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Abstract

Two-symbol supersaturated designs (SSDs) are two-symbol arrays in which the number of
rows is no larger than the number of columns. In this paper, a lower bound for the E(B2) value of
SSDs that are not necessarily balanced is derived. The sharpness of the newly derived lower bound is
analyzed theoretically by using constructions of E(B2)-optimal SSDs and computationally by using
the NOA4 algorithm in Ryan and Bulutoglu (2007). Applications of the newly derived E(B2) lower
bound to searching for �-optimal designs and equiangular lines are discussed.
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1. Introduction

Two-symbol supersaturated designs (SSDs) are two symbol arrays with the following prop-
erties. The number of rows # does not exceed the number of columns < and no pair of columns
are fully aliased, i.e., there exists no pair of identical columns up to permuting the symbols within
a column. A two-symbol array is balanced if each of the two symbols in a column appears the
same number of times when the number of rows # is even or the absolute difference between the
frequencies of the occurrences of the two symbols in each column is 1 when # is odd. A two
symbol array that is not balanced is called unbalanced. Two-symbol SSDs are commonly coded
with symbol set {0, 1} or {±1} and are particularly useful in screening experimentation due to their
row-size economy (Georgiou, 2014). It has long been assumed in the literature that SSDs should be
balanced. However, unbalanced SSDs are of interest to practitioners who are willing to compromise
on the balance property due to high costs. In particular, unbalanced SSDs are useful when restrictions
embedded in the problem at hand makes it infeasible to use a balanced SSD. Such SSDs are also
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preferable in cases where certain symbols of some columns need to be examined but are expensive
to set.

WLOG, assume that each column of the #-row array (SSD) with < columns each with
symbols from {0, 1} has 0 at most b#/2c times, where b.c is the floor function. Define : ; to be the
number of columns in which 0 appears ; times for ; = 0, . . . , b#/2c. Clearly,

∑
; : ; = <. Denote

this class of arrays by D(#, 2<, (:0, :1, . . . , : b#/2c)). Let D±(#, 2<, (:0, :1, . . . , : b#/2c)) denote
the corresponding class of arrays when −1 is used instead of 0. For even # , if we choose : ; = 0 for
0 ≤ ; < b#/2c and : b#/2c = <, we get a balanced array (SSD), and we get an unbalanced array if
: ; ≠ 0 for at least one ; with ; < b#/2c. We call the vector (:0, :1, . . . , : b#/2c) the balancedness
structure of each D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)) or each D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)).

Example 1: Consider the 4-row SSD

D =

©­­­«
1 1 1 1
0 1 0 1
1 0 0 1
0 0 1 0

ª®®®¬ ∈ D(4, 2
4, (0, 1, 3)).

This SSD is unbalanced with :1 = 1, :2 = 3 and
∑
; : ; = < = 4.

For < ≥ # , an # row, < column, two-symbol array X = [x1, x2, . . . , x<] with entries from
{±1} is a supersaturated design if it has no two columns x8 and x 9 such that 8 ≠ 9 and x>

8
x 9 ∈ {−#, #}.

The E(B2) value of X is defined as

E(B2) =
∑
8≠ 9 B

2
8 9

<(< − 1) ,

where B8 9 = x>
8

x 9 for 1 ≤ 8 ≠ 9 ≤ <. A two-symbol SSD is mapped to a {±1} SSD by assigning
+1 to one symbol and −1 to the other symbol in each column. We call a resulting {±1} SSD
a corresponding {±1} SSD. Then each of the concepts defined for a {±1} SSD is defined for a
two-symbol SSD via one of its corresponding {±1} SSDs. The E(B2) value is used to compare
two-symbol SSDs with the same number of rows and columns (Georgiou, 2014). An SSD with a
smaller E(B2) value is more desirable (Georgiou, 2014), and an SSD with the smallest possible E(B2)
value is called E(B2)-optimal. For a detailed review of the E(B2) optimality criteria for two-symbol
SSDs, the reader is referred to (Georgiou, 2014).

Ryan and Bulutoglu (2007) and Das et. al. (2008) gave the sharpest known lower bound
for balanced SSDs with even # . Bulutoglu and Ryan (2008) and Suen and Das (2010) derived an
improved E(B2) lower bound for two-symbol SSDs with odd # . For unbalanced SSDs, the best
known E(B2) lower bounds are not applicable. We generalize the results in Bulutoglu and Ryan
(2008) and Suen and Das (2010) to unbalanced SSDs. We derive a lower bound for the E(B2) value
of unbalanced two-symbol SSDs and present some families of E(B2)-optimal unbalanced SSDs. Part
of our derivation is based on an adaptation of the derivation in Bulutoglu and Ryan (2008).

For an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) let Bmax = max8< 9 |B8 9 | and 5Bmax be the
frequency of Bmax in {B8 9 }8< 9 . Then X is called minimax-optimal if no other SSD in D±(#, 2<, (:0,
:1, . . . , : b#/2c)) has a smaller Bmax or smaller 5Bmax at the smallest possible Bmax. For balanced SSDs,
Ryan and Bulutoglu (2007) and Bulutoglu and Ryan (2008) used minimax optimality as a secondary
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criterion for picking an SSD among E(B2)-optimal SSDs. Finding a minimax-optimal and balanced
SSD among E(B2)-optimal and balanced SSDs is a very difficult problem as mentioned in Morales
and Bulutoglu (2018). Some of the unbalanced infinite families of E(B2)-optimal SSDs in Section 3
are also minimax-optimal.

There are no known theories or construction methods of SSDs for any choice of : ; , 0 ≤ ; ≤
b#/2c, because an achievable lower bound for E(B2) is not known for the general case and it is not
possible to prove E(B2)-optimality without resorting to full enumeration. Therefore, there is a need to
develop a general sharp lower bound that also covers unbalanced arrays. In this paper, we generalize
the best known E(B2) lower bound for balanced two-symbol SSDs to all two-symbol SSDs with a
given balancedness structure. Additionally, we describe how our newly derived E(B2) lower bound
can be used to speed up search algorithms for finding two-symbol �-optimal designs in general.

