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Abstract
In this article, a new continuous probability distribution called Arvind distribution

is developed and studied. The proposed distribution has only one parameter but it exhibits
a wide variety of shapes for density and hazard rate functions. A number of important
distributional properties including mode, quantile function, moments, skewness, kurtosis,
mean deviation, probability-weighted moments, stress-strength reliability, order statistics,
reliability and hazard rate functions, Bonferroni Lorenz and Zenga curves, conditional mo-
ments, mean residual and mean past life functions, and stochastic ordering of the Arvind
distribution are derived. For point estimation of the parameter of the proposed distribu-
tion, six estimation procedures including maximum likelihood, maximum product spacings,
least squares, weighted least squares, Cramér-von Mises, and Anderson-Darling estimators
are used. The interval estimation of the unknown parameter has also been discussed using
observed Fisher’s information. A vast simulation study has been conducted to examine the
behaviour of different estimation procedures. Finally, the applicability of the proposed model
is demonstrated by using three real-life datasets. The results of the real data analysis clearly
announce that the Arvind distribution can be a better alternative to several existing models
for modelling different types of data from various fields.

Key words: Arvind distribution; Maximum likelihood estimation; Maximum product spac-
ings; Least squares estimation; Stress strength reliability

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In today’s competitive world, the data generated in numerous disciplines such as en-
gineering, economics, biological sciences, actuarial sciences, etc. is becoming more difficult
to analyze. As a consequence, for modelling such data, we require distributions that are
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best suited for analyzing these multi-features and complicated data. For these reasons, the
invention of novel probability distributions has dominated statistical research during the
last few decades. In this order, the well-known reference was Mudholkar et al. (1996), who
described a particular generalization of the Weibull distribution and applied it to survival
data. Gupta and Kundu (1999) introduced generalized exponential distribution to provide
more flexibility over baseline exponential distribution. This model has decreasing and uni-
modal shapes of the density function and its hazard rate can take increasing, decreasing, and
U-shapes. Nadarajah and Kotz (2006) proposed beta exponential distribution with decreas-
ing and unimodal density whereas the hazard rate can exhibit decreasing and increasing
shapes. Nadarajah and Haghighi (2011) developed the Nadarajah-Haghighi distribution
to model increasing, decreasing, and constant hazard rate functions. Chaubey and Zhang
(2015) pioneered exponentiated Chen distribution with bathtub rate hazard function. Yadav
et al. (2021a) proposed Burr-Hatke exponential distribution to model decreasing density as
well as decreasing hazard rate function. Bakouch et al. (2021) proposed a unit half-normal
distribution with unimodal and asymmetric (left and right skewed) density and increasing
hazard rate function. El-Morshedy et al. (2021) proposed a new generalization of the odd
Weibull-G family by consolidating two notable families of distributions. Choudhary et al.
(2021) enhanced the modified Weibull distribution with an additional parameter to pro-
vide its density and hazard rate function greater flexibility. This distribution is capable of
modeling the bathtub-shaped, decreasing, increasing and the constant hazard rate function.
Recently, Alsuhabi et al. (2022) pioneered a four-parameter distribution named the extended
odd Weibull Lomax distribution. This model has increasing, and decreasing, bell shapes and
unimodal shapes of the density function and its hazard rate can take increasing and decreas-
ing shapes. They also show the applicability of this model to COVID-19 data. Promiscuous
crucial literature includes Tyagi et al. (2022) and Agiwal et al. (2023).

Traditional continuous models and their modified or generalized counterparts (in
the existing literature) sometimes become very restricted, for example, some models have
a complex form of density and hazard functions that are difficult to handle, and a few
models are limited to the model-specific type of failure rate, a non-existence of moments,
a high number of parameters, an excessive amount of complexity in calculations of some
characteristics, etc. Although some continuous distributions are less restrictive, there is still
room for the construction of more flexible continuous models that may be suitable for the
analysis of different types of data generated from distinct fields. With this motivation, we
developed a more flexible and simpler continuous distribution called Arvind distribution.
This distribution is extremely flexible compared to conventional and recently developed
continuous models and we have noticed this in real data applications. Another advantage of
Arvind distribution over other rival models is that it has just one parameter and therefore the
expressions of this distribution are not too complicated in both analytical and computational
handling.

The rest of the structure of this article is as follows. Section 2 introduced Arvind
distribution and portrayed various shapes of its density. In Section 3, we have derived var-
ious imperative distributional and reliability properties of Arvind distribution with some
numerical illustrations. In Section 4, different methods of estimation like maximum likeli-
hood, maximum product spacings, ordinary and weighted least squares, Cramér-von-Mises,
and Anderson-Darling have been used to estimate the unknown parameters of the proposed
model. Section 4 also includes the asymptotic confidence interval (ACI) for the unknown
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parameter based on Fisher’s information. A detailed simulation study is presented to inspect
the performance of various estimation methods in Section 5. In Section 6, the applicability
of Arvind distribution has been demonstrated using three case studies from different fields
over other well-known continuous models. In the end, some concluding remarks are provided
in Section 7.

2. Synthesis of the Arvind distribution

Before discussing the density function and form of the proposed model, we mention
the following proposition.

Proposition 1: For a random variable X with domain (0, ∞), the following function is a
valid cumulative distribution function (CDF).

F (x, θ) = P (X ≤ x) =
{

1 − exp(−θx2)
(1+θx) ; x > 0, θ > 0

0 ; otherwise
, (1)

where θ ∈ (0, ∞) is an unknown parameter.

Proof: Since, x > 0 and θ > 0, therefore, we can see that F (x, θ) ≤ 1 and F (x, θ) ≥ 0.
Furthermore lim

x→0
F (x, θ) = 0 = F (0, θ) implying that F (x, θ) is continuous at 0 and a fortiori

in R. It is clear that lim
x→+∞

F (x, θ) = 1. Now, for x > 0, we have

F ′(x, θ) = d

dx
F (x, θ) = θ (1 + 2x + 2θx2)

(1 + θx)2 exp(−θx2) ≥ 0,

implying that F (x, θ) is non-decreasing. The required properties for a valid CDF are satisfied,
therefore F (x, θ) is a valid CDF.

