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Abstract 

 
How will a mathematician identify a single poisonous bottle of wine from among 1000, 

if she is permitted only one opportunity to make the fewest number of test subjects drink small 
extracts from these bottles? 

 
Key words: Optimization; Precision; Resource allocation; Duality principle; Binary numbers; 
Design of experiments. 
 

 

PREAMBLE 
 

I revisit a puzzle that has proliferated the Internet in its many different incarnations. Not 
all sites report the solution to the puzzle; and those that do, do so in a matter-of-fact manner, 
without explaining how the solution was discovered or why it is optimal. This includes 
Coldwell (2019), which I liked the most. My objective here is to derive the optimal solution 
starting from first principle. Additionally, I adopt a story-telling style in hope of exposing a 
vast array of readers to the secrets of how a mathematician goes about practicing the creative 
art of Mathematical Sciences. I conclude the paper inviting the reader to solve another 
optimization problem. 

 
To my family and friends, a reassurance: The story here is entirely fictitious, with no 

hidden agenda to promote either wine drinking, gambling or calculated killings. 
 

WHAT’S THE PROBLEM? 
 

1.      Travel to 20 CE 
 
Hop on a time machine, travel back to 20 CE (common era), and visit the kingdom of the 

mythical Irish King Conchobar mac Nessa of Ulster. The king is facing an unprecedented 
predicament. Consequently, he has made an edict inviting all and sundry to participate in a 
contest in which the winner (to be determined if no one else beats the participant’s performance 
within the next 24 hours) will receive as reward ten thousand gold coins, and any loser (beaten 
by someone else within the 24 hours limit) will not only lose face, but also lose his head. Will 
you join the contest?  

I think you should not forgo this golden opportunity - after you have derived the optimal 
solution (with proof) or you have carefully read this paper. 
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2.      The King’s Conundrum 
 
King Conchobar amassed 1000 bottles of exotic wine, which he had collected from lands 

far and near, and preserved in a heavily guarded cellar. He had curated the bottles for the 
express purpose of indulging and impressing his select guests at the Coronation Anniversary 
Celebration coming up in five weeks’ time. Unfortunately, his treasured possession was 
stealthily invaded by a neighboring queen’s clever spy, who managed to inject one bottle with 
poison so lethal that anyone who drinks just a single drop will surely die ¾ though not 
immediately, but in exactly 30 days. As fate would have it, the spy was quickly caught by the 
king’s elite guards who demanded to know which bottle he had poisoned. However, the spy 
was unwilling to identify the contaminated bottle, even when offered one thousand gold coins 
as reward, for he could not trust the guards’ offer. Moreover, preferring to demonstrate his total 
loyalty to his queen even unto death, he swallowed a fatal pill which he had brought with him 
for a situation just as this one and committed instant suicide ¾ hurling the king in a conundrum. 

 
This suicidal death of the only person who knew which single wine bottle was 

contaminated with poison left the king first to ponder about how to identify the offending bottle 
and save the remaining 999 bottles for his prestigious party; then to become progressively 
puzzled, bewildered and hopelessly perplexed; and eventually to write an edict offering ten 
thousand gold coins to anyone who could identify the poisonous bottle. He would let the 
identifier devise a clever experiment in which a few of his 1000 prisoners of war, whom he had 
captured a year ago when he had invaded the neighboring kingdom, would be forced to drink 
a concoction extracted from one or more bottles at least 31 days before his Anniversary. He 
would reward the proposer who is properly trained in the science of mathematics and in the art 
of exposition who could explain to him, though he himself was not a mathematician by any 
stretch of the imagination, that indeed the experiment would involve as few prisoners as 
absolutely necessary. You see, the king wanted to save as many prisoners as possible to serve 
as slaves, and yet with a very high probability identify the poisonous bottle. In fact, the king 
had resolved in his mind that on the eve of his celebration, avoiding any spectacle and arousing 
no suspicion from his subjects and guests, every single experimental prisoner who would 
survive the forced drinking would be put to death in complete secrecy.  

 
The king’s edict also included a rejoinder: Within 24 hours of a proposed solution, if 

someone else would discover a better solution, which would either increase the probability of 
correctly identifying the poisonous bottle with the same number of experimental prisoners or 
fewer, or reduce the number of prisoners without lowering the probability of identification, 
then the prize would go to the latter solver; and the former proposer would be taunted, 
humiliated and publicly beheaded in the infamous Field of Gallows. 

 
The king sent his emissaries all over the kingdom proclaiming his edict and inviting 

potential contestants who would design for him the most ideal solution to identify the 
poisonous bottle with a high probability subject to minimizing the number of experimental 
subjects. Posters proliferated the marketplace, public squares and sports arena: “Wanted! A 
Mathematician.” 

 
On arrival at Ulster, you learn about this edict from your host family who do their best 

to dissuade you from participating; but you, who has the benefit of two thousand more years 
of accumulated human knowledge than the then citizens of Ulster, are not going to give up so 
easily, are you? Having realized that in order to earn the reward and to save your head (along 
with your face) you must not only find a solution to the puzzle, but also have the utmost 
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confidence (via a mathematical proof) that no one else will beat your solution either by 
lowering the number of experimental subjects or by increasing the probability of correct 
identification, will you accept the king’s challenge? 