An SSD can be thought as a frame, i.e., a spanning set for its column space. Moreover,
certain E(B2)-optimal SSDs are tight frames (Morales and Bulutoglu, 2018). Another motivation for
generalizing the best known E(B2) lower bound for balanced two-symbol SSDs to all two-symbol
SSDs with a given balancedness structure is that there is no balancedness requirement for frames.
Furthermore, certain E(B2)-optimal and minimax-optimal SSDs are equiangular tight frames and
imply the existence of certain strongly regular graphs (Morales and Bulutoglu, 2018; Waldron, 2009).

This paper is organized as follows. In Section 2, we derive a previously unknown lower
bound for the E(B2) value of an unbalanced two-symbol SSD with symbols from {±1} given its
column sums. After providing a naive E(B2) lower bound, Section 3 theoretically analyzes the
Section 2 bound in terms of its achievability and provides families of unbalanced E(B2)-optimal
SSDs achieving the Section 2 bound. Some of these SSDs are optimal with respect to the minimax
criterion as well. Section 4 provides computational test results obtained by using the NOA4 algorithm
in Ryan and Bulutoglu, (2007) for the achievability of the Section 2 bound. Finally, in Section 5,
we discuss two possible applications of our newly derived E(B2) lower bound. In particular, in
Section 5.1, we provide an application to searching for �-optimal designs. Moreover, in Section 5.2,
for a given C such that 0 < C, we discuss an application to finding upper bounds on the maximum
number of columns for a two-symbol {±1} SSD with # rows whose each pairwise column angle is
in [arccos(C/#), arccos(−C/#)].

2. A General Lower Bound

In this section, we derive a previously unknown lower bound for the E(B2) value of unbalanced
SSDs. We first provide some definitions and lemmas that will be useful in proving the desired lower
bound.

For a 2-symbol array let 28182 be the number of coincidences in the 81’th and 82’th rows for
1 ≤ 81 ≠ 82 ≤ # . The following lemma provides the number of coincidences in all the different pairs
of rows in a given SSD.

Lemma 1: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)) or D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)),

2
∑
81≠82

28182 =
∑
;

(# − 2;)2: ; + <# (# − 2).
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Proof: For given : ; , 0 ≤ ; ≤ b#/2c and D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), we have

X0X>0 =
©­­­­«

< 2212 − < · · · 221# − <
2212 − < < · · · 222# − <

...
...

...
...

221# − < 222# − < · · · <

ª®®®®¬
.

Therefore,

1>#X0X>0 1# = 2
∑
81≠82

28182 − <# (# − 2)

=
∑
;

(# − 2;)2: ; .

Let D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)). For 1 ≤ 9 ≤ <, let = 9U be the number of times
U ∈ {0, 1} appears in the 9’th column of D. Also, for 1 ≤ 91 ≠ 92 ≤ <, U, V ∈ {0, 1}, let = 91 92UV

be
the number of times the symbol combination (U, V) appears as rows of the # × 2 array obtained by
concatenating 91’th and 92’th columns of D. Then

B291 92 = 4
∑
U,V

(= 91 92
UV
)2 − 2

∑
U

(= 91U )2 − 2
∑
V

(= 92
V
)2 + #2. (1)

Based on (1), we can express the E(B2) value in a convenient form so as to obtain another lower
bound.

Lemma 2: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) =
4
∑
91≠ 92,U,V (=

91 92
UV
)2 − 4(< − 1)∑; [;2 + (# − ;)2]: ; + <(< − 1)#2

<(< − 1) .

Proof: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), we have

<(< − 1)E(B2) =
∑
91≠ 92

B291 92

=
∑
91≠ 92

[
4
∑
U,V

(= 91 92
UV
)2 − 2

∑
U

(= 91U )2 − 2
∑
V

(= 92
V
)2 + #2

]
= 4

∑
91≠ 92,U,V

(= 91 92
U,V
)2 − 2(< − 1)

[∑
91,U

(= 91U )2 +
∑
92,V

(= 92
V
)2

]
+ <(< − 1)#2

= 4
∑

91≠ 92,U,V

(= 91 92
UV
)2 − 4(< − 1)

∑
;

[;2 + (# − ;)2]: ; + <(< − 1)#2.

For a given D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), let ; 98 be the number of zeros in the 98’th
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column of D. Then we have

=
91 92
00 = ; 92 − =

91 92
10

=
91 92
01 = ; 91 − ; 92 + =

91 92
10 (2)

=
91 92
11 = # − ; 91 − =

91 92
10 .

Let
∑
U,V (=

91 92
UV
)2 = 5 (; 91 , ; 92 , =

91 92
10 ). Then by equations (2),

5 (; 91 , ; 92 , =
91 92
10 ) = 4(=

91 92
10 )

2 + (4; 91 − 4; 92 − 2#)=
91 92
10 + ;

2
92
+ (; 91 − ; 92)2 + (# − ; 91)2.

For fixed ; 91 , ; 92 , 5 (; 91 , ; 92 , =
91 92
10 ) is a convex function of (= 91 9210 ). By differentiating 5 (; 91 , ; 92 , =

91 92
10 )

with respect to = 91 9210 we see that 5 (; 91 , ; 92 , =
91 92
10 ) is minimized at

=̂
91 92
10 (; 91 , ; 92) =

[
# + 2; 92 − 2; 91

4

]
,

where [G] is the integer closest to G. Define

=̂10(8, 9) =
[
# + 2 9 − 28

4

]
.