Based on Proposition 1, we can easily define the Arvind distribution as follows:
Definition 1: A continuous random variable X is said to follow Arvind distribution with
parameter θ if its CDF is of the form (1) or it can be specified by the following probability
density function (PDF)

f(x, θ) =
{

θ(1+2x+2θx2)
(1+θx)2 exp(−θx2); x > 0, θ > 0

0 ; otherwise
, (2)

here, it is clear that f(x, θ) ≥ 0 and
∞�
0

f(x, θ)dx = 1.
Some of the possible shapes of the PDF of the Arvind distribution for a few arbitrary values
of the parameter θ are portrayed in Figure 1. From this figure, we can easily see that the
PDF of the Arvind distribution is versatile enough as it takes a variety of shapes for different
values of θ. Also, the limiting behaviour of the PDF of Arvind distribution can be defined
as

lim
x→0

f(x, θ) = θ and lim
x→∞

f(x, θ) = 0.
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Figure 1: The PDF plots for Arvind distribution for different values of θ

3. Statistical properties of the Arvind distribution

The development of a probability distribution without discussing its statistical proper-
ties is not of much use. The Arvind distribution has many important distributional properties
and some of them are presented below:

3.1. Mode

A value of a random variable that maximizes its PDF is known as a mode. In the
case of Arvind distribution, the mode can be obtained by solving the following equation

∂ log f(x, θ)
∂x

= 0 ⇒ 2θ3x4 + 4θ2x3 + (2θ + θ2)x2 + θ − 1 = 0.

The above equation cannot be solved analytically in closed form. Therefore, we have obtained
the values of mode numerically for different values of θ, and these are listed in Table 1. From
these tabulated values of mode, we have verified the conclusion of the PDF plot that the
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proposed distribution is unimodal.

3.2. Quantile function, random number generation and median

The quantile function is an important tool to specify a probability distribution. It is
very useful in random number generation and computation of positional averages like median.
The quantile (Q) of the Arvind distribution can be obtained by solving the following equation

exp(−θQ2) − (1 + θQ)(1 − u) = 0, (3)

where u is the uniform random variable from U(0, 1). The median of the proposed distribu-
tion can be computed by putting u = 0.5 in Equation (3). We have numerically obtained
the median for different values of θ and these are listed in Table 1, and it concludes that the
median goes down as θ gets up. By solving Equation (3) for Q, we can generate random
numbers from the proposed distribution for different values of u from U(0, 1).

3.3. Moments, skewness and kurtosis

For portraying different characteristics of a probability distribution like mean, vari-
ance, skewness (Sk), and kurtosis (Kur), moments are very useful in statistical theory. Sup-
pose X is a random variable that follows Arvind distribution with parameter θ. Then, the
rth raw moment can be derived as

µ′
r = E(Xr) =

� ∞

0
xrf(x, θ)dx

=
� ∞

0
xr θ(1 + 2x + 2θx2)

(1 + θx)2 exp(−θx2)dx

= r

� ∞

0

xr−1 exp(−θx2)
(1 + θx) dx. (4)

In particular, the mean and variance of the proposed model can be presented as

µ = µ′
1 = E(X) =

� ∞

0

exp(−θx2)
(1 + θx) dx

and
µ2 = V ar(X) = µ′

2 − µ′
1

2

= 2
� ∞

0
x exp(−θx2)

(1+θx) dx −
[� ∞

0
exp(−θx2)

(1+θx) dx
]2

,

respectively. Similarly, we can obtain other central moments using raw moments. From
these raw moments, we can also calculate the Sk and Kur of the proposed model using the
following formula:

Sk = E(X4) − 3E(X2)E (X) + 2(E (X))3

(V ar(X))3/2 ,

and
Kur = E(X4) − 4E(X2)E (X) + 6E(X2)(E (X))2 − 3(E (X))4

(V ar(X))2 ,
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respectively. As we can easily observe the mean, variance, Sk, and Kur of the Arvind
distribution cannot be found in closed expressions, therefore we compute them numerically
for different values of θ, and these are listed in Table 1. From this table, we yield the following
outcomes:

• The mean and variance of the Arvind distribution decrease as the value of θ increases.

• As the value of the coefficient of skewness based on moments is positive, the proposed
model is positively skewed. Also, the Sk of the Arvind model increases as θ increases.

• From Table 1, since the value of the coefficient of kurtosis is less than 3, therefore, the
proposed distribution is platykurtic and its peakedness increases as θ increases.

Table 1: Descriptive statistics for Arvind distribution for different values of θ

θ Mode Median Mean Variance MD(µ) MD(m) Skewness Kurtosis
0.1 1.77056 2.21965 2.40702 2.11585 1.17113 0.97464 0.69274 0.29880
0.5 0.52137 0.83134 0.93373 0.40649 0.51371 0.40521 0.81903 0.47350
1 0.00003 0.52237 0.60513 0.19600 0.35623 0.26777 0.91400 0.64761

1.5 0.11719 0.39208 0.46573 0.12693 0.28611 0.20687 0.98351 0.79551
2 0.26459 0.31746 0.38531 0.09288 0.24423 0.17082 1.03954 0.92660

2.5 0.42256 0.26827 0.33191 0.07271 0.21563 0.14647 1.08699 1.04560
3 0.10358 0.23306 0.29340 0.05943 0.19453 0.12869 1.12840 1.15534
4 0.24065 0.18560 0.24089 0.04308 0.16495 0.10420 1.19865 1.35382
5 0.71926 0.15482 0.20627 0.03347 0.14484 0.08796 1.25747 1.53157
10 0.07255 0.08580 0.12588 0.01503 0.09546 0.05024 1.46474 2.24050
20 0.65754 0.04588 0.07548 0.00657 0.06161 0.02741 1.71150 3.24746

3.4. Mean deviation

If we take the average absolute deviation about the mean (or median) it is known
as the mean deviation about the mean (or median). Mean deviation about the mean (or
median) is another important tool for measuring dispersion besides the variance. Suppose µ
and m denote the mean and median, then the mean deviation about the mean (or median)
can be defined as

MD(ζ) = E |X − ζ| =
� ∞

0
|x − ζ| f(x, θ)dx = 2

{
ζF (ζ, θ) −

� ζ

0
xf(x, θ)dx

}
, (5)

where ζ = µ or m . Using the above expression with some simplification, the mean deviation
about mean (or median) for the Arvind distribution can be obtained as

MD(ζ) = E |X − ζ| = 2
{

ζ −
� ζ

0

exp(−θx2)
(1 + θx) dx

}
. (6)

The expression of mean deviation (6) cannot be bound up in closure form, so to measure
the behaviour of mean deviation about mean (or median), we have calculated these average
deviations numerically and they are listed in Table 1. This table announces that the mean
deviation about the mean (or median) decreases as θ increases and the mean deviation about
the median is smaller than the mean deviation about the mean as the theory claims.
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3.5. Probability weighted moments

The generalization of the simple moments is known as probability-weighted moments
(PWMs). They can be developed for a distribution whose ordinary moments can be derived.
For the Arvind random variable X, the (r, s)th PWM is given by

ςr,s = E [XrF s(x, θ)]

=
� ∞

0
xrF s(x, θ)f(x, θ)dx

=
� ∞

0
xr

(
1 − exp(−θx2)

1 + θx

)s
θ(1 + 2x + 2θx2) exp(−θx2)

(1 + θx)2 dx

=
s∑

j=0
(−1)jθ

(
s
j

)� ∞

0
xr

(
1

(1 + θx)j+2 + 2x

(1 + θx)j+1

)
exp(−(j + 1)θx2)dx.