 
THINK LIKE A MATHEMATICIAN 

 
3.       Put Your Thinking Cap On 

 
Not wishing to give up the great, albeit dangerous, opportunity, you put your thinking 

cap on and start to ponder over the challenge: You begin with a naïve solution that matches 
each wine bottle with a unique prisoner, and makes each prisoner drink one shot from the bottle 
allocated to him. You even think of assigning a different bottle to 999 prisoners and leaving 
one bottle unassigned, since if no prisoner dies, then the unassigned bottle must be the 
poisonous one. However, within a short time you rule out this solution because although it 
would identify the poisonous bottle with 100% certainty, it would also engage too many 
prisoners in the experiment and expose you to a risk that someone else would easily reduce the 
number of prisoners. Likewise, you also must discard a second solution which uses only half 
as many prisoners and makes each experimental prisoner drink a concoction made of one-half 
shot from each of the two bottles allocated to him. For in this case, while on the eve of the 
Anniversary you will know for sure which pair of bottles includes the contaminated one, you 
will not know for sure which one of this pair is the truly poisonous one. Admittedly, compared 
to detecting one poisonous bottle from among 1000 bottles, it is a much simpler task to detect 
one bottle out of two. Nonetheless, it is impossible to do so with probability exceeding 1/2, for 
there remains only one night before the celebration party, rendering it unfeasible to conduct a 
follow-up experiment!   

Proceeding in this manner, you reject a whole family of designs which allocate disjoint 
batches of 𝑏 bottles to each of ⌈1000/𝑏⌉ prisoners (with the last prisoner perhaps being 
allocated fewer than 𝑏 bottles), and make each experimental prisoner drink one shot made by 
mixing 1/𝑏 fraction of a shot extracted from each of the bottles allocated to him, for while the 
number of experimental prisoners decreases as the batch size 𝑏 increases, the probability of 
correctly identifying the poisonous bottle decreases to only 1/𝑏, since you will only identify 
the batch that contains the poisonous bottle, but not the poisonous bottle itself. 

As you ponder more over the above family of designs, all at once it dawns on you that 
you have inadvertently imposed an additional constraint over the solution that was neither 
explicitly mentioned in the king’s edict, nor implied by it: While you permitted a prisoner to 
drink from multiple bottles, you have allowed only one prisoner to drink from each bottle! 
Surely someone must necessarily drink from each bottle, save perhaps one (so that at most one 
bottle is excluded from the experiment); but there was no requirement to restrict each bottle to 
only one prisoner. How can you construct a more efficient experiment (that is, involve fewer 
prisoners) that allocates each bottle to a multiplicity of prisoners allowing each prisoner to 
drink a small extract from that bottle along with extracts from all other bottles allocated to that 
prisoner and still identify the poisonous bottle?  

4.       A Sudden Inspiration 
 
While you keep pondering over how to allocate “bottles to prisoners” and “prisoners to 

bottles,” you hear some commotion out in the street caused by people going to the Field of 
Gallows to witness two prisoners who would be hanged, for they had broken into the king’s 
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cellar and during the chase that followed to catch them they had knocked off one bottle of wine 
¾ shattering it into a thousand pieces and ruining its content. Although curious as a cat, you 
resist the urge to follow the mob to the Gallows. Instead, you put multiple thinking caps on and 
come to realize two features that would affect your solution: (1) You no longer have 1000 
prisoners to engage in your experimental study ¾ your precious resource has depleted to 998 
prisoners; and (2) either the contaminated bottle is among the 999 bottles still intact, or it has 
been already destroyed! That is, at most one bottle among 999 is poisonous. You say to 
yourself: “The number of bottles and the number of prisoners have changed; and these numbers 
might change again! Therefore, I must be prepared to solve the king’s conundrum not only for 
1000 bottles and 1000 prisoners (or for 999 bottles and 998 prisoners), but also for any number 
of bottles 𝐵 and any number of prisoners 𝑃.”  

With these realizations, should you feel happy or sad? On the surface, it looks like your 
task has exploded out of proportion compared to the one you began with ¾ as if the challenge 
has become almost insurmountable. However, on deeper reflection, a light bulb goes on over 
your head (this is a purely fictitious idiomatic construction, since there wasn’t any light bulb 
around in the first century; but remember you have time traveled from the twenty-first century): 
“Perhaps I can solve the problem for small values first, then detect a pattern among the 
solutions, and eventually extend the solution to any pair (𝐵, 𝑃).” A much harder challenge 
seems to have given birth to a wonderful new opportunity!! 

5.      Solve Some Simpler Problems First 

Suppose that among 𝐵 bottles exactly one is poisonous. You can identify the poisonous 
bottle for small values of 𝐵, say for 1, 2 and 3. Then if you notice a systematic pattern among 
the solutions, perhaps you can conjecture the solution for an arbitrary value of 𝐵, and thereafter 
prove that conjecture.  

In fact, for 𝐵 = 1, the problem is already solved: The only available bottle is poisonous.  

For 𝐵 = 2, hopefully the king himself could solve the problem based on his own daily 
experience, without having to pay a mathematician! At every meal, as the king cautiously 
watches, his butler takes a portion from the king’s plate and eats, ensuring the king that his 
food is safe to eat. Translated to the problem at hand: If 𝐵 = 2, it suffices to enlist 𝑃 = 1 
prisoner and have him drink a shot from Bottle 1. If he dies (in 30 days), Bottle 1 is poisonous 
and the other bottle (labelled as Bottle 0) is safe; if he survives, Bottle 1 is safe, and Bottle 0 
must be poisonous.  