Then we have∑
91≠ 92,U,V

(= 91 92
U,V
)2 ≥

∑
8

:8 (:8 − 1) 5 (8, 8, =̂10(8, 8)) +
∑
8≠ 9

:8: 9 5 (8, 9 , =̂10(8, 9))

= \∗1 =
∑
8

:8 (:8 − 1) 5
(
8, 8,

[
#

4

] )
+

∑
8≠ 9

:8: 9 5

(
8, 9 ,

[
# + 2 9 − 28

4

] )
.

(3)

The following lemma, whose proof follows from Lemma 2 and inequality (3), provides a lower bound
for the E(B2) value of D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)).

Lemma 3: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) ≥ LB1,

where

LB1 =
4\∗1 − 4(< − 1)

∑
; [;2 + (# − ;)2]: ; + <(< − 1)#2

<(< − 1) .

By routine algebra we get the following result.

Lemma 4: For balanced and two-symbol arrays (SSDs)

LB1 = LB1(#, (0, . . . , 0, <)) =


1, if # is odd,
0, if # = 0 (mod 4),
4, if # = 2 (mod 4).
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When # = 2 (mod 4), the bound in Lemma 4 for < = # + 1 is achievable if a skew-symmetric
Hadamard matrix of order # +2 exists (Morales et al. 2019). Such a Hadamard matrix is conjectured
to exist for each # divisible by 4 (Koukouvinos and Stylianou, 2008). It is plain to verify the following
remark.

Remark 1: For balanced SSDs, < ≥ # + 3 or # = 0 (mod 4), LB1(#, (0, . . . , 0, <)) is strictly
smaller than the E(B2) lower bound in Das et al. (2008) and Ryan and Bulutoglu (2007). For
balanced SSDs, # = 2 (mod 4) and < ≤ # + 2, LB1(#, (0, . . . , 0, <)) is the same as the E(B2)
lower bound in Das et al. (2008) and Ryan and Bulutoglu (2007). For balanced SSDs and odd # ,
LB1(#, (0, . . . , 0, <)) cannot be sharper than the E(B2) lower bound in Bulutoglu and Ryan (2008).
In particular, when # = 3 (mod 4) and < = # , LB1(#, (0, . . . , 0, <)) equals to the E(B2) lower
bound in Bulutoglu and Ryan (2008). A numerical check suggests that these are the only odd #
cases for which equality is satisfied.

For D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), let Δ =
∑
; (# − 2;)2: ; and

� (?) := 8?2 + 4#2 − 8#? − 4# + 4max{| − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2#, 0}.

Then

� (?) =
{
�1(?) if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# ≤ 0,
�2(?) otherwise,

where

�1(?) = 8?2 + 4#2 − 8#? − 4#
�2(?) = −8?2 − 4#2 + 8#? + 4# + 4| − <# + Δ + @# (# − 1) |.

The following theorem provides another E(B2) lower bound for D.

Theorem1: There is a unique @ such that−2# ≤ (#<−Δ)/(#−1)−@# < 2# and<+@ ≡ 2 (<>34).
Let

?∗− =
# −

√
2# − #2 + | − <# + Δ + @# (# − 1) |

2
,

?∗+ =
# +

√
2# − #2 + | − <# + Δ + @# (# − 1) |

2
,

6(@) := (< + @)2# − @2#2 − <#2 − 2@Δ, and  = ∑
8 :28+1. For odd # , let

LB2 =


16

⌈
6 (@)+�1(b #2 c)−<(<−1)

16

⌉+
+<(<−1)

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
16

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−<(<−1)

16

⌉+
+<(<−1)

<(<−1) , otherwise,
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where d.e is the ceiling function. For # ≡ 0 (mod 4), let

LB2 =


32

⌈
6 (@)+�1(b #2 c)−8 (<− )

32

⌉+
+8 (<− )

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
32

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−8 (<− )

32

⌉+
+8 (<− )

<(<−1) , otherwise.

For # ≡ 2 (mod 4), let

LB2 =


\

⌈
6 (@)+�1(b #2 c)−4 ( −1)−4(<− ) (<− −1)

\

⌉+
+4 ( −1)+4(<− ) (<− −1)

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
\

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−4 ( −1)−4(<− ) (<− −1)

\

⌉+
+4 ( −1)+4(<− ) (<− −1)

<(<−1) , otherwise,

where

\ =

{
64 if  = 0,
32 otherwise,

and dGe+ = max{0, dGe}. Then
E(B2) ≥ LB2 .

Proof: The proof is an adaptation of the proof of Theorem 1 in Bulutoglu and Ryan (2008). For
general D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), the � (?) in Bulutoglu and Ryan (2008) becomes

� (?) := 8?2 + 4#2 − 8#? − 4# + 4max{| − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2#, 0},

so that � (?) is continuous. Moreover,

�′(?) =
{
16? − 8#, if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# < 0,
−16? + 8#, if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# > 0.

Hence, � (?) has all of its local minima at ? such that

−4?2 − 2#2 + 4#? + 2# + | − <# + Δ + @# (# − 1) | = 0,

and these ?’s are ?∗− and ?∗+. By the reflection symmetry of �1(?) and �2(?) along the axis H =
�1(?∗−), both of these local minima are in fact global minima, and � (?) for ? ∈ {0, 1, . . . , (# +1)/2}
is minimized at ? = b?∗−c or ? = d?∗−e. The result now follows from

B8 9 ≡


# (mod 4), if the 8’th and 9’th columns of D have both even

or odd number of −1’s,
(# + 2) (mod 4), otherwise.
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Remark 2: LB2 is cheaper to compute compared to the corresponding lower bound in Bulutoglu
and Ryan (2008). This is because computing LB2 requires computing only �1(b?∗−c) and �2(d?∗−e)
instead of computing � (?) for ? = 1, 2, . . . , (# + 1)/2.

By Lemma 3, we obtain the following theorem.