After some simplification, the (r, s)th PWM of the Arvind distribution is given by

ςr,s =
s∑

j=0
(−1)j r

(j + 1)

(
s
j

)� ∞

0

xr−1 exp(−(j + 1)θx2)
(1 + θx)j+1 dx. (7)

3.6. Stress-strength reliability

The probability ϖ = P (X2 < X1) is referred to as stress-strength (S-S) reliability
if the random variable X1 represents the strength of a system under stress X2, assuming
that X1 and X2 are stochastically independent random variables. The S-S reliability is
widely used in reliability theory, especially in engineering concepts like different structures,
static fatigue of ceramic components, the aging of concrete pressure vessels, fatigue failure of
aviation structures, etc. The research on S-S reliability models has received a lot of attention
recently due to the expanded scope of S-S reliability. For more detail, see Goel and Singh
(2020). In our case, suppose X1 ∼ Arvind(θ1) and X2 ∼ Arvind(θ2) distributions, then S-S
reliability is given by

ϖ = P (X2 < X1) =
� ∞

0
P (X2 < X1|X1 = x)fX1(x, θ1)dx

=
� ∞

0
FX2(x, θ2)fX1(x, θ1)dx

=
� ∞

0

(
1 − exp(−θ2x

2)
(1 + θ2x)

)(
θ1(1 + 2x + 2θ1x

2) exp(−θ1x
2)

(1 + θ1x)2

)
dx

= 1 − θ1

� ∞

0

(1 + 2x + 2θ1x
2) exp(−(θ1 + θ2)x2)

(1 + θ2x)(1 + θ1x)2 dx. (8)

The expression (8) ϖ cannot be easily tractable in closed form. Therefore, to study the
behaviour of ϖ for different values of θ1 and θ2, we have computed ϖ numerically. The
outcomes of ϖ have been given in Table 2. From this table, we observe that

• For a fixed value of θ1, the value of ϖ increases as θ2 increases.
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• For a fixed value of θ2, the value of ϖ goes down as θ1 increases.

• When the values of θ1 and θ2 are equal, the value of ϖ becomes 0.5.

Table 2: The S-S reliability ϖ under different values of θ1 and θ2

θ1 →
θ2 ↓ 0.1 0.5 1 1.5 2 2.5 3 4 5 10 20
0.1 0.5 0.17715 0.10231 0.0734 0.05786 0.04808 0.04133 0.03255 0.02705 0.01526 0.00862
0.5 0.82285 0.5 0.34692 0.27031 0.22365 0.19196 0.1689 0.13737 0.11661 0.06916 0.04041
1 0.89769 0.65308 0.5 0.41108 0.35211 0.30975 0.27765 0.23187 0.2005 0.12452 0.07519

1.5 0.9266 0.72969 0.58892 0.5 0.43784 0.39151 0.35543 0.30244 0.26504 0.17049 0.1057
2 0.94214 0.77635 0.64789 0.56216 0.5 0.45243 0.41462 0.35785 0.31686 0.20963 0.13287

2.5 0.95192 0.80804 0.69025 0.60849 0.54757 0.5 0.46159 0.40289 0.35974 0.24359 0.15734
3 0.95867 0.8311 0.72235 0.64457 0.58538 0.53841 0.5 0.44045 0.39601 0.27348 0.17957
4 0.96745 0.86264 0.76813 0.69756 0.64215 0.59711 0.55955 0.5 0.45448 0.32402 0.21868
5 0.97295 0.88339 0.7995 0.73496 0.68314 0.64026 0.60399 0.54552 0.5 0.36549 0.25223
10 0.98474 0.93084 0.87548 0.82951 0.79037 0.75641 0.72652 0.67598 0.63451 0.5 0.37072
20 0.99138 0.95959 0.92481 0.8943 0.86713 0.84266 0.82043 0.78132 0.74777 0.62928 0.5

We have also portrayed a 3-D plot for ϖ under different values of θ1 and θ2 in Figure
2, this plot also announces that ϖ can take a variety of values from small to large for distinct
values of θ1 and θ2.

Figure 2: A 3-D plot for ϖ under different values of θ1 and θ2

3.7. Order statistics

Let X1, X2, ....., Xn be a random sample of size n generated from Arvind(θ) distribu-
tion and X1:n ≤ X2:n ≤ ..... ≤ Xn:n denotes the corresponding order statistics. Then, the
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PDF and CDF, respectively, of ith order statistics are given as

fi:n(x, θ) = n!
(i − 1)! (n − i)! [F (x, θ)]i−1[1 − F (x, θ)]n−if(x, θ)

= n!θ(1 + 2x + 2θx2) exp(−θ(n − i + 1)x2)(1 + θx − exp(−θx2))i−1

(i − 1)! (n − i)!(1 + θx)n+1 , (9)

and

Fi:n(x, θ) =
n∑

r=i

(
n
r

)
[F (x, θ)]r[1 − F (x, θ)]n−r

=
n∑

r=i

n−r∑
j=0

(−1)j

(
n
r

)(
n − r

j

)
[F (x, θ)]j+r

=
n∑

r=i

n−r∑
j=0

(−1)j

(
n
r

)(
n − r

j

)(
1 − exp(−θx2)

1 + θx

)j+r

. (10)

In particular, by putting i = 1 and i = n, respectively, we can find the PDF and CDF of
minimum and maximum order statistics. For odd sample size n, we can obtain the PDF and
CDF of the median order statistics by setting i = n+1

2 .

3.8. Reliability and hazard rate functions

The reliability function (RF) R(x, θ) and hazard rate function (HRF) h(x, θ) of the
Arvind(θ) distribution, respectively, are given by

R(x, θ) = P (X > x) = exp(−θx2)
(1 + θx) ; x ≥ 0, θ > 0, (11)

h(x, θ) = f(x, θ)
R(x, θ) = θ (1 + 2x + 2θx2)

(1 + θx) ; x ≥ 0, θ > 0. (12)

We have plotted the hazard rate for different values of θ in Figure 3. From this figure,
we can easily observe that the HRF of the Arvind distribution can increase, decrease, and
U-shaped. Also, the limiting behaviour of the HRF can be stated as:

lim
x→0

h(x, θ) = θ and lim
x→∞

h(x, θ) = ∞.