Had the king made one prisoner drink a little from each of the two bottles, then surely 
the prisoner would die; and the king would not know which bottle killed him. On the other 
hand, if the king had enrolled two prisoners and made each prisoner drink a little from a 
different bottle and kept track of who drank from which bottle, he would have surely identified 
the poisonous bottle, but he would have acted sub-optimally according to the terms of his own 
edict.  

What if there is exactly one poisonous bottle among 𝐵 = 3 bottles? Then one prisoner is 
not enough; but 𝑃 = 2 prisoners suffice. Label the bottles with serial numbers 1, 2, 3. Assign 
Bottle 1 to Prisoner 1, Bottle 2 to Prisoner 2, and Bottle 3 to both prisoners. Let each prisoner 
drink from the two bottles assigned to him. Surely, at least one prisoner must die. If both 
prisoners die, then Bottle 3 is poisonous; otherwise, if only Prisoner 1 dies, then Bottle 1 is 
poisonous; and if only Prisoner 2 dies, then Bottle 2 is poisonous. 
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For 𝐵 = 4 bottles, the same reasoning above shows that two prisoners suffice to detect 
the single poisonous bottle with 100% certainty: Just label the newest bottle as 0 and assign it 
to neither prisoner. If both prisoners survive, Bottle 0 must be poisonous. Thus, in the presence 
of three bottles, an additional fourth bottle did not make the problem more complex: We simply 
do nothing to the fourth bottle. Alternatively, having learned the solution to 𝐵 = 4, we can 
construct the solution to 𝐵 = 3 simply by eliminating any one of the four bottles. Thus, we 
discover a multiplicity of solutions for 𝐵 = 3. For instance, we could assign one bottle to each 
of the two prisoners, and set aside the third bottle, assigning it to neither prisoner. Now at most 
one prisoner may die. If neither prisoner dies, then the bottle that was set aside is poisonous; 
otherwise, whichever bottle the dead prisoner had drunk from is poisonous. Although there are 
multiple solutions to 𝐵 = 3 bottles and 𝑃 = 2 prisoners, the solution to 𝐵 = 4 is unique.  

How are the solutions to 𝐵 = 2 and 𝐵 = 4 interrelated? Starting from the solution to 
either problem, can we construct the solution to the other problem? Notice that for 𝐵 = 2, we 
set aside one bottle and make one prisoner drink from the other bottle. Likewise, for 𝐵 = 4, 
we set aside one bottle and make each of the two prisoners drink from exactly two bottles, 
giving them a common bottle to drink from and then another bottle unique to each. In the next 
paragraph we describe an alternative way to understand this allocation of bottles to the two 
prisoners that will reveal how the solution for 𝐵 = 4 can arise out of the solution for 𝐵 = 2.  

Imagine that the four bottles are rearranged into two bundles of two bottles each ¾ very 
much like two bottles are packaged together to promote a buy-one-get-one-free deal in a 
twenty-first century grocery store. Set aside one bundle and assign the other bundle to Prisoner 
1. Then the fate of Prisoner 1 will detect which bundle contains the contaminated bottle. This 
is exactly the solution to the 𝐵 = 2 case. Next, to determine which member of the suspected 
bundle is the contaminated bottle, we need to experiment again using a second prisoner, except 
that such sequential experimentation is expressly disallowed. Fortunately, we can pick one 
bottle from each bundle and assign the two chosen bottles to Prisoner 2 at the same time we 
start to experiment with Prisoner 1, and then the responses from the two prisoners will be 
available at the same time. Thus, each of the 4 bottles is matched to a unique subset of the two 
prisoners. Accordingly, the death of a specific subset of prisoners (∅, {1}, {2}, {1,2}) 
uniquely identifies the poisonous bottle. 

Now we are ready to move on to the next step in the generalization: Among 𝐵 = 8 
bottles, exactly one is poisonous. In this case, simply form 4 pairs; allocate the pairs to two 
prisoners using the above solution to the 𝐵 = 4 case, by bundling two pairs together, etc. 
Remember that assigning a bundle to a prisoner is the same as assigning all bottles within the 
bundle to that prisoner. Their fate will determine which pair contains the contaminated bottle. 
Simultaneously, allocate one bottle from each pair to Prisoner 3, whose fate will determine 
which member of the detected bundle is the contaminated bottle. More specifically, pair up 
Bottles 1-2, 3-4, 5-6, 7-8. To Prisoner 1 assign Bottles 5-6-7-8, to Prisoner 2 assign Bottles 3-
4, 7-8, and to Prisoner 3 assign the even-numbered Bottles 2, 4, 6, 8. You may permute the 
bottles and/or permute the prisoners any way you like. 

In this manner, for any value of 𝐵 = 24, a power of 2, we can extend the above method 
of allocating 𝐵 = 24  bottles to 𝑘 prisoners. 