Theorem 2: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) ≥ LB = LB(#, (:0, :1, . . . , : b #2 c)) = max{LB1,LB2}. (4)

For balanced SSDs with an odd number of rows, it is easy to show that LB2 reduces to the E(B2)
lower bound provided in Bulutoglu and Ryan (2008). (We numerically verified this for 7 ≤ # ≤ 41
and # ≤ < ≤ 4# .) For balanced SSDs with an even number of rows, LB is still a valid lower bound;
however, it cannot be sharper than the E(B2) lower bound of Ryan and Bulutoglu (2007) or of Das et
al. (2008). This is because the assumed set of constraints for the hypothetical SSD in the derivation
of LB2 are satisfied by the hypothetical SSD in the derivation of the lower bound Ryan and Bulutoglu
(2007) and that in Das et al. (2008). In fact, we observed in 700 of the 1, 314 even # cases with
8 ≤ # ≤ 40 and # ≤ < ≤ 4# that the E(B2) lower bound of Ryan and Bulutoglu (2007) or of Das
et al. (2008) is sharper than the lower bound in Bulutoglu and Ryan (2008). Hence, for balanced
and even # SSDs, LB should not be used. Numerically comparing LB2 to the bound in Ryan and
Bulutoglu (2007) and that in Das et al. (2008) provided us with a check for the correctness of LB2.
We implemented a similar check for the correctness of LB1. We observed that LB1 is most useful
when < is close to # and is dominated by LB2 as < increases.

3. Theoretical Achievability

In this section, we first derive a naive E(B2) lower bound for an # row, < column, two-symbol
SSD. This bound does not depend on the column sums of the SSD. Then we show that if this naive
E(B2) lower bound is achievable then LB2 is also achievable.

Let X be an # row, < column SSD whose column symbols are from {±1}. Then the off-
diagonal entries of XX> are odd if and only if < is odd. When < is divisible by 4, it is possible for
X to have mutually orthogonal rows. When < = 2 (mod 4), X can have at most b#/2c d#/2e pairs
of orthogonal rows. From these facts, we immediately get the following naive E(B2) lower bound

E(B2) ≥


# (#−1)−<#2+#<2

<(<−1) , if < is odd,
−<#2+#<2
<(<−1) , if < = 0 (mod 4),
4(b #2 c (b #2 c−1)+d #2 e (d #2 e−1))−<#2+#<2

<(<−1) , if < = 2 (mod 4).

(5)

The lower bound LB2(#, (:0, :1, . . . , : b#/2c)) is based on a derivation where XX> has
off-diagonals from the set {−4,−2, 0, 2} or the set {−2, 0, 2, 4} for even ∑

8 :8 and from the set
{−3,−1, 1, 3} for odd ∑

8 :8, where the off-diagonal entries sum to
∑=
;=0(# − 2;)2: ; − #<. For an

SSD X achieving the naive E(B2) lower bound (5), XX> has off-diagonals from the set {−2, 0, 2} for
even

∑
8 :8 and from the set {±1} for odd∑

8 :8. Moreover, the entries of such anXX> sum to
∑=
;=0(#−

2;)2: ; . Since {±1} ⊆ {−3,−1, 1, 3} and {−2, 0, 2} ⊆ {−2, 0, 2, 4} ∩ {−4,−2, 0, 2}, we conclude that
LB2(#, (:0, :1, . . . , : b#/2c)) is always at least as sharp as the naive E(B2) lower bound (5). Hence,
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an SSD X achieving the naive E(B2) lower bound (5) also achieves LB2(#, (:0, :1, . . . , : b#/2c)),
i.e., if the naive E(B2) lower bound (5) is achievable, then LB2(#, (:0, :1, . . . , : b#/2c)) is equal to
the naive E(B2) lower bound (5).

There are cases in which LB2 is strictly larger than the naive E(B2) lower bound (5). In
particular, for balanced SSDs when # is odd LB2 reduces to the E(B2) lower bound derived in
Bulutoglu and Ryan (2008), and there are SSDs (X’s) achieving this lower bound such that the
off-diagonal entries of XX> are not all from the set {±1}.

For each #, < combination, an E(B2)-optimal SSD achieving the naive bound (5) can be
constructed by using Hadamard matrices. A C × C matrix HC of ±1’s is called a Hadamard matrix
if H>C HC = CIC , where IC is the C × C identity matrix. It is well-known that C must be divisible by 4
for a C × C Hadamard matrix to exist. It is conjectured that C × C Hadamard matrix exists whenever C
is divisible by 4. Let 1A be the column of all 1B of length A. It is easy to show that any Hadamard
matrix can be put in the form

HC =

©­­­­­«
1 1 1>C

2−1
1>C
2−1

1 −1 1>C
2−1

−1>C
2−1

1 C
2−1 1 C

2−1
1 C
2−1 −1 C

2−1
A

ª®®®®®¬
(6)

by applying signed column and/or rowpermutations (by right and/or leftmultiplyingwith permutation
matrices that are right or left multiplied by ±1 diagonal matrices).

Let X be an # row, < column E(B2)-optimal SSD achieving the naive E(B2) lower bound (5).
In what follows, we describe how X can be constructed provided that the Hadamard conjecture is
true. If < is divisible by 4, then X can be taken to be any # rows of a Hadamard matrix H<. If
< = 1 (mod 4) (< = 3 (mod 4)), then X can be constructed by first adding (deleting) any column
with entries in {−1, 1} to (from) a Hadamard matrix H<−1 (H<+1) followed by picking any # rows
from the resulting matrix. If < = 2 (mod 4), let H<+2 be a Hadamard matrix. Let A be obtained
from H<+2 after putting H<+2 in form (6). Then any # rows of A can be taken to be X.

Two arrays D1 and D2 are equivalent if Π1D1Π2 = D2 for some signed permutation matrices
Π1 and Π2 (i.e., permutation matrices that are right or left multiplied by ±1 diagonal matrices). If
X1 and X2 are equivalent SSDs, then SS(X1X>1 ) = SS(X2X

>
2 ), where SS(M) is the sum squares of

the entries of a matrix M. Hence, if X1 is an E(B2)-optimal SSD achieving the naive E(B2) lower
bound (5), then any other SSD equivalent to X1 is also E(B2)-optimal and achieves the naive E(B2)
lower bound (5).