Also, the cumulative and reverse hazard rate (RHR) functions of the Arvind distribution,
respectively, are given by

H(x, θ) = θx2 + log(1 + θx); x ≥ 0, θ > 0, (13)

RHR(x, θ) = θ(1 + 2x + 2θx2) exp(−θx2)
(1 + θx)(1 + θx − e−θx2) ; x ≥ 0, θ > 0. (14)
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Figure 3: The HRF plot of Arvind distribution for different values of θ

3.9. Inequality measures: Lorenz, Bonferroni and Zenga curves

The Lorenz, Bonferroni, and Zenga curves are the most often used inequality mea-
sures in the literature (Lorenz (1905), Bonferroni (1930), and Zenga (2007)). These three
curves can be defined using simply the population mean and the means of certain subgroups.
Inequality curves are useful because they may be used to create a variety of orderings that
allow for distribution comparisons based on inequality. Such comparisons within the same
model make it possible to comprehend how distributional parameters influence inequality.
For the Arvind distribution, the Lorenz, Bonferroni, and Zenga curves, respectively, are
obtained as

L(p) = 1
µ

� q

0
xf(x)dx = 1

µ

[
−q exp(−θq2)

1 + θq
+
� q

0

exp(−θx2)
(1 + θx) dx

]
, (15)

B(p) = L(p)
p

, (16)
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Z(p) = p − L(p)
p(1 − L(p)) , (17)

where q = F −1(p) which can be computed numerically using Equation (3). Table 3 lists
numerical values for Lorenz, Bonferroni, and Zenga curves of Arvind distribution for different
values of q = F −1(p) and θ.

Table 3: Values for Lorenz, Bonferroni, and Zenga curves of Arvind distribution
for a variety of θ

θ → 0.5 1 2 5
p ↓ L(p) B(p) Z(p) L(p) B(p) Z(p) L(p) B(p) Z(p) L(p) B(p) Z(p)
0.05 0.00260 0.05191 0.95055 0.00207 0.04132 0.96066 0.00165 0.03298 0.96862 0.00124 0.02487 0.97635
0.1 0.01013 0.10126 0.90793 0.00827 0.08267 0.92497 0.00670 0.06704 0.93926 0.00512 0.05118 0.95370
0.15 0.02229 0.14863 0.87079 0.01860 0.12398 0.89262 0.01533 0.10219 0.91179 0.01184 0.07893 0.93211
0.2 0.03891 0.19453 0.83808 0.03310 0.16548 0.86309 0.02769 0.13843 0.88610 0.02165 0.10824 0.91149
0.25 0.05983 0.23933 0.80908 0.05178 0.20710 0.83619 0.04395 0.17579 0.86209 0.03481 0.13923 0.89181
0.3 0.08500 0.28334 0.78323 0.07469 0.24895 0.81167 0.06429 0.21430 0.83968 0.05167 0.17225 0.87286
0.35 0.11439 0.32683 0.76012 0.10190 0.29113 0.78929 0.08885 0.25385 0.81891 0.07243 0.20694 0.85499
0.4 0.14801 0.37002 0.73942 0.13349 0.33374 0.76891 0.11791 0.29478 0.79949 0.09748 0.24371 0.83798
0.45 0.18591 0.41314 0.72088 0.16960 0.37689 0.75037 0.15163 0.33697 0.78154 0.12723 0.28272 0.82183
0.5 0.22820 0.45640 0.70433 0.21037 0.42074 0.73358 0.19028 0.38055 0.76501 0.16206 0.32412 0.80660
0.55 0.27501 0.50002 0.68964 0.25600 0.46545 0.71848 0.23413 0.42569 0.74988 0.20248 0.36814 0.79228
0.6 0.32652 0.54419 0.67679 0.30674 0.51124 0.70502 0.28353 0.47255 0.73618 0.24892 0.41487 0.77906
0.65 0.38306 0.58932 0.66567 0.36293 0.55836 0.69324 0.33891 0.52140 0.72396 0.30212 0.46479 0.76690
0.7 0.44497 0.63567 0.65641 0.42500 0.60714 0.68323 0.40079 0.57256 0.71334 0.36278 0.51826 0.75601
0.75 0.51277 0.68369 0.64920 0.49353 0.65804 0.67518 0.46988 0.62650 0.70455 0.43187 0.57582 0.74662
0.8 0.58718 0.73397 0.64441 0.56936 0.71170 0.66947 0.54713 0.68392 0.69796 0.51064 0.63830 0.73913
0.85 0.66931 0.78742 0.64283 0.65371 0.76907 0.66687 0.63398 0.74586 0.69433 0.60094 0.70699 0.73426
0.9 0.76101 0.84556 0.64620 0.74860 0.83178 0.66914 0.73278 0.81420 0.69531 0.70570 0.78411 0.73357
0.95 0.86601 0.91159 0.65984 0.85826 0.90343 0.68131 0.84824 0.89289 0.70581 0.83075 0.87447 0.74167

3.10. Conditional moments

In the context of lifetime models, it is also useful to have a knowledge of the expression
E(Xr|X > x). This expression is called the rth conditional moment of the random variable
‘X’. The computation of mean deviations around the mean and the median, as well as the
mean residual life function (See, Section 3.11) are all areas in which the conditional moments
find widespread usage. The rth conditional moment of a random variable following Arvind(θ)
distribution can be obtained as

E(Xr|X > x) = 1
1 − F (x, θ)Λr(x, θ), (18)

where
Λr(x, θ) =

� ∞

x

vrf(v, θ)dv = xr exp(−θx2)
(1 + θx) + r

� ∞

x

vr−1 exp(−θv2)
1 + θv

dv.

3.11. Mean residual life

The expected value of the remaining lifetimes after a fixed time point x, is called
the mean residual life (MRL) function. Since it is representative of the aging mechanism,
the MRL function is put to considerable use in a broad range of fields, including reliability
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engineering, survival analysis, and biological research. For Arvind(θ) distribution, it can be
derived as

MRL(x, θ) = E(X − x|X > x) = 1
1 − F (x, θ)

� ∞

x

vf(v, θ)dv − x

= 1 + θx

exp(−θx2)

� ∞

x

exp(−θv2)
1 + θv

dv. (19)

From the above expression of MRL, we can easily observe that the MRL is an application
of conditional moments and it can be obtained by putting r = 1 in Equation (18).