If 𝐵 is not a power of 2, simply augment some more bottles, filled with harmless water 
(or even keeping them empty), until there is a total of 𝐵 = 24 bottles. For example, suppose 
that there were 15 bottles, one of which is poisonous. How will you conduct the experiment to 
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detect the poisonous bottle? Augment a bottle of water; label it 1; and label the other bottles 
with serial numbers 2 through 16 = 27. You enroll four prisoners, labelled 1-4. Give Prisoner 
1 extracts from even numbered bottles; that is, alternately skip a bottle, include a bottle. For 
Prisoner 2, alternately skip two bottles, then include two bottles; that is, give Bottles 3-4, 7-8, 
11-12, 15-16. To Prisoner 3, alternately skip four bottles, then include four bottles; that is, give 
Bottles 5-8, 13-16. To Prisoner 4, give extracts from the last eight bottles 9-16. Note that no 
prisoner got anything from Bottle 1, which you had augmented, and is surely not poisonous. It 
is straightforward to verify that depending on which bottle is poisonous, the subset of dead 
prisoners after 30 days will be different.  

Reversing the logic, once you know which prisoners have died 30 days later, you can 
identify the poisonous bottle 𝑋 uniquely! For example, suppose that Prisoners 1, 2 and 4 die, 
but Prisoner 3 is alive. Since Prisoner 4 died, 𝑋 is among 9-16 (the latter half); since Prisoner 
3 is alive, 𝑋 is among 9-12 (the beginning half of the candidate bottles from the previous step); 
since Prisoner 2 died, 𝑋 is among 11-12 (why?); and since Prisoner 1 died, 𝑋 is 12 (since it 
must be even). Eureka! 

  
6.      Binary Codes to Allocate Bottles to Prisoners 

 
For 𝐵 = 27 bottles and 𝑃 = 4 prisoners, to smartly conduct the experiment and to 

confidently identify the offending bottle, you may want to label the bottles with four-digit 
binary codes 0000 to 1111 (representing numbers 0 through 15, the previously stated serial 
numbers 1 through 16 reduced by one). Using these binary codes, assign to Prisoner 1 extracts 
from all eight bottles that have 1 in the rightmost digit; to Prisoner 2 assign all eight bottles 
that have a 1 in the second digit from right; etc. After 30 days, when you know the fates of all 
prisoners, summarize that information by writing a 0 for a live prisoner and a 1 for a dead 
prisoner, starting from the rightmost digit for Prisoner 1 and moving leftward prisoner by 
prisoner. This summary code is the label of the poisonous bottle!  

The above strategy of allocating bottles to prisoners is easily extended to 𝑃 prisoners and 
𝐵 = 29 bottles, when exactly one bottle is poisonous. 

 
7.       Proving Optimality 

 
Can you prove that indeed four is the fewest number of prisoners needed when there is 

exactly one poisonous bottle among 𝐵 = 15 bottles? For if you cannot, you will have no 
confidence that your head will remain in its proper place if King Conchobar is still reigning. 

To prove optimality of our proposed solution, we utilize a duality principle at play here. 
It changes the original problem into an equivalent dual problem, whose solution may be easier. 

The Duality Principle: Optimization problems may be viewed from either of two perspectives 
¾ the primal problem and the dual problem. It suffices to solve either problem; the other 
problem is immediately solved. Moreover, the solution to the primal (minimization) problem 
provides an upper bound to the solution of the dual (maximization) problem; likewise, the 
solution to the dual (maximization) problem provides a lower bound to the solution of the 
primal (minimization) problem.  
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Returning to our detection of the single poisonous bottle out of 𝐵 bottles, let us state the 
primal and dual problems. 

Primal Problem: Given 𝐵 bottles, with exactly one poisonous among them, to determine the 
fewest number of prisoners 𝑃 needed to detect the poisonous bottle with the highest probability. 

Dual Problem: Given 𝑃 experimental prisoners, to find the largest number of bottles 𝐵 so that 
the single poisonous bottle from among 𝐵 can be identified with the highest probability. 

 
8.      Solving the Dual Problem 

 
The dual problem can be easily solved for small values of 𝑃, say for 1, 2 and 3. Then 

having noticed a systematic pattern in the solutions, one may conjecture a reasonable solution 
for an arbitrary value of 𝑃, and prove the conjecture. We follow this strategy below. 

If 𝑃 = 1 prisoner is available, we can have him drink a shot from one bottle. If he dies 
(in 30 days), the bottle is poisonous; if he survives, the bottle is safe. If there are 2 bottles and 
it is known that exactly one of them is poisonous, then also 𝑃 = 1 prisoner suffices. Let him 
drink from one bottle and set aside the other bottle: If he dies in 30 days, then the bottle he 
drank from is poisonous and the other bottle is safe; if he survives, then the bottle he drank 
from is safe and the other bottle is poisonous. Making him drink from both bottles is futile: For 
then, he will surely die; and we would not know which bottle killed him. 

Next, we must explain that if there are three bottles with exactly one of them poisonous, 
then 𝑃 = 1 prisoner is not sufficient to detect the poisonous bottle. If the prisoner drinks from 
two or more bottles and dies, we cannot identify which bottle killed him; if he drinks from only 
one bottle and survives, we cannot tell which of the remaining two bottles is poisonous. Thus, 
with 𝑃 = 1 prisoner, we can detect the single poisonous bottle from among at most 𝐵 = 2 
bottles. 