Not every #, <, :0, :1, . . . , : b#/2c combination allows a D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c))
that achieves the naive E(B2) lower bound (5). If D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) achieves the
naive E(B2) lower bound (5), then the fact that

∑=
;=0(# − 2;)2: ; must be equal to the sum of the

entries of DD> implies the constraint
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=∑
;=0
(# − 2;)2: ; =


#< + 2U1 − 2V1, if < is odd,
#<, if < = 0 (mod 4),
#< + 4U2 − 4V2, if < = 2 (mod 4)

(7)

on #, <, :0, :1, . . . , : b#/2c for some non-negative integers U1, V1, U2, V2. The next theorem follows
from the derivation of LB2(#, (:0, :1, . . . , : b#/2c)).

Theorem 3: The naive E(B2) lower bound (5) is equal to LB2(#, (:0, :1, . . . , : b#/2c)) if and only if
the constraint in equation (7) is satisfied.

Circulantmatrices can be used to construct unbalanced, E(B2)-optimal, minimax-optimal SSDs
and �-optimal designs. A matrix is called circulant if each row vector is shifted one element to the
right relative to the preceding row vector. A circulant matrix A = 28A2(a) is determined by its first
row a. Each row of A is a cyclic shift of the vector a to the right.

The dual Gram matrix and the Gram matrix of a matrix A are defined to be AA> and A>A. If
x = (G0, G1, . . . , GC−1) is a vector of length C, the periodic autocorrelation function %x(B) (abbreviated
as PAF) is defined, reducing 8 + B modulo C, as

%x(B) =
∑
8

G8G8+B for B = 0, 1, . . . , C − 1.

The (dual) Gram matrix of a circulant matrix is also circulant and can be calculated by using the
periodic autocorrelation function of its first row.

Let C be odd andA,B be C× C circulant matrices with entries in {±1}. Let a = (00, 01, . . . , 0C−1)
and b = (10, 11, . . . , 1C−1) be the first rows of A and B. Also, let

%a(B) + %b(B) = WB for B = 1, 2, . . . , C − 1, (8)

where |WB | = W is a constant positive real number. Then

AA> + BB> = (2C − W)IC + WJC ,

where IC is the C × C identity matrix and JC is a C × C matrix of ±1’s whose diagonal entries are all 1’s.
If W = 2 and JC is the C × C matrix of 1’s, then the 2C × 2C matrix

C2 =
(

A B
−B> A>

)
(9)

has themaximumdeterminant (see, Ehlich 1964) among all the 2C×2C {±1}-matrices, i.e., �-optimal.

Theorem 4: Let # = 2C, C odd and a, b two vectors of length C with entries from {±1} satisfying
equation (8) for WB ∈ {−2, 2}. Let 0 =

∑
8 08 and 1 =

∑
8 18. Then an unbalanced, two-symbol, E(B2)-

optimal and minimax-optimal SSD with # rows and < = # columns achieving the lower bound
LB(#, (0, . . . , 0, :C−(0+1)/2 = C, 0, . . . , 0, :C−(0−1)/2 = C, 0, . . . , 0) can be constructed. If WB = 2 for
B = 1, 2, . . . , C − 1, then the constructed design is also �-optimal.

Proof: Let JC be a C × C matrix of ±1’s. Use circulant matrices A and B given in (9). Then C2 in (9)
satisfies
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C2C>2 = C>2C2 =
(
(2C − 2)IC + 2JC 0C×C

0C×C (2C − 2)IC + 2JC

)
.

Thus, max8< 9 |B8 9 | = 2, and C2 achieves the naive E(B2) lower bound (5). Moreover, if JC is the C × C
matrix of 1’s, then C2 is �-optimal.

Since a = (00, 01, . . . , 0C−1) and b = (10, 11, . . . , 1C−1) satisfy equation (8), C should be odd
with 2(2C − 1) = 02 + 12. WLOG, we may assume that 0 ≥ 1 > 0. Also, 1 and −1 appear (C + 0)/2
and (C + 1)/2 times in a and (C − 0)/2 and (C − 1)/2 times in b. Each of the first C columns of
the generated SSD by construction (9) has a column sum of (0 − 1). So, the number of −1’s in
each of the first C columns is ;2 = C − (0 − 1)/2. Similarly, each of the last C columns has a column
sum of (0 + 1). So, the number of −1’s in each of the last C columns is ;1 = C − (0 + 1)/2. Thus,
: ;2 = :C−(0−1)/2 = C, : ;1 = :C−(0+1)/2 = C.

In the examples below, we denote 1 by + and −1 by −.

Example 2: Let

a = (+, +, +, +, +, +, +, +,−, +, +,−,−)
b = (+, +, +,−,−,−, +,−, +, +,−, +,−).

Vectors a and b satisfy %a(B) + %b(B) = 2, B = 1, 2, . . . , C − 1. Moreover, 0 =
∑
8 08 = 7 and

1 =
∑
8 18 = 1. Let A = 28A2(a) and B = 28A2(b). Using construction (9) we obtain D such that

D ∈ D±(26, 226, (:9 = 13, :10 = 13)) and E(B2) = LB = LB2 = 1.92. Hence, D is an unbalanced,
E(B2)-optimal, minimax-optimal SSD and a �-optimal design.

Example 3. Let

a = (+, +, +, +, +,−, +,−,−, +, +, +,−)
b = (+, +, +, +, +,−, +,−,−, +, +, +,−).

Vectors a and b satisfy %a(B)+%b(B) = 2 for B = 1, 2, . . . , C−1. Moreover, 0 =
∑
8 08 =

∑
8 18 = 5. Let

A = 28A2(a) and B = 28A2(b). Using construction (9), we obtain D such that D ∈ D±(26, 226, (:8 =
13, :13 = 13)) and E(B2) = LB = LB2 = 1.92. Hence, D is an unbalanced, E(B2)-optimal,
minimax-optimal SSD and a �-optimal design.