3.12. Mean past life

The expected time elapsed from the failure of a system given that its lifetime is less
than or equal to a time point x(x ≥ 0) is referred to as the mean past life (MPL) function.
Similar to the MRL function, the MPL function has applications in a vast array of fields,
such as actuarial research, forensic science, reliability theory, and survival analysis. The
expression of the MPL function for Arvind(θ) distribution can be developed as

MPL(x, θ) = E(x − X|X ≤ x) = x − 1
F (x, θ)

� x

0
vf(v, θ)dv

= 1
F (x, θ)

[
x −

� x

0

exp(−θv2)
1 + θv

dv

]
. (20)

3.13. Stochastic ordering

It is crucial to compare two or more random variables indicating the state of things in
two or more circumstances. In the situation of two random variables that are independent,
stochastic orderings are extremely advantageous. For two independent random variables Y
and Z if FY (y) ≥ FZ(y) for all y, Y is said to be stochastically smaller than Z i.e. Y ≤stZ.
Similarly, we can define stochastic ordering in terms of hazard rate, mean residual life, and
likelihood ratio functions as

• hazard rate order (Y ≤hrZ) if hY (y) ≥ hZ(y) for all y.

• mean residual life order (Y ≤mrlZ) if MRLY (y) ≤ MRLZ(y) for all y.

• likelihood ratio order (Y ≤lrZ) if fY (y)/fZ(y) decreases in y.

The following implications Shaked and Shanthikumar (2007) are well-known

Y ≤lrZ ⇒Y ≤hrZ ⇒ Y ≤mrlZ

⇓
Y ≤stZ.

The Arvind distributions are ordered with respect to the strongest “likelihood ratio” ordering
as we can easily observe from the following theorem.
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Theorem 1: Let Y and Z be two independent random variables form Arvind(θ1) and
Arvind(θ2) distributions, respectively. If θ1 > θ2 then Y ≤lrZ and hence Y ≤hrZ, Y ≤mrlZ
and Y ≤stZ.

Proof: Firstly, we observe that

fY (y, θ1)
fZ(y, θ2)

= θ1(1 + 2y + 2θ1y
2)(1 + θ2y)2 exp(−θ1y

2)
θ2(1 + 2y + 2θ2y2)(1 + θ1y)2 exp(−θ2y2)

, y > 0.

Since, for θ1 > θ2,

d

dx
log

(
fY (y, θ1)
fZ(y, θ2)

)
= 2(θ2 − θ1)



2 + (6 + θ1 + θ2)y + (6(1 + θ2) + θ1(6 + θ2))y2

+2(θ2
1 + θ2(5 + θ2) + θ1(5 + 3θ2))y3

+2(2θ2
2 + θ2

1(2 + θ2) + θ1θ2(9 + θ2))y4

+8θ1θ2(θ1 + θ2)y5 + 4θ2
1θ2

2y6

(1 + 2y + 2θ1y2)(1 + 2y + 2θ2y2)(1 + θ1y)(1 + θ2y)


< 0,

i.e. fY (y)/fZ(y) is decreasing in y. It implies that Y ≤lrZ. The rest of the ordering is a
direct consequence of the results provided by Shaked and Shanthikumar (2007).

4. Parameter estimation of the Arvind distribution

Under this section, the estimation of the unknown parameter of the proposed model
has been discussed using six different classical approaches, namely, the method of maximum
likelihood, maximum product spacings, ordinary and weighted least squares, Cramér-von-
Mises, and Anderson Darling method of estimation. These methods are briefly discussed as
follows,

4.1. Maximum likelihood estimation

Suppose X
−

≡ X1, X2, ..., Xn be a random sample of size n from the Arvind distribu-
tion. Then, the log-likelihood (logL) function can be written as

log L = n log(θ) − θ
n∑

i=1
x2

i +
n∑

i=1
log

(
1 + 2xi + 2θx2

i

)
− 2

n∑
i=1

log (1 + θxi) . (21)

To find out the maximum likelihood estimator (MLE) of θ, the normal equation is given by

∂ log L

∂θ
= n

θ
−

n∑
i=1

[
x2

i + 2
(1 + θxi)

− 2x2
i

(1 + 2xi + 2θx2
i )

]
= 0. (22)

The solution of Equation (22) yields the MLE of θ. Unfortunately, the above normal equation
cannot be solved analytically. Therefore, we can use numerical iteration procedures such as
Newton-Raphson (NR) through the open-source programming language R.
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4.2. Observed Fisher’s information and asymptotic confidence interval

The observed Fisher’s information for Arvind(θ) distribution is specified by

Io(θ̂) = −∂2 log L

∂θ2 |θ = θ̂,

where the second-order derivative of the log-likelihood function (21) with respect to θ is
given by

∂2 log L

∂θ2 = − n

θ2 −
n∑

i=1

[
− 2xi

(1 + θxi)2 + 4x4
i

(1 + 2xi + 2θx2
i )

2

]
.

Using this Fisher’s information, the asymptotic variance of θ̂ can be obtained as

V aro(θ̂) = 1
Io(θ̂)

.

Under some regularity conditions, the sampling distribution of (θ̂ − θ)/
√

V aro(θ̂) can be ap-
proximated by a standard normal distribution. The large-sample 100× (1 − α) % confidence
interval (also called ACI) for θ is given by

[θ̂L, θ̂U ] = θ̂ ∓ zα/2

√
V aro(θ̂).

Using simulation, we can estimate the coverage probability P
[∣∣∣∣ (θ−θ̂)√

V aro(θ̂)

∣∣∣∣ ≤ zα/2

]
, here zp is

such that p =
∞�
zp

(1/
√

2π)e−z2/2dz.

4.3. Maximum product of spacings method of estimation

As an alternative to the approach of maximum likelihood, the maximum product
spacing (MPS) method was developed by Cheng and Amin (1979) for estimating the unknown
parameters of continuous univariate distributions. Cheng and Amin (1983) proved that this
technique is just as efficient as the maximum likelihood estimation and that it is consistent
under more general conditions. Suppose X1, X2, ..., Xn be a random sample from Arvind
distribution F (x, θ), and X1:n ≤ X2:n ≤ ... ≤ Xn:n be the corresponding ordered values.
Based on this random sample, let us define the uniform spacings as

Di(θ) = F (xi:n, θ) − F (xi−1:n, θ) , i = 1, 2, ..., n,

where F (x0:n, θ) = 0, F (xn+1:n, θ) = 1, and
n+1∑
i=1

Di(θ) = 1. The MPS estimator θ̂MP S of the
parameter θ is determined by maximizing the geometric mean of the spacings with respect
to θ, or, evenly, by maximizing the following function

H(θ) = 1
n + 1

n+1∑
i=1

log(Di(θ)).
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The estimator θ̂MP S can also be obtained by solving the following non-linear equation,

1
n + 1

n+1∑
i=1

1
Di(θ) [ξ(xi:n, θ) − ξ(xi−1:n, θ)] = 0, (23)

where ξ(xi:n, θ) =
(

xie
−θx2

i

1+θxi

) (
xi + 1

1+θxi

)
.