Now consider the situation when there are two bottles of wine and at most one of them 
is poisonous. In this case, one prisoner will not suffice, you will need two prisoners. Here is 
why. With only one prisoner available, we have two choices: (1) Make him drink from one 
bottle. If he dies on the 30th day, we know the bottle he drank from is poisonous; and the other 
bottle is safe. If he survives beyond the 30 days, we know the bottle he drank from is safe; and 
the second bottle may be either safe or poisonous, but we will not know the complete truth. (2) 
Make the prisoner drink a little from each of the two bottles. If he survives, then both bottles 
are safe. If he dies, then one of the bottles is poisonous; but we do not know which one. Thus, 
in each case, we fail to discover complete information about the two bottles. Therefore, we 
must enroll a second prisoner in the experiment; assign one bottle to each; make them drink a 
portion from the assigned bottle. If both prisoners survive beyond 30 days, then both bottles 
are safe. If not, the dead prisoner must have drunk from the poisonous bottle and the surviving 
one from the safe bottle. Note that both prisoners cannot die since at most one bottle is 
poisonous. 

Let us return to the case when exactly one of the bottles is poisonous. If 𝑃 = 2 prisoners 
are available, we can double the number of bottles to 𝐵 = 4. Pair up the bottles to form two 
bundles. Simply use Prisoner 1 to detect the bundle with the poisonous bottle (ensuring that the 
prisoner drinks from both bottles within the bundle assigned to him). Simultaneously, choose 
one bottle from each bundle and assign them to Prisoner 2 to detect which member of the 



8 JYOTIRMOY SARKAR [Vol. 18, No. 2 

bundle is the poisonous bottle. Label the bottles with binary codes 00, 01, 10, 11. Then let 
Prisoner 1 drink from the second and the fourth bottles (which in binary code have 1 in the 
rightmost digit), and Prisoner 2 from the third and the fourth bottles (which have 1 in the 
leftmost digit). If both prisoners die, then the fourth bottle is poisonous; otherwise, if only 
Prisoner 1 dies, then the second bottle is poisonous; if only Prisoner 2 dies, then the third bottle 
is poisonous; finally, if none of the prisoners dies, then the first bottle, from which neither 
prisoner drank, is poisonous. 

We should also check that with 𝑃 = 2 prisoners available, it is not possible to detect the 
single poisonous bottle from among five bottles. To prove this impossibility, for each bottle, 
ask yourself: “To whom is the bottle assigned?” There are exactly four possible answers: The 
bottle is assigned to both prisoners, only to Prisoner 1, only to Prisoner 2, to neither prisoner. 
Therefore, by the pigeonhole principle [see Wikipedia (2019)], at least two bottles must be 
assigned to the exact same subset of prisoners. Should every member of that subset of prisoners 
die and no other prisoner die, then we would not know which of the two or more bottles 
assigned to that subset of prisoners is poisonous. 

We leave to the reader to study the situation when there are four bottles of wine and at 
most one of them is poisonous. Two prisoners will not suffice, you will need a third prisoner. 

By now a clear pattern has emerged, which we state as a Theorem. 

Theorem 1: Exactly 𝑃 prisoners suffice to detect the single poisonous bottle from among 
29;< < 𝐵 ≤ 29 bottles; but fewer than 𝑃 prisoners do not suffice. If among 29 bottles at most 
one is poisonous, then we must enroll (𝑃 + 1) prisoners. 

Proof: Suffices it to prove the theorem for the largest value of 𝐵, namely, 29. (For fewer than 
29 bottles, fill (29 − 𝐵) additional bottles with safe-to-drink water and conduct the experiment 
for 29 bottles.) Label the bottles (after permuting them randomly) with serial numbers 0 
through (29 − 1) written in binary codes consisting of 𝑃 digits ranging from (000…0) to 
(111…1). Then assign to Prisoner 𝑗 all those bottles that have 1 in the 𝑗-th digit from right. In 
other words, there is a one-to-one correspondence between the bottles and all possible subsets 
of 𝑃 prisoners. Therefore, the subset of prisoners who die in 30 days identifies the poisonous 
bottle with 100% accuracy: The binary code for the poisonous bottle has in digit 𝑗 from right 
the value 1 if Prisoner 𝑗 is dead, and the value 0 if Prisoner 𝑗 is alive.  

If fewer than 𝑃 prisoners are available, by the pigeonhole principle multiple bottles will 
have to be assigned to the same subset of (fewer than 𝑃) prisoners. Should that subset of 
prisoners and no other prisoner die, then we would not know which one of these multiple bottles 
is poisonous. 

When there are 29 bottles of which at most one is poisonous, 𝑃 prisoners will not suffice: 
One more prisoner must be enrolled and made to drink a shot from Bottle 000…0 (from which 
none of the previous 𝑃 prisoners drank) to determine whether this bottle is safe or poisonous, 
just in case no other prisoner dies. 

This completes the proof of the theorem.      � 
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Applying Theorem 1, we conclude that it suffices to enlist 10 prisoners in King 
Conchobar’s experiment to detect with complete certainty at most one poisonous bottle from 
among 999 bottles, since 2C < 999 < 2<E; but 9 prisoners will not do. Go ahead and accept 
King Conchobar’s challenge; just remember to pass on as royalty 15% of your reward to yours 
truly when you do safely return to the twenty-first century. 