4. Testing Achievability Computationally

We implemented a computational study to test the achievability of LB(#, (:0, . . . , : b#/2c)). In
searching for an SSD D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) achieving LB(#, (:0, :1, . . . , : b#/2c)),
we assumed that :0 = 1. First we show that this assumption can be made without losing generality.
To do this, we need the following two lemmas.

Lemma5: LetD ∈ D±(#, 2<, (0, :1, . . . , : b#/2c)). Then [1# D] ∈ D±(#, 2(<+1) , (1, :1, . . . , : b#/2c)),
and D is E(B2)-optimal if and only if [1# D] is E(B2)-optimal.

Proof: Observe that

#2 + SS(D>D) + 2
∑
;

: ; (# − 2;)2 = SS( [1# D]> [1# D]).
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Hence, SS(D>D) is minimized if and only if SS( [1# D]> [1# D]) is minimized. The result follows
because for any SSD X ∈ D±(#′, 2<′, (:′0, . . . , :

′
b# ′/2c)) we have

E(B2) = (X
)X) − #′2<′
<′(<′ − 1) .

Hence, X is E(B2)-optimal if and only if SS(X>X) is minimized.

Lemma 6: Let :0 = 0 and
∑
; : ; = <. Then

(< + 1)< LB(#, (1, :1, . . . , : b #2 c)) = <(< − 1) LB(#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

Proof: Each LB8 (#, (:0, :1, . . . , : b#/2c)) for 8 = 1, 2 is derived based on a hypothetical D∗
8
∈

D±(#, 2<, (0, :1, . . . , : b#/2c)), where

LB8 (#, (:0, :1, . . . , : b #2 c)) =
SS(D∗>

8
D∗
8
) − #2<

<(< − 1) .

If D∗
8
∈ D±(#, 2<, (0, :1, . . . , : b#/2c)) then [1# D∗

8
] ∈ D±(#, 2(<+1) , (1, :1, . . . , : b#/2c)). Now,

LB8 (#, (0, :1 . . . , : b #2 c)) =
SS(D∗>

8
D∗
8
) − #2<

<(< − 1) ,

LB8 (#, (1, :1, . . . , : b #2 c)) =
SS( [1# D∗

8
]> [1# D∗

8
]) − #2(< + 1)

(< + 1)< .

Hence, by Lemma 5

(< + 1)< LB8 (#, (1, :1, . . . , : b #2 c)) = <(< − 1) LB8 (#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

Now, the result follows from

LB(#, (:0, :1, . . . , : b #2 c)) = max8∈{1,2}
{LB8 (#, (:0, :1, . . . , : b #2 c))}

and

(< + 1)< max
8∈{1,2}

LB8 (#, (1, :1, . . . , : b #2 c)) =

<(< − 1) max
8∈{1,2}

LB8 (#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

The definition of an SSD D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) requires that it has no pair of
aliased columns, i.e., columns d8 and d 9 such that d>

8
d 9 ∈ {−#, #}. Hence, we must have :0 ≤ 1

for each SSD D.

Theorem 5: An SSD D achieving LB(#, (0, :1, . . . , : b#/2c)) exists if and only if an SSD [1# D]
achieving LB(#, (1, :1, . . . , : b#/2c)) exists.
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Proof: The result follows immediately from Lemmas 5 and 6.

ByTheorem5,WLOG,we can restrict our search for SSDs achievingLB(#, (:0, :1, . . . , : b#/2c))
to SSDs with :0 = 1. Accordingly, we wrote a C program for the NOA? for ? = 2, 4, 8 algorithms
together with the derived E(B2) lower bound LB(#, (1, :1, . . . , : b#/2c)) to search for SSDs in
D±(#, 2<, (1, :1, . . . , : b#/2c)) achieving this bound.

There is a one-to-one correspondence between all SSDs achieving LB(#, (1, 0, . . . , 0, < − 1))
and all balanced SSDs achieving LB(#, (0, . . . , 0, < − 1)) obtained by deleting the all ones column.
The NOA? for ? = 2, 4, 8 algorithms could find a balanced E(B2)-optimal SSD for # = 14, 16 in all
cases except the # = 14, < = 16 case (Bulutoglu and Ryan, 2008). For the cases with # ∈ {14, 16}
and 15 ≤ < ≤ 70 for which LB(#, (0, . . . , 0, < − 1)) is (not) equal to E(B2)-lower bound in
Bulutoglu and Ryan (2008), we were (not) able to find an SSD in D±(#, 2<, (1, 0, . . . , 0, <))
achieving LB(#, (1, 0, . . . , 0, <)) except for the # = 14, < = 17 case (this case with the all 1’s
column corresponds to the # = 14, < = 16 case in Ryan and Bulutoglu (2007). These observations
confirm the correctness of our C program.

For each of the number of rows # and number of columns < combinations in Table 1 we
randomly generated 100 vectors (1, :1, . . . , : b#/2c) such that :0 = 1 and