4.4. Ordinary and weighted least squares estimation

Swain et al. (1988) firstly introduced regression-based estimators called ordinary least
squares (OLS) and weighted least squares (WLS) estimators for estimating the unknown
parameters of the beta distribution. These two methods are based on the combination of the
non-parametric and parametric distribution functions. Suppose X1, X2, ..., Xn be a random
sample from Arvind distribution, and X1:n ≤ X2:n ≤ ... ≤ Xn:n be the corresponding ordered
values. Then, the OLS estimator of θ, say θ̂OLS can be derived by minimizing the following
function with respect to θ

V (θ) =
n∑

i=1

[
F (xi:n, θ) − i

n + 1

]2
.

Alternatively, we can obtain the OLS estimator of θ by solving the following expression for
θ,

n∑
i=1

[
F (xi:n, θ) − i

n + 1

]
ξ(xi:n, θ) = 0. (24)

The WLS estimator of θ, say θ̂W LS can be found by minimizing the following equation,

W (θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F (xi, θ) − i

n + 1

]2
.

The WLS estimator θ̂W LS can also be obtained by solving the following non-linear equation
with respect to θ,

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F (xi:n, θ) − i

n + 1

]
ξ(xi:n, θ) = 0, (25)

where ξ(xi:n, θ) is defined in Section 4.3.

4.5. Cramér-von-Mises estimation

Cramer-von-Mises type minimum distance estimator is a widely used minimum dis-
tance estimator since the empirical data suggests that the bias of this estimator is lower than
that of the other minimum distance estimators. In our case, the Cramér-von Mises (CVM)
minimum distance estimator of θ can be obtained by minimizing, the following function:

C(θ) = 1
12n

[
F (xi, θ) − 2i − 1

2n

]2
.
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Moreover, we can obtain the CVM estimator of θ by solving the following equation for θ,
n∑

i=1

[
F (xi:n, θ) − 2i − 1

2n

]
ξ(xi:n, θ) = 0, (26)

where ξ(xi:n, θ) is already defined in Section 4.3.

4.6. Anderson-Darling method of estimation

The Anderson-Darling estimator (ADE) is another sort of minimum distance estima-
tor that utilizes Anderson–Darling statistics. The ADE of θ, say θ̂ADE, can be obtained by
minimizing the following function with respect to θ,

A (θ) = −n − 1
n

n∑
i=1

(2i − 1)
{
log F (xi:n, θ) + log F̄ (xn+1−i:n, θ)

}
.

The estimator θ̂ADE can also be achieved by simplifying the following nonlinear equation
n+1∑
i=1

(2i − 1)
[

ξ(xi:n, θ)
F (xi:n, θ) − ξ(xn+1−i:n, θ)

F̄ (xn+1−i:n, θ)

]
= 0, (27)

where ξ(xi:n, θ) is given in Section 4.3.

5. A Monte Carlo simulation study

This section showcases the behaviour of different estimation procedures for estimating
the unknown parameter of the Arvind distribution. For this purpose, we have performed an
empirical experiment which utilizes the following steps:

1. Generate 2,500 samples of size n =10, 20, 40, 60, 80, and 100 from Arvind distribution
with θ = 0.5, 1.0, 2.0, and 4.0. For sample generation, Equation (3) has been used.

2. Calculate the MLE, MPS, OLS, WLS, CVM, and AD estimators for the 2,500 samples,
say θ̂j; j = 1, 2, ..., 2, 500. Also, compute the 95% ACI for the above-generated samples.

3. Determine the expected value (EV), mean-squared error (MSE), and average bias (AB)
for all point estimators, whereas, for 95% ACI, we compute the average lower confi-
dence limit (ALCL), average upper confidence limit (AUCL), average width (AW), and
coverage probability, i.e.,

EV = 1
2500

2500∑
j=1

θ̂j, MSE = 1
2500

2500∑
j=1

(
θ̂j − θ

)2
, AB = 1

2500

2500∑
j=1

(
θ̂j − θ

)
,

ALCL = 1
2500

2500∑
j=1

LCLj, AUCL = 1
2500

2500∑
j=1

UCLj,

AW = 1
2500

2500∑
j=1

(UCLj − LCLj), CP = 1
2500

2500∑
j=1

Ij(LCLj < θj < UCLj),
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where LCLj and UCLj denotes the upper and lower confidence limit for the jth sample,
respectively and Ij(•) is the indicator function takes value 1 if LCLj < θ < UCLj otherwise
0.

The simulation study was conducted using the R software and the codes are available
upon request. Various classical estimates of θ with their MSE, AB are listed in Table 4. On
the other hand, Table 5 contains the ALCL, AUCL, AW, and CP for 95% ACI.
From this empirical study, the following outcomes have been noted:

• We found that the average bias and MSE of all estimators approach zero for large n,
indicating that the parameter estimates are consistent and asymptotically unbiased.

• The performance of all of the estimating techniques is satisfactory. However, in the
overall comparison, for the proposed model, MPS is the most favourable estimation
procedure while CVM is the least favourable estimation method.

• Additionally, the hierarchy of the best estimation technique among the numerous meth-
ods taken into consideration for estimating the parameter of the proposed distribution,
as determined by the MSE, is as follows:

MPS → MLE → WLSE → ADE → LSE → CV M
(HighlyPreferable → Less Preferable)

• Except for MPS, all classical point estimators overestimate the parameter of the pro-
posed model.

• From Table 5, we can simply conclude that ACI performed well. Even with a small
sample size, for all values of θ, the asymptotic intervals computed here are able to
sustain nominal levels of coverage probability. Furthermore, when we increase the
sample size n, the AW of the ACI diminishes.

6. Application of Arvind distribution

The fitting capabilities of the Arvind distribution are shown in this section using
three real datasets. We have used three distinct datasets from different areas. The detailed
summary and graphical representation of these datasets can be found in Table 6 and Figure
4, respectively. The fitting of the proposed model has been compared with that of numerous
well-known conventional and recently developed models. A list of the rival models can be
found in Table 7. The fitted models’ parameters have been estimated using MLE estima-
tion for comparison’s sake. Based on -logL, the Akaike information criterion (AIC), the
corrected Akaike information criterion (CAIC), the Bayesian information criterion (BIC),
and Kolmogorov-Smirnov (KS) statistic with the related P-value, the model comparison has
been carried out. The open-source program R has been used to do the necessary calculations.
The datasets along with their fitting summary are as follows:
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Table 5: Classical confidence intervals for different values of n

θ n ALCL AUCL AW CP θ n ALCL Upper Width CP

0.5

10 0.1829 0.9497 0.7668 95.52

2.0

10 0.5978 4.0183 3.4205 95.33
20 0.2787 0.7839 0.5052 95.57 20 1.0360 3.2530 2.2170 95.65
40 0.3423 0.6874 0.3451 95.19 40 1.3160 2.8200 1.5030 95.25
60 0.3705 0.6493 0.2788 95.41 60 1.4400 2.6510 1.2120 95.37
80 0.3878 0.6283 0.2405 95.43 80 1.5150 2.5590 1.0440 95.36
100 0.3991 0.6133 0.2142 95.25 100 1.5634 2.4928 0.9294 95.21