 
9.      Executing the Experiment in Practice 

 
To maintain complete secrecy and absolute control over the experiment, the King himself 

should decide who will drink from which bottle (after he learns the strategy from the 
mathematician). In complete secrecy of his cellar, he should prepare 10 cups with distinct IDs 
monogrammed on them so that he would know who drank the cup. He should arrange these 
cups in random order in 10 positions. Then he should make tags with labels ranging from 0 to 
1023, written in ten-digit binary codes such as 0000001101(=13) or 1101110100 (=884), but 
discard the 22 = F100 G + F

10
1 G + F

10
9 G + F

10
10G tags that have 0, 1, 9 or 10 ones in them (that 

is, discard serial numbers 0 to 10 and 1013 to 1023). Although not necessary, in order to achieve 
a perfect balance, the king should augment the bottles of wine with a few more bottles of water 
for a total of 1002 bottles; and assign a unique tag to each of the 1002 bottles in a random order.  

The king should prepare what goes into each of the 10 cups, where each cup corresponds 
to a digit (position) of the binary code. From each bottle, labeled with a unique binary code, he 
should draw a small amount of wine (say, 1/4 ml if each bottle contains 1 liter) to put into each 
cup that corresponds to a digit (position) with value 1, and not into the other cups that 
correspond to digits (positions) with value 0. (He can use syringes to extract wine from the 
bottle without opening the cork, provided he carefully washes any syringe clean before reusing 
it.) Each cup will contain the concoction made up of portions drawn from exactly half of the 
1002 bottles, thereby containing only 125.25 ml total. This is because every digit (position) has 
as many 1’s as 0’s ¾ the balance we referred to earlier.  

Thereafter, the king should make a public announcement that he will not only set free but 
also elevate to nobility ten prisoners on the auspicious occasion of his anniversary ¾ the ten 
who are judged winners in a series of athletic competitions to be held immediately. This will 
ensure that the prisoners enrolled in his crafty experiment are healthy, will likely not die of any 
other cause in the next one month, and will participate willfully and joyfully, oblivious to his 
devious scheme. The king will invite these 10 athletic winners to a royal dinner, where they 
will be served the cup with the secret ID matched to each experimental prisoner.  

For such an experiment to be successful (from the king’s perspective), the king must 
ensure that none of his experimental subjects dies during these 30 days for any other reason. 
Perhaps he should invite them to dinner every evening for the next 30 days on pretext of 
teaching them proper manners of nobility, but truly for keeping attendance and checking on 
their health. To ensure absolute certainty that no one will kill himself or another participant 
enrolled in the experiment, he should assign guards and physicians to look after their total 
wellbeing. It is of paramount importance that he knows exactly which subset of the 10 prisoners 
died because of unknowingly drinking from the poisoned bottle ¾ for that subset of dead 
prisoners will uniquely identify the poisonous bottle. 

On the 31st day, the king will know which experimental participants have died. 
Whichever unique bottle was assigned to this subset of dead prisoners is the poisonous one! 
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While this subset may be of size 2 to 8, on average 5 subjects are expected to die of poisoning. 
Of course, to rule out any future information leak, the king will very likely renege on his 
promise; and kill all surviving experimental participants. The king can now enjoy the remaining 
bottles of wine (minus the 1/2-2 ml drawn out of each) and send the one “special bottle” as a 
gift to the neighboring queen, with “PEACE” inscribed on it. 

 
ACT LIKE A STATISTICIAN 
 
10.    Connection to Design of Experiments 

 
We narrated the above fictitious short story hoping to inspire students to learn the 

beautiful and useful art and science of experimental designs. How is the story of King 
Conchobar related to Design of Experiments? 

First, we find it astonishing that back in 20 AD, King Conchobar literally heeded the sage 
advice of our modern-day statisticians: 

“Experimentation is an essential part of any problem of decision-making. Whenever one is 
faced with the necessity of accepting one out of a set of alternative decisions, one has to 
undertake some experiments to collect observations on which the decision has to be made.”  

¾ Shah and Sinha (2012) 

In the story, we can substitute some terminologies from Design of Experiments: For 
instance, each bottle of wine can be thought of as a treatment to be assigned to one or more 
prisoners, each of whom can be thought of as an experimental unit (on which we can apply as 
many treatments as we wish).  

Since only one treatment is fatal and all other treatments are innocuous, we are essentially 
conducting a hypothesis test among 1000 hypotheses (each stating one particular bottle is 
poisonous or all 999 bottles are innocuous), based on data consisting of a single dichotomous 
response variable ¾ the prisoner is either dead or alive after 30 days. Indeed, since the king 
has diluted the poisonous drink by a factor of 1 in 501, and each cup either contains ¼ ml of 
poisonous wine or none at all, the poison remains potent; and it will surely kill any unfortunate 
soul that drinks it.  

In fact, our design is so well thought out that we need no sophisticated analyses: The 
responses from the ten subjects (almost magically) suffice to identify the poisonous bottle! 
Thus, the hypothesis test is 100% accurate, with zero probability of Type I error (declaring a 
bottle poisonous when it is not) and zero probability of Type II error (declaring a bottle safe 
when it is poisonous), provided that no one dies from a cause other than drinking from the 
poisoned bottle. 

Our story illustrates the following two quotes from leading experts in Design of 
Experiments on the importance of choosing the experimental design carefully: 

“If the experimental design is wisely chosen, a great deal of information in a readily 
extractable form is usually available, and no elaborate analysis may be necessary.”  