∑
; : ; = <. Then for

each of these 100 vectors (1, :1, . . . , : b#/2c), we used the NOA4 exchange algorithm (Bulutoglu and
Ryan, 2008; Ryan and Bulutoglu, 2007) to search for an SSD D ∈ D±(#, 2<, (1, :1, . . . , : b#/2c))
achievingLB(#, (1, :1, . . . , : b#/2c)). The complexity of running theNOA? algorithm increaseswith
?. However, for each random starting design, increased ? increases the probability of converging
to an SSD which has no aliased columns by definition. After experimenting with NOA2, NOA4,
and NOA8 we decided to use NOA4 as a compromise between speed and avoidance of converging
to a design with aliased columns. In Table 1, the column # reports # , the column < reports a
range of < for which this experiment was conducted, and the column =D<8C4A reports the number
of random starting designs that were used each time the NOA4 algorithm was run. (We changed
=D<8C4A only with # .) For each # , < combination such that < is within the reported range of
<, the numbers of successes column of Table 1 reports the number of times out of 100 sampled
vectors (1, :1, . . . , : b#/2c) an SSD achieving LB(#, (1, :1, . . . , : b#/2c)) was found. The number of
successes in Table 1, which are in fact each a percent out of 100 sampled vectors (1, :1, . . . , : b#/2c),
can only underestimate the true percentage of the sampled vectors (1, :1, . . . , : b#/2c) where our
bound is achievable. Hence, for each vector (1, :1, . . . , : b#/2c), we needed a sufficient number of
random starting designs to avoid significantly underestimated true percentages. We observed that for
the balanced cases of # = 10 and # = 14, =D<8C4A = 106 and =D<8C4A = 107 were sufficient. (We
were able to determine this, as for the balanced cases we know exactly when LB(#, (0, . . . , 0, <))
is achievable.) Hence, we set =D<8C4A = 107 for 11 ≤ # ≤ 14 and =D<8C4A = 106 for # ≤ 10.
However, just because these values of =D<8C4A are sufficient in the balanced cases does not guarantee
that they will be sufficient for the corresponding unbalanced cases.

Our Table 1 estimates do decrease with increased # . The output of our computational
experiments also provided us with the iteration number at which an E(B2)-optimal SSD achieving
LB(#, (1, :1, . . . , : b#/2c))was found. Weused this information to perform a statistical analysis to de-
termine the significance of underestimation. Our statistical analysis suggests that the true percentage
of the sampled vectors (1, :1, . . . , : b#/2c) where our bound is achievable LB(#, (1, :1, . . . , : b#/2c))
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Table 1: Numbers of times an SSD achieving LB(N, (1, k1, . . . , kbN/2c)) found for a randomly
generated set of 100 vectors (1, :1, . . . , : b#/2c) such that 1 +∑

; : ; = <

# < =D<8C4A numbers of successes each out of 100
7 7-20 106 17 52 34 36 68 68 55 41 67 72 55 51 45 69
8 8-35 106 12 18 10 44 57 45 50 63 76 65 58 59 69 83 64 68 67 75 69 46 45

56 55 45 45 53 40 30
9 9-69 106 4 4 15 37 45 33 31 47 54 76 61 68 74 75 70 63 63 66 82 72 56 60

69 65 52 45 52 50 37 37 40 44 34 30 33 23 28 18 18 22 15 14 7 12
17 7 3 5 9 4 2 3 5 1 1 2 2 5 0 0 2

10 10-63 106 2 4 25 33 18 11 45 64 57 52 54 61 66 58 53 68 59 63 60 67 61 62
59 54 58 59 61 59 59 47 55 55 52 49 45 50 46 38 34 34 36 34 27
30 24 16 26 28 21 26 18 11 13 13

11 11-50 107 2 8 20 8 2 13 29 56 52 41 36 42 46 54 43 54 58 58 53 53 53 56 53
49 55 46 50 50 46 41 40 38 39 39 36 29 30 34 36 33

12 12-43 107 0 0 0 0 12 36 56 32 18 21 28 57 28 27 35 48 39 32 26 32 32 31 32
32 33 29 34 30 25 33 30 22

13 13-35 107 0 0 0 3 14 27 20 2 4 12 31 25 21 17 18 29 27 27 28 18 36 28 20
14 14-35 107 0 0 3 12 2 1 0 4 7 9 6 1 4 4 7 5 1 3 6 4 3 3

is underestimated significantly only in the # ≥ 13 rows of Table 1.

5. Application

In this section we discuss two possible applications of our newly derived E(B2) lower bound.

5.1. Application to searching for �-optimal designs

Let D be an # × < (< ≤ #) matrix with entries from {±1} representing an # row, two-
symbol and < column array. Let _1, _2, . . . , _< be all the non-zero eigenvalues of D>D, where
rank(D>D) = <. By the spectral decomposition theorem,

∑
8

_8 = Tr(D>D) = #<,∑
8

_28 = Tr((D>D)2) = Tr((DD>)2) = SS(D>D) = SS(DD>),

Det(D>D) =
∏
8

_8 .

If
∑
8 _
2
8
= \, then

∏
8 _8 ≤ 3 (\) for some 3 (\) ≥ 0, where \ is some positive integer. This is

equivalent to − log(∏8 _8) ≥ − log(3 (\)) by the monotonicity of the − log(·) function. To find
such 3 (\) that is as small as possible we consider the following smooth, non-convex nonlinear
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programming (NLP) problem

min
∑
8

− log(_8)

subject to:
∑
8

_8 = #<, (10)∑
8

_28 = \, _8 ≥ 0.

NLP (10) was solved analytically in Cheng (1978). Cheng (1978) showed that the minimum is
attained at a point which has constant coordinates _∗ = # when \ = #2< or has two distinct
coordinates _∗1 > _

∗
2 > 0 when \ > #

2<, where _∗1 has multiplicity =, _∗2 has multiplicity < − =, and

_∗1 = # +
√
(< − =) (\ − #2<)

<=
,

_∗2 = # −

√
=(\ − #2<)
(< − =)< .

Let

3 (\, #, <, =) =
(
# +

√
(< − =) (\ − #2<)

<=

)= ©­«# −
√
=(\ − #2<)
(< − =)<

ª®¬
<−=

.

Cheng (1978) also showed that 3 (\, #, <, =) is a strictly decreasing function of =. For \ > #2<, this
result implies that

3 (\) = 3 (\, #, <, 1) =
(
# +

√
(< − 1) (\ − #2<)

<

) ©­«# −
√
(\ − #2<)
(< − 1)<

ª®¬
<−1

is a valid upper bound for Det(D>D) = ∏
8 _8. Then for fixed # and <, by differentiating log(3 (\)),

we see that 3 (\) is a strictly decreasing function of \ for \ > 0. Hence, we get the following theorem.

