particular stage in first year (given above). The values of yij’s are 

nothing but the four mean p.y.d.’s at the j
th

 state of the i
th

 stage. And the forecast errors were 0.35, 

0.29, 0.26 and 0.15 for the mean yield forecasts at stages S1, S2, S3 and S4 respectively.  In the 

same fashion, the mean yield forecasts for second year along with their forecast errors can be 

obtained by developing other multiple Markov chain models upon first year data (Table 3).  The 

results obtained using multiple regression models for second year by Ramasubramanian and Jain 

(1999) wherein the model was built on available first year data at each individual stage with yield 

as regressand and the biometrical characters as regressors are presented in Table 3 as model REG 

for comparison purposes. 

 

The forecast at composite stage T1 (original stages s1, s2 and s3 combined), composite stage S2 

(original stages s2 and s3 combined) and original stage s3 are appropriate stages to be compared as 

all these stages consist of the common ultimate stage s3 in them.  Likewise the stages (s2 and S1), 

(s4, S3 and T2) and (s5, S4 and T3) are the appropriate stages for comparisons with common 

ultimate stages s2, s4 and s5 respectively in each of them.  Perusal of the Table 3 reveals that 

considerable improvement in forecasts can be obtained by using higher orders viz. two (SOMC) 

and three (TOMC) in preference to first order Markov chain models. Thus it can be inferred that in 

most of the cases, finer definitions of states can give better forecasts.  The table also reveals 

mostly better forecasts when SOMC models (GI or PC based) are used instead of FOMC models 

when comparing at corresponding same definitions of states.  Both GI based and PC based SOMC 

models perform at par when compared among them as far as forecasts are concerned.  The TOMC 

models MMC12 and MMC13 turn out to be the best models as the differences between observed 

mean yield i.e. 51.82 kg/plot and the forecast values 52.54, 52.49 and 52.48 kg/plot for MMC12 

i.e. PC based TOMC model using MxM definition and 52.72, 52.53 and 52.30 kg/plot for MMC13 

i.e. PC based TOMC using QxQ definition seem to be very small with lower forecast error.  

 

6 Concluding Remarks 
 

When the order of Markov chain increases and/or the definition of states became finer, the 

mean yield forecasts approach the actual yield justifying the development of multiple Markov 

chain models with finer definitions of states of plant conditions. Hence there is advancement in the 

time of forecast when multiple Markov chain models are used in preference to the existing models.  

For the data under study, the principal components based TOMC models are the models that give 

better forecasts.  

 

There are many advantages of using Markov chain models over other conventional 

approaches such regression, time series modeling etc.   Firstly, they require less stringent 

assumptions over other models.  Rather, the only assumption it requires is that the future scenarios 

depend only upon the present conditions which is supposed to contain all information about the 

past due to the Markovian property and renders the past uninformative and how the present has 

been arrived at from the past is of no consequence.  Moreover, quantiles (medians, quartiles etc.) 

are used in this approach as against the usually used mean elsewhere, hence in certain situations 
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such as presence of outliers, extreme values etc., this method is unaffected.  In this era of remote 

sensing, multi-spectral data of reflectance from crops over the various stages of the growing 

period can be conveniently used for forming transition matrices to build Markov chain models 

(Singh and Ibrahim, 1996) rather than visiting the fields for taking measurements.  Moreover, at 

every stage of the crop growth period, forecasts can be obtained and hence more informative, even 

though intuitively, the forecasts at later periods should be more reliable.  In addition, this method 

can be said to be ‘model-free’ with just the states, stages and transition probability matrices and 

final conditions yielding the crop forecasts, instead of imposing model equations for the data 

collected.  However, there are certain limitations of Markov chain models as well.  While much of 

theory is well established for usual methods like regression, the properties of Markov chain 

forecasts are yet to be studied in depth.  For instance, for calculating prediction interval of future 

observations during model fitting itself (as can be obtained for regression forecasts, see 

Montgomery et al., 2012, pages 33-34), such formula are not readily available in case of Markov 

chain approach and one has to get contented with standard error of forecasts (as used in this study) 

for which the actual values of the future observations are also required.  Thus the precision in the 

forecast using this approach requires separate evaluation and further study.  Also the cross 

sectional cum time series data structure of this approach sometimes makes it difficult for the 

practitioners for fitting such models.  However, customized software (Patel et al., 2013) on 

Markov chain modeling are available nowadays for fitting these models very easily once the data 

set is ready. 
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Table 1: Summary information about available two years data upon yield and 

biometrical characters of sugarcane of Meerut district, U.P. 