¾ Box, et al. (2005) 
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“If you do the pre-experiment planning carefully and select a reasonable design, the analysis 
will almost always be relatively straight-forward. In fact, a well-designed experiment will 
sometimes almost analyze itself!”  

¾ Montgomery (2013) 

Our story also demonstrates some best practices propounded by experts in Design of 
Experiments: An appropriate experimental design is a solution to an optimization problem that 
expends the least amount of resources and still extracts enough information to resolve an issue 
with the highest possible precision. One must be mindful of utilizing resources to their 
maximum potential; practice all kinds of safeguards to reduce biases in the study; and above 
all, one must not compromise the quality of knowledge one seeks to discover.  

A well-known strategy to reduce biases in an experiment is to incorporate proper 
randomization (that is, to the extent permitted, units must be chosen at random to receive a 
treatment or a combination of treatments). To accomplish this, we advised the king to randomly 
assign the binary codes to the wine bottles and to randomly permute the monogrammed cups 
in positions 1 through 10. Another useful concept in experimental design is balance; for 
example, each experimental unit must receive the same number of treatments. In the king’s 
experiment, we advocated augmenting two bottles of water to ensure that every cup receives 
extracts from 501 bottles and therefore contains the same amount of wine (125.25 ml). On the 
other hand, every treatment (bottle) was applied to 2-8 experimental units (prisoners) according 
as the binary code assigned to the treatment. Another key concept in implementing a designed 
experiment is to permit replication (that is, multiple units receive the same treatment 
combinations) with an aim to reduce associated statistical errors. Since the king’s experimental 
design already achieves a 100% accuracy, there is no need for further reduction of error. Hence, 
no replication is needed, or recommended.  

Lastly, the sanctity of the response variable must be preserved. In the king’s experiment, 
the cause of death must be none other than consumption of poisonous wine. Therefore, we 
advised the king to identify the healthiest prisoners through athletic competitions, to offer them 
freedom and a bright future to ensure their cooperation and desire to survive, and to keep them 
under watch by guards to prevent any homicide and to appoint physicians to treat them of any 
other ailment. 

 
11.    A Variation on the Detection Problem 

Recall that the prisoners who drink from the poisonous bottle die not immediately, but 
30 days later. Implicitly we are assuming that death can occur at a random time before the 30 
days are over; that is, during the time period (0, 30]. Other than knowing the support, the exact 
probability distribution of the delay time between drinking and death is unknown. This was the 
reason for restricting the experiment to only one opportunity; that is, make all experimental 
subjects drink wine at the same time.  

However, suppose that death will occur sometime during the period (29½, 30] days after 
drinking the poisonous wine. Then the experiment can be conducted on four successive days. 
In such a case, the king can get by with engaging only 8 prisoners in his experiment: On Day 
1, he will extract wine from Bottles 1-256 to assign to the 8 prisoners according to the binary 
rule described in Section 6. On Day 2, he will extract wine from Bottles 257-512 to give to the 
same 8 prisoners. On Day 3, he will use Bottles 513-768 to assign to the same 8 prisoners. On 
Day 4, he will use Bottles 769-1000 (plus 24 water bottles) to assign to the same 8 prisoners. 
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If some prisoners die on Day 31 minus half a day, then using the subset of dead prisoners, 
the king will identify the poisonous bottle from among 1-256. Otherwise, if all prisoners 
survive on Day 31, then all these bottles are innocuous, and the king must wait to check the 
survival status on Day 32. If some prisoners die on Day 32 minus half a day, then using the 
subset of dead prisoners, the king will identify the poisonous bottle from among 257-512. 
Otherwise, if all prisoners survive on Day 32, all these bottles are innocuous. And so on. 

Referring to Design of Experiments literature, we are reminded of a crossover design, in 
which the same unit receives different treatment combinations in different time periods 
provided that the response is attributable to the correct treatment combination. For the king’s 
experiment, the response on each prisoner is no longer a binary variable taking values 1 or 0; 
rather it is a quintenary variable taking values 1, 01, 001, 0001, 0000, according as the time of 
death is Day 31, 32, 33, 34 or no death at all respectively. Thus, when the time of death after 
drinking from the poisonous bottle is within half a day of the 30th day mark, we have reduced 
the number of experimental units to 8, without compromising the inference. 

Carrying this argument further, if anyone drinking from the poisonous bottle will surely 
die within 23 hours, then the king can conduct his devious experiment on 32 nights, requiring 
only 5 prisoners and utilizing 32 distinct bottles each night. Each prisoner’s status will be one 
of 33 possible outcomes: Death before Day 2, 3, …, 33 or Survival. Thus, with more precise 
information on the response variable, the sample size can be reduced without sacrificing the 
quality of inference. Moreover, the experiment can be terminated as soon as at least one 
prisoner dies. 

 
THINK SOME MORE 

 
12.      Further Study 
 

We invite the astute reader to solve another optimization problem.  
 