Theorem 6: Let \ ∈ Z be such that \ > #2<. Then

SS(D>D) = SS(DD>) =
∑
8

_28 ≥ \,

implies
Det(D>D) =

∏
8

_8 ≤ 3 (\).

The following example shows how Theorem 6 can be used to derive upper bounds for the
SS(D∗(D∗)>), where D∗ is a two-symbol, �-optimal design.

Example 4: For # = 22 and < = 22, the largest possible Det(D>D) of 2012 × (6400000)2 for a
two-symbol design with entries from {±1} is given by Chasiotis et al. (2018). Then by Theorem 6,
for a �-optimal design D∗ with 22 rows and 22 columns, we must have

SS((D∗)>D∗) = SS(D∗(D∗)>) ≤ 11, 920.
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This proves that a �-optimal design in this case cannot be balanced. Since for a balanced 22 row
and 22 column design D, SS(D>D) ≥ 12, 496.

Next, we provide a connection between �-optimal designs and the E(B2) lower bound that we
derived in Section 2. Let D = (38 9 ) be a sought after �-optimal design with # rows and < columns
and d>1 be the first row of D. Let

D̂ = Ddiag(d1),
where diag(d1) is the < × < diagonal matrix whose ( 9 , 9)’th entry is the 9’th entry of d1. Now, D̂>
can be viewed as a not necessarily balanced SSD. Let E(B2) be the E(B2) value of D̂>. Then the
E(B2) values of D̂> satisfies

SS(D̂>D̂) = SS(D̂D̂>) = E(B2)# (# − 1) + #<2.

Hence we get the following corollary to Theorem 6.

Corollary 1: Let \ ∈ Z be such that \ > #2<. Then

E(B2) ≥ \ − #<2
# (# − 1)

implies
Det(D>D) = Det(D̂>D̂) ≤ 3 (\).

Now for a given value of 3 (\), when searching for a D with

Det(D>D) > 3 (\),

the search can be restricted to D̂> with balancedness structure (1, :1, . . . , : b</2c) such that D̂> ∈
D±(<, 2# , (1, :1, . . . , : b</2c)) and

LB(<, (1, :1, . . . , : b<2 c)) ≤
\ − #<2
# (# − 1) . (11)

The \ in (11) can be decreased by using themethods of Chasiotis et al. (2018). This restriction should
decrease the search space significantly and improve algorithm performance for finding �-optimal
designs in Brent et al. (2011).

Requiring an SSD to be minimax optimal has the benefit of reducing the search space and can
be useful in the search for a �-optimal design. In fact, there is a 22 row, 22 column, �-optimal
design that can be viewed as an unbalanced, E(B2)-optimal, minimax-optimal SSD achieving the
naive E(B2) lower bound (5), (see Chasiotis et al. 2018). However, finding even a balanced E(B2)-
optimal and minimax-optimal SSD in general is a very difficult problem (Morales and Bulutoglu,
2018).

5.2. Application to finding upper bounds on the maximum number of columns

The following is an important theoretical problem in the SSD literature (Cheng and Tang,
2001).
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Problem 1: For a given 0 ≤ C ≤ # find the maximum number of columns �(#, C, (0, . . . , 0, <))
such that an SSD D ∈ D±(#, 2<, (0, . . . , 0, <)) with Bmax ≤ C exists. The generalization of this
problem to unbalanced SSDs is determining �(#, C, (:0, :1, . . . , : b#/2c)). Multiplying a subset of
rows of an SSD D does not change the Bmax of D. Hence, by Lemma 1 in (Cheng and Tang, 2001),
WLOG it suffices to find �(#, C, (1, :′1, . . . , :

′
b#/2c)), where :

′
8
= 0 for 1 ≤ 8 < (# − C)/2.

By using E(B2) lower bounds on balanced SSDs, Cheng and Tang (2001) found an up-
per bound on �(#, C, (0, . . . , 0, <)). Our newly derived E(B2) lower bounds for unbalanced
SSDs can be used to generalize the upper bound on �(#, C, (0, . . . , 0, <)) to an upper bound on
�(#, C, (1, :′1, . . . , :

′
b#/2c)) with :

′
8
= 0 for 1 ≤ 8 < (# − C)/2.

The following is an important theoretical problem in the frame theory literature (Szöllösi and
Östergård, 2018).

Problem 2: For given 0 ∈ (0, 1) and 3 ∈ Z≥0, find the maximum number of equiangular lines in R3
with pairwise angle arccos(0).

For an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), let Bmin = min8< 9 |B8 9 |. Let � (#, C, 3) be
the maximum < such that an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) with C = Bmax = Bmin and
rank(X) = 3 ≤ # exists. Sincemultiplying a subset of rows of an SSDD does not change the Bmax and
Bmin of D, WLOG we can assume X ∈ D±(#, 2<, (1, :′1, . . . , :

′
b#/2c)), where :

′
(#−C)/2 = < − 1 and

:′
8
= 0 for 8 ∉ {0, (# − C)/2}. Hence, it is plain to see that � (#, C, 3) ≤ �(#, C, (1, :′1, . . . , :

′
b#/2c)).

The number� (#, C, 3) is a lower bound on the number of equiangular lines inR3 with pairwise
angle arccos(C/#). Hence, determining� (#, C, 3) provides information on the solution of Problem 2
for 0 = C/# and �(#, C, (1, :′1, . . . , :

′
b#/2c)), where :

′
(#−C)/2 = <−1 and :

′
8
= 0 for 8 ∉ {0, (# − C)/2}

bounds � (#, C, 3). We propose determining � (#, C, 3) for many #, C, 3 combinations by using the
upper bound �(#, C, (1, :′1, . . . , :

′
b#/2c)) as needed as a future research project.
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