 

(i) Minimum, maximum and arithmetic mean values 

 

 

Variable 

Simulated first year data Available second year data 

Minimum Maximum Mean Minimum Maximum Mean 

Y 15.79 113.39 68.68 15.69 90.63 51.82 

X11 36.00 327.00 157.28 30.00 273.00 120.47 

X21 0.10 0.88 0.37 0.09 0.99 0.30 

X12 41.00 319.00 159.01 41.00 221.00 128.63 

X22 0.26 1.68 0.83 0.19 1.49 0.67 

X13 13.00 208.00 108.40 30.00 142.00 83.28 

X23 0.51 2.04 1.28 0.53 1.83 1.07 

X14 30.00 195.00 112.08 34.00 137.00 89.46 

X24 0.71 2.46 1.62 0.15 2.05 1.33 

X15 34.00 194.00 112.72 34.00 140.00 90.53 

X25 0.79 2.76 1.85 0.75 2.13 1.47 

 

(ii) Variance covariance matrix of simulated first year data 

 

 Y X11 X21 X12 X22 X13 X23 X14 X24 X15 X25 

Y 317.90 433.68 0.71 409.32 1.55 327.93 2.46 300.54 2.84 302.08 3.56 

X11 433.68 2412.83 1.51 1537.42 3.63 990.85 5.04 832.21 5.14 810.67 5.99 

X21 0.71 1.51 0.02 -0.89 0.03 1.45 0.02 1.19 0.02 1.08 0.02 

X12 409.32 1537.42 -0.8 2097.37 -0.3 741.27 2.09 660.43 3.22 657.95 4.43 

X22 1.55 3.63 0.03 -0.32 0.06 2.56 0.06 2.36 0.05 2.24 0.05 

X13 327.93 990.85 1.45 741.27 2.56 871.58 3.14 676.17 3.53 651.10 4.06 

X23 2.46 5.04 0.02 2.09 0.06 3.14 0.08 3.31 0.08 3.22 0.08 

X14 300.54 832.21 1.19 660.43 2.36 676.17 3.31 654.31 3.74 619.54 4.10 

X24 2.84 5.14 0.02 3.22 0.05 3.53 0.08 3.74 0.09 3.54 0.10 

X15 302.08 810.67 1.08 657.95 2.24 651.10 3.22 619.54 3.54 613.85 4.07 

X25 3.56 5.99 0.02 4.43 0.05 4.06 0.08 4.10 0.10 4.07 0.11 

 

  (iii) Variance covariance matrix of available second year data 

 

 Y X11 X21 X12 X22 X13 X23 X14 X24 X15 X25 

Y 246.04 397.67 1.07 335.74 2.09 256.21 2.63 262.75 2.86 262.14 3.02 

X11 397.67 1399.30 3.03 915.19 4.53 612.37 4.93 598.84 4.42 584.68 4.28 

X21 1.07 3.03 0.03 -0.96 0.04 1.77 0.03 1.40 0.02 1.35 0.02 

X12 335.74 915.19 -0.9 1378.00 0.51 439.13 2.04 485.10 2.90 480.52 3.34 

X22 2.09 4.53 0.04 0.51 0.06 2.96 0.05 2.53 0.04 2.47 0.04 

X13 256.21 612.37 1.77 439.13 2.96 423.17 3.21 395.83 3.04 392.60 3.08 

X23 2.63 4.93 0.03 2.04 0.05 3.21 0.06 3.00 0.06 2.93 0.05 

X14 262.75 598.84 1.40 485.10 2.53 395.83 3.00 401.01 2.98 400.17 3.02 

X24 2.86 4.42 0.02 2.90 0.04 3.04 0.06 2.98 0.06 2.95 0.06 

X15 262.14 584.68 1.35 480.52 2.47 392.60 2.93 400.17 2.95 406.81 3.00 

X25 3.02 4.28 0.02 3.34 0.04 3.08 0.05 3.02 0.06 3.00 0.07 
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Table 2: Quantiles of biometrical characters of untransformed and of their 

transformations viz. principal components and growth indices used in the 

definition of plant condition states for various Markov chain models developed 

upon simulated first year data 

Stage Biometrical 

character 

Quantile Values 

Q1 Q2 Q3 

(i) Untransformed  

s1 

 

s2 

 

s3 

 

s4 

 

s5 

X11 

X21 

X12 

X22 

X13 

X23 

X14 

X24 

X15 

X25 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

123 

0.25 

129 

0.65 

88 

1.07 

94 

1.39 

96 

1.61 

156 

0.35 

158 

0.81 

108 

1.27 

112 

1.61 

112 

1.84 

190 

0.47 

192 

1.00 

128 

1.49 

130 

1.83 

130 

2.09 

(ii) Transformed (Principal components) 

S1 

 

S2 

 

S3 

 