Exercise 

 
Suppose that a building has 1000 floors above ground. If you drop a marvelous marble 

from floor 𝑁 or above, the marble will surely break; but if you drop it from any lower floor, 
there will be absolutely no effect of the impact. Being as good as new, it can be dropped again 
(from a higher floor). Every time you want to drop a marble, you must pay ₹10 (with a coupon) 
to take the elevator to the desired floor. Taking the down-elevator to check whether the marble 
is intact or broken costs you nothing. At the start of the experiment, you can buy any number 
of marbles for ₹50 each and any number of coupons for ₹10 each. At any other time, you cannot 
buy or sell a marble or a coupon. What is the least amount of money you must spend to 
determine 𝑁 with complete certainty? 

Note that you must minimize the maximum amount of money you may spend, and not 
minimize the expected amount of money.  

My answer to the Exercise is ₹330; and I offer this answer in good faith that in case you 
beat my solution within 24 hours, you won’t demand my head. Partial explanation of my 
answer is given in the Appendix. Can you find a better solution? Or, can you prove that my 
solution is indeed optimal? Please email me (at jsarkar@iupui.edu) a better solution or a proof 
that my solution is the best. 
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APPENDIX 
 

My Answer to the Exercise in Section 12 
 

Do not read this Appendix until after you have tried to solve the Exercise. 
 

I will buy four marbles; and I plan to drop the first marble from floors (in order)  

286, 506, 671,791, 875, 931,966, 986,996, 1000. 

  (To understand where these floor numbers came from, study their successive 
differences). If the marble does not break at all, then 𝑁 exceeds 1000; and I will have three 
unused marbles and three unused coupons. Otherwise, if the marble breaks during any one of 
the above ten drops, then logic establishes that we need a total of 13 drops to determine 𝑁 with 
certainty using the remaining three marbles. Let me illustrate one such situation (leaving all 
the rest to the reader): Say, the first marble breaks after the 4th drop. Then 671 < 𝑁 ≤ 791; 
and the problem reduces to three marbles and 120 floors. In this case, identifying 𝑁 requires 9 
more drops, as explained below (and so a total of 4 + 9 = 13 drops are needed). 

Drop the second marble from floors (in order)  

707, 735, 756, 771, 781, 787, 790. 

Say, the second marble breaks after the 3rd drop (all other possibilities are left to the 
reader). Then 735 < 𝑁 ≤ 756. So, the problem reduces to two marbles and 21 floors, which 
requires 6 more drops (which justifies the required 3+6 = 9 drops after the first marble breaks): 
Drop the third marble from floors 741, 746,750, 753, 755. If the third marble breaks during 
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the second drop, then 741 < 𝑁 ≤ 746 (again, all other possibilities are left to the reader). So, 
the problem reduces to one marble and 4 floors, requiring 4 more drops (from floors 
742, 743,744, 745) and justifying the required 2+4 = 6 drops after the second marble breaks). 
Thus, in the worst case, the total number of drops of all four marbles is 4+9 = 13, and I must 
be prepared to spend a maximum total of 4 × ₹50 + 13 × ₹10 = ₹330.  

I claim that my choice of buying four marbles, followed by the above strategy of 
sequentially determining which floor to drop the marbles from, is indeed wise. To justify my 
claim, let me document what my prospect will be if I buy fewer than four marbles. First, if I 
buy only one marble, I must be prepared to spend at most ₹10,050 (dropping the marble from 
floors 1, 2, 3, …). I cannot risk skipping any floor: For if I do and the marble breaks, then 𝑁 
can be any one of the floors I have skipped or the one from which I dropped the marble last. 
However, in this case, I have no marble left to determine 𝑁 with certainty! Second, if I buy 
two marbles, then using the best possible strategy, I may require up to 45 drops (why?). 
Therefore, I must spend ₹550 in the worst case. Third, if I buy three marbles, then using the 
best possible strategy, I may have to drop the marbles a total of at most 19 times (why?). Hence, 
I must spend ₹340 in the worst case. All these options lead to spending more than ₹330, which 
I agreed to spend to buy four marbles and 13 drops. 

What if I buy more than four marbles? If I buy five marbles, then using the best possible 
strategy, I may need a maximum of 12 drops (why?). So, I must spend ₹370 in the worst case. 
If I buy six marbles, then using the best possible strategy, I may have to drop the marbles up 
to 12 times (why?). Hence, I must spend ₹420 in the worst case. Thus, compared to the best 
strategy using five marbles, the best strategy with a sixth marble does not reduce the number 
of drops! It was a waste to buy the sixth marble. Buying seven or more marbles will already 
cost me more than ₹330 even before I buy any elevator coupons! Hence, I recommend buying 
four marbles and 13 coupons. Can you beat my choice or prove that it is the optimal choice? 

The above solution is intricately associated with the relative cost of a marble to a coupon 
for each elevator ride up. When this relative cost changes, the answer may change. For 
example, if the cost of each marble decreases to ₹10 but the cost of each coupon remains at 
₹10, then I have two best choices: Either buy four marbles and 13 coupons; or buy five marbles 
and 12 coupons. For each choice I will incur a total cost of ₹170. On the other hand, if the cost 
of each marble increases to ₹100 but the cost of each coupon remains at ₹10, then my best 
choice is to buy three marbles and 19 coupons incurring a total cost of ₹490. What if the cost 
of each marble is ₹1000, but the cost of each coupon remains at ₹10? I leave the discovery of 
the best solution(s) to the reader. In every case, I invite the reader to find a better solution or to 
prove the optimality of my solution. 