1

10 0.3371 1.9475 1.6104 95.48

4.0

10 1.0020 8.3190 7.3160 95.02
20 0.5403 1.5933 1.0531 95.61 20 1.9600 6.6650 4.7050 95.47
40 0.6731 1.3899 0.7168 95.29 40 2.5600 5.7360 3.1760 95.13
60 0.7317 1.3103 0.5786 95.41 60 2.8200 5.3770 2.5560 95.37
80 0.7677 1.2665 0.4989 95.52 80 2.9780 5.1790 2.2010 95.35
100 0.7910 1.2352 0.4443 95.21 100 3.0810 5.0390 1.9580 95.29

Table 6: Summary of dataset I, II, and III

Dataset No. Minimum 1st Quartile Median Mean 3rd Quartile Maximum SD
I 0.3200 0.9150 1.4700 1.6750 2.0870 4.7500 1.0006
II 2.8870 5.3290 8.1440 9.8870 13.8360 23.3940 5.8567
III 0.1100 0.7175 1.2350 1.5427 1.9425 4.7300 1.1276

Figure 4: Graphical representation of dataset I, II, and III using boxplot
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Table 7: The Competitive models

Model Abbreviation Parameter(s) Author(s)
Lindley L θ Lindley (1958)

Inverse Lindley IL θ Sharma et al. (2015)
Inverted Modified Lindley IML θ Chesneau et al. (2020)

Exponential E λ -
Inverted Exponential IE β Lin et al. (1989)

Inverse Rayleigh IR σ Voda (1972)
Inverse Xgamma IXG θ Yadav et al. (2021b)
Inverted Gamma IG α, β Lin et al. (1989)
Inverse Weibull IW η, β Khan et al. (2008)

Inverted Nadarajah–Haghighi INH λ, α Tahir et al. (2018)
Inverted Topp-Leone ITL θ Hassan et al. (2020)

Burr-Hatke Exponential BHE λ Yadav et al. (2021a)
Maxwell Distribution M θ Bekker and Roux (2005)
Laplace Distribution La µ, b Kotz et al. (2001)

Inverse Lomax Distribution ILo α, β Kleiber (2004)
Exponential Poisson Distribution EP λ, β Kuş (2007)

Rayleigh R σ Siddiqui (1962)

Dataset (I): The first real dataset represents thirty successive values of March pre-
cipitation (in inches) in Minneapolis/St Paul Yousef et al. (2023). The data values are:
0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

Under dataset I, the fitting of the Arvind distribution is compared with L, IL, IML,
E, IE, IR, IXG, IG, IW, and INH models. Table 8 lists the MLEs of the unknown parameters
(standard errors (SEs) between parentheses) with the values of the –logL, AIC, BIC, CAIC,
and KS statistic with associated P-value. Table 8 demonstrates that the suggested model
has the lowest -logL, AIC, BIC, CAIC, and KS statistic as well as the highest P-value, hence,
the Arvind distribution is superior to a number of competing models for this dataset. Figure
5 depicts the density and empirical vs fitted CDF plots for the proposed model with respect
to dataset I. This graph also indicates that the Arvind distribution closely resembles the
pattern of this real data.

Dataset (II): The second application takes into account the daily new cases of
COVID-19 that have been reported in India. The data can be accessed at https://www.
worldometers.info/coronavirus/country/india/ and describes the daily new cases (in
thousands) that occurred between the 16th of March 2021 and the 16th of April 2021. The
data values are as follows:
28869, 35838, 39643, 40950, 43815, 40611, 47264, 53419, 59069, 62291, 62631, 68206, 56119,
53158, 72182, 81441, 89019, 92998, 103793, 96557, 115269, 126315, 131893, 144829, 152682,
169914, 160694, 185248, 199509, 216850, 233943.

To facilitate fitting, this dataset has been divided by 10000. The Arvind distribution’s
fit to this COVID data is compared to the L, IL, ITL, IXG, BHE, M, La, ILo, EP, and INH
models. Table 9 summarizes the MLEs of the parameters (SEs between parentheses) as well

https://www.worldometers.info/coronavirus/country/india/
https://www.worldometers.info/coronavirus/country/india/
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Table 8: The goodness-of-fit statistics for various models under dataset I

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.1928 (0.0367) 39.7202 81.4403 82.8415 81.5832 0.0899 0.9685

L 0.9096 (0.1247) 43.1437 88.2875 89.6886 88.4303 0.1882 0.2383
IL 1.5835 (0.2267) 45.2212 92.4424 93.8436 92.5852 0.2279 0.0886

IML 1.247 (0.1906) 43.8683 89.7366 92.5390 90.1810 0.1975 0.1925
E 0.5971 (0.1090) 45.4744 92.9488 94.3500 93.0917 0.2352 0.0723
IE 1.1405 (0.2083) 46.2726 94.5452 95.9464 94.6881 0.2538 0.0420
IR 0.9267 (0.0846) 44.1365 90.2730 91.6740 90.4160 0.9360 0.0640

IXG 1.9440 (0.2680) 46.9850 95.9701 97.3713 96.1129 0.2632 0.0313

IG 2.5928 (0.6306),
2.9599 (0.7944) 40.3072 84.6144 87.4168 85.0589 0.1380 0.6174

IW 1.0163 (0.1273),
1.5495 (0.2026) 41.9170 87.8340 90.6364 88.2785 0.1523 0.4896

INH 3.0625 (2.8279),
0.2647 (0.2975) 44.5344 93.0689 95.8713 93.5133 0.1961 0.1989

Figure 5: Histogram and the empirical vs fitted CDF under datasets I

as the -logL, AIC, BIC, CAIC, and KS statistic with its P-value. The developed model
has the lowest -logL, AIC, BIC, CAIC, and KS statistic as well as the maximum P-value,
as shown in Table 9; as a consequence, the Arvind distribution surpasses other competing
models for this dataset. Figure 6 depicts the density and empirical vs fitted CDF for the
proposed model under dataset II. This figure also reveals that the Arvind distribution closely
follows the actual data pattern.
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Table 9: The goodness-of-fit statistics for various models under dataset II

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.0071 (0.0013) 95.0043 192.0085 193.4425 192.1465 0.1432 0.5032

L 0.1863 (0.0238) 96.7713 195.5426 196.9766 195.6805 0.1662 0.3216
IL 7.8937 (1.2790) 101.7100 205.4199 206.8539 205.5578 0.2593 0.0250