S4 

PC11 

PC21 

PC12 

PC22 

PC13 

PC23 

PC14 

PC24 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

180.39 

0.7 

157.79 

1.27 

129.5 

1.78 

133.89 

2.14 

222.04 

0.9 

190.17 

1.53 

154.97 

2.06 

158.39 

2.45 

264.53 

1.1 

226.39 

1.78 

181.13 

2.35 

183.83 

2.77 

T1 

 

T2 

 

T3 

PC11 

PC21 

PC12 

PC22 

PC13 

PC23 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

202.15 

1.30 

186.14 

1.90 

160.61 

2.40 

246.32 

1.57 

220.65 

2.22 

191.78 

2.77 

292.55 

1.83 

259.82 

2.54 

223.15 

3.13 

(iii) Transformed (Growth indices) 

S1 

 

S2 

 

S3 

 

S4 

GI11 

GI21 

GI12 

GI22 

GI13 

GI23 

GI14 

GI24 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

130.27 

0.33 

121.09 

0.67 

99.08 

0.81 

103.96 

1.10 

159.02 

0.42 

144.33 

0.80 

119.13 

0.95 

123.27 

1.25 

188.89 

0.52 

171.93 

0.95 

140.95 

1.09 

143.17 

1.42 

T1 

 

T2 

 

T3 

GI11 

GI21 

GI12 

GI22 

GI13 

GI23 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

Quartile 

180.20 

0.72 

174.43 

1.10 

152.08 

1.48 

217.44 

0.87 

205.09 

1.30 

182.10 

1.70 

258.88 

1.04 

242.28 

1.51 

213.68 

1.94 

s6 / S5 / T4 Y Decile 45.04, 53.29, 58.67, 63.92, 69.06, 73.52, 78.70, 

84.25, 92.29 
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Table 3: Mean yield forecasts for second year based on various first year Markov chain 

models using simulated first year data 

 

(i) Models upon untransformed data 

Name and 

type of 

model 

Data type Definition/ 

no. of 

States 

s1 s2/S1 s3/S2/T1 s4/S3/T2 s5/S4/T3 

REG 

Regression 

Available 

dataset 

- 

 

59.86 

(1.68) 

57.17 

(1.72) 

56.34 

(1.60) 

54.84 

(1.64) 

53.15 

(1.62) 

MMC1 

FOMC 

Untransformed MxM 

4 

66.10 

(0.30) 

64.13 

(0.27) 

62.03 

(0.24) 

58.27 

(0.18) 

56.26 

(0.15) 

MMC2 

FOMC 

Untransformed QxM 

8 

64.32 

(0.46) 

61.70 

(0.44) 

58.15 

(0.31) 

56.61 

(0.20) 

55.02 

(0.16) 

MMC3 

FOMC 

Untransformed MxQ 

8 

64.26 

(0.51) 

62.05 

(0.47) 

59.06 

(0.32) 

56.51 

(0.21) 

54.51 

(0.16) 

MMC4 

FOMC 

Untransformed QxQ 

16 

64.29 

(0.28) 

61.83 

(0.24) 

59.25 

(0.22) 

57.13 

(0.19) 

56.31 

(0.14) 

MMC5 

SOMC 

Untransformed MxMxMxM 

16 
 61.68 

(0.14) 

58.91 

(0.10) 

57.54 

(0.07) 

56.99 

(0.05) 

 

(ii) Models upon transformed data 

    

MMC6 

SOMC 

G.I. MxM 

4 
 62.69 

(0.35) 

61.28 

(0.29) 

57.59 

(0.26) 

57.01 

(0.15) 

MMC7 

SOMC 

G.I QxQ 

16 
 62.23 

(0.45) 

61.31 

(0.39) 

59.05 

(0.23) 

58.72 

(0.17) 

MMC8 

SOMC 

P.C MxM 

4 
 62.82 

(0.35) 

61.65 

(0.38) 

58.90 

(0.20) 

57.12 

(0.14) 

MMC9 

SOMC 

P.C QxQ 

16 
 59.61 

(0.26) 

58.58 

(0.22) 

56.23 

(0.14) 

54.83 

(0.11) 

MMC10 

TOMC 

G.I MxM 

4 
  60.22 

 (0.25) 

60.07 

 (0.21) 

58.43 

 (0.12) 

MMC11 

TOMC 

G.I QxQ 

16 
  59.97 

(0.19) 

59.43 

(0.15) 

57.20 

(0.09) 

MMC12 

TOMC 

P.C MxM 

4 
  52.54 

(0.29) 

52.49 

(0.23) 

52.48 

(0.15) 

MMC13 

TOMC 

P.C QxQ 

16 
  52.72 

(0.20) 

52.53 

(0.15) 

52.30 

(0.10) 

                                                                                      Observed mean yield = 51.82 kg/plot 
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