ITL 0.6169 (0.1108) 117.8740 237.7481 239.1820 237.8860 0.4094 <0.0001
IXG 8.4800 (1.3980) 102.7350 207.4706 208.9046 207.6086 0.2726 0.0158
BHE 0.0552 (0.1108) 103.7590 209.5174 210.9514 209.6554 0.2831 0.0108

M 0.0229 (0.0034) 97.5042 197.0083 198.4423 197.1463 0.2450 0.0401

La 8.1441 (0.0020),
4.6943 (0.8431) 100.4290 204.8579 207.7259 205.2865 0.1632 0.3434

ILo 0.6935 (0.2864),
10.6855 (3.7119) 102.8453 209.6907 212.5587 210.1193 0.2681 0.0186

EP 0.1010 (0.0182),
2.904e-07(0.01461) 102.0284 208.0567 210.9247 208.4853 0.2715 0.0165

INH 14.7742 (6.8420),
0.3258 (0.1251) 96.9953 197.9905 200.8585 198.4191 0.2028 0.1353

Figure 6: Histogram and the empirical vs fitted CDF under datasets II

Dataset (III): The third dataset includes the time between failures for repairable
items, Murthy et al. (2004). The data values are as follows:
1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23,
0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

The Arvind distribution is fitted to this data and compared to the L, IL, E, R, IXG,
La, ILo, IG, IW, and INH models. Table 10 depicts the MLEs of the parameters (SEs between
parentheses) with the different fitting measures. The suggested model has the lowest -logL,
AIC, BIC, CAIC, and KS statistics, as well as the greatest P-value, as shown in Table 10;
as a result, the Arvind distribution excels other competing models for this dataset. Figure 7
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shows the density and empirical vs fitted CDF for the Arvind model under dataset II. This
graphic also demonstrates how well the Arvind distribution fits the actual data pattern.

Table 10: The goodness-of-fit statistics for various models under dataset III

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.2042 (0.0388) 40.9532 83.9063 85.3075 84.0492 0.1205 0.7763

L 0.9761 (0.1345) 41.5473 85.0946 86.4958 85.2374 0.1406 0.5931
IL 1.1605 (0.1619) 46.9329 95.8658 97.2670 96.0087 0.1412 0.5885
E 0.6484 (0.1184) 43.0054 88.0108 89.4120 88.1536 0.1845 0.2586
R 1.3434 (0.1226) 42.9183 87.8366 89.2378 87.9794 0.1865 0.2479

IXG 1.4160 (0.1892) 48.9037 99.8073 101.2085 99.9502 0.1556 0.4615

La 1.2374 (8.3889),
0.8074 (0.1474) 44.37386 92.74771 95.55011 93.19216 0.12375 0.7478

ILo 0.11873 (0.05041),
7.73475 (2.62162) 46.01338 96.02677 98.82916 96.47121 0.18931 0.2325

IG 1.4209 (0.3325),
1.1271 (0.3152) 45.5074 95.0147 97.8171 95.4591 0.1576 0.4452

IW 0.7665 (0.1388),
1.0730 (0.1314) 46.3756 96.7512 99.5536 97.1957 0.1338 0.6557

INH 0.8517 (0.2348),
1.0347 (0.5133) 46.3701 96.7402 99.5426 97.1846 0.1786 0.2942

Figure 7: Histogram and the empirical vs fitted CDF under datasets III

6.1. Other classical estimates for datasets I, II, and III

Here, we estimate the Arvind distribution’s unknown parameter using several different
approaches that have been used in this article. Under I, II, and III datasets, we also obtain
the 95% ACI for the unknown parameter θ. Table 11 includes estimates for θ from MLE,
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MPS, OLS, WLS, CVM, and AD estimation methods along with respective SEs, and 95%
ACI. In order to compare various approaches, Table 11 also contains the KS statistic and
corresponding P-value for all approaches. From Table 11, we can easily see the reverse trend
from the simulation section, as MPS is the least favourable estimation method for datasets
I, II, and III.

Table 11: Classical estimates for dataset I, II, and III

Dataset Methods Estimate SEs KS P-value ACI (Width)

I

MLE 0.1928 0.0367 0.0899 0.9685
[0.1209, 0.2647]

(0.1439)

MPS 0.1824 0.1941 0.0952 0.9484
OLS 0.1920 0.0039 0.0892 0.9707
WLS 0.1878 0.0051 0.0851 0.9816
CVM 0.1927 0.0048 0.0899 0.9684
ADE 0.1904 0.0401 0.0877 0.9751

II

MLE 0.0071 0.0013 0.1432 0.5032
[0.0046, 0.0096]

(0.0050)

MPS 0.0067 0.0068 0.1571 0.3877
OLS 0.0081 0.0003 0.1114 0.7960
WLS 0.0075 0.0004 0.1304 0.6209
CVM 0.0081 0.0003 0.1107 0.8026
ADE 0.0075 0.0015 0.1303 0.6220

III

MLE 0.2042 0.0388 0.1205 0.7763
[0.1281, 0.2803]

(0.1522)

MPS 0.1910 0.2029 0.1427 0.5745
OLS 0.2417 0.0050 0.0698 0.9986
WLS 0.2364 0.0066 0.0709 0.9982
CVM 0.2425 0.0049 0.0702 0.9985
ADE 0.2292 0.0499 0.0815 0.9886

7. Concluding remarks

A new lifetime model named Arvind distribution has been developed for modelling
different types of data. The suggested model’s PDF and HRF have a variety of forms that
make it possible to analyze a broad range of real data. Its impressive statistical proper-
ties have been derived. Six different estimation methods namely the maximum likelihood,
maximum product spacings, ordinary and weighted least square, Cramér-von Mises, and
Anderson-Darling are discussed for estimating the unknown parameter. The asymptotic
confidence interval has also been provided for the unknown parameter. An extensive sim-
ulation study has been performed to study the performance of the considered methods of
estimations. This study suggests that methods of maximum product spacings and maximum
likelihood are highly preferable whereas Cramér-von Mises is the least preferable method of
estimation for the proposed model.

The goodness-of-fit of the proposed distribution has been explained with three real
datasets from different fields and the fits of the proposed model have been found quite sat-
isfactory over other existing lifetime models like Lindley, inverse Lindley, inverted modified
Lindley, inverse Xgamma, inverse gamma, inverse Weibull, inverted Nadarajah-Haghighi,
Burr-Hatke Exponential, etc. As a result, we may draw the conclusion that the proposed
model may be utilized as a substitute for several well-known current models to analyze data
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produced from diverse fields. In the future, we will extend this work by implementing cen-
soring and different stress-strength models in the Arvind Distribution under various classical
and non-classical estimation procedures.
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