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Abstract 

 

Finite Automata (FA) and soft computing techniques have potential to improve 

agricultural water management practices. The existing irrigation systems suffer from low 

water productivity. This issue can be ameliorated through Dirt texture, Evapotranspiration 

and Crop Evolution based Land specific (DECEL) model. The soft computing models such as 

K-Nearest Neighbor (KNN) and linear regression prediction methods are used in the DECEL 

irrigation framework. The results exhibited that, the KNN algorithm obtained accuracy of 

95.88% over dirt texture classification and 99.98% accuracy on crop coefficient prediction. 

The reference evapotranspiration is predicted using linear regression method.  

Key words: Dirt texture; Evapotranspiration; Crop coefficient; Machine learning; Finite 

automata. 

1. Introduction 

 

The global food requirement increases about 60% by the year 2050 due to growing 

population (Alexandratos and Bruinsma, 2012). Currently irrigated land can only satisfy 40% 

of the expected global food requirement by the year 2050. Agriculture sector uses 70% of the 

available water (Provenzano and Sinobas, 2014). Currently only 16% of the cultivable area is 

irrigated due to adoption of conventional irrigation approaches (Alexandratos and Bruinsma, 

2012; Playan et al., 2014). The arid and semi-arid regions are currently expanded to 36% and 

global warming trend further expands the aridity area (Safriel et al., 2005; Alcamo et al., 

2007; Arnell et al., 2011). The efficiency and economic outcome is the vital concern of 

irrigation system (Burt et al., 2005; Chartzoulakis et al., 2015). The performance of irrigation 

system depends on timely supply of exactly required volume of water. The water 

transformation through soil and crop are expressed using the metrics such as evaporation, 

transpiration, infiltration, runoff and deep percolation. Evaporation is the process of water 

transformation from liquid to vapour. The transpiration is the process of water passed from 

crop stomata to atmosphere in the form of vapour. Evapotranspiration (ET) is the combined 

process of surface evaporation and crop transpiration. The infiltration is the process of water 

entry in the surface of soil. The deep percolation is the infiltrated water which moves beyond 

the root zone. The water moves out of the land is called runoff (Burt et al., 1997). The dirt 
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properties, weather conditions and crop coefficient play crucial role in irrigation system 

(Dabach et al., 2011; Soulis and Elmaloglou, 2018). 

The rest of the paper is structured as follows. The Section 2 describes the evolution of 

various irrigation methods. The irrigation automation framework is outlined in Section 3. The 

soft computing approaches and their results are discussed in Section 4. Finally, the 

conclusions and future research directions are summarized in Section 5. 

 

2. Related Work 

 

The surface irrigation method is most extensively used technique and this approach is 

popular due to low initial cost and energy demand despite the low irrigation efficiency.  

Basin, border and furrow are generally practiced surface irrigation techniques (Raghuwanshi 

et al., 2011). The sprinkler irrigation framework comprises of pipe network in which water 

flows with force through nozzles and it simulates precipitation with the help of overhead 

spraying. The solid set, linear and hand move, centre pivot, wheel line, gun type and hose-

pull are various sprinkler irrigation techniques. In drip irrigation, water is supplied via pipe 

network in a fixed model and water is slowly emitted to each plant to the root zone (Tindula 

et al., 2013). The evolution of first-generation irrigation technology was started with multi-

client electronic hydrants for utilization at dispensation network. The second-generation 

irrigation technology was variable frequency pump. The micro irrigation method was the 

third generation in irrigation technology wherein WP was increased but marginally installed 

due to high initial investment (Pradeep et al., 2021a). The sub surface drip irrigation (SDI) 

was the fourth generation in irrigation technology invented to solve the issues of surface drip 

irrigation specifically to eliminate emitter clogging issue. The fifth generation in irrigation 

technology was deficit irrigation invented to supply reduced amount of water without 

affecting the yield based on crop growth stage (Levidow et al., 2014; Kang et al., 2017). 

Intelligent irrigation is the emerging area which addresses the low water productivity issue 

(Pradeep et al., 2019; Pradeep et al., 2020; Krishnashetty  et al., 2021; Pradeep et al., 2021b). 

The evolution of irrigation methods are presented in Table1. 

 

Table 1: Progress of irrigation techniques 

 

 

3. Irrigation Automation Model 

 

The Finite Automata (FA) is a core concept of intelligent computing. In this paper, the 

deterministic variant of FA (DFA) is used to design the automated irrigation framework 

Approach Benefits Implementation  

Multi-client hydrants Dispensation unit Mostly used 

Frequency pumps Pumping plant Mostly used 

Drip & Sprinkler Water control and irrigation scheduling Marginally deployed 

Sub surface drip  Water control and irrigation scheduling  Minimal 

Deficit irrigation  Water control and irrigation scheduling Minimal 

Intelligent irrigation High water productivity and economy New era 
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provided with some rules that permit the automaton to handle the symbols, according to the 

rules to generate the output. There are only two possible outcomes over the input passed to 

the FA, “accept” or “reject”. In FA model the states are represented by circles. Arcs between 

the states are labeled by inputs. The States may have a self loop for some of the input 

symbols. In FA model one of the states is designated as start state, indicated by an arrow 

leading to that state without origin state and its necessary to have one or more states as final 

or accepting states, indicated by double circle. For all valid input string the FA should halt at 

one of the designated final state. In the present study an irrigation automation framework is 

proposed which is represented in Figure 1. 

 

Figure 1: DFA model for irrigation automation 

 

The input variables are dirt texture, evapotranspiration, and crop evolution coefficient data 

for specific land. The automated irrigation framework variables are reported in Table 2.The 

United States Department of Agriculture (USDA) has defined twelve major soil texture 

classes considering the combination of sand, silt and clay fractions, which are highlighted in 

Table 3. The set of soil texture input parameters are represented in the model as {1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12}. The weather data is classified as warm, temperate, and polar, reported 

in the Table 4 and also represented as input variables {13, 14, 15} in Figure 1. The crop 

evolution coefficient depends on the crop growth stage. They are represented in the model as 

{16, 17, 18, 19, 20} and reported in Table 5. The accepting states determine volume of water 

required for the given input pattern.  

 

Table 2: Variables of automated irrigation framework  

 

DFA 

Attributes 

Description 

States Q = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, 

b19, b20, b21, b22, b23, b24, b25, b26, b27} 
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Input 

symbols 

Soil texture variables = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Evapotranspiration data variables = { 13, 14, 15}  

Crop evolution input parameters = {16, 17, 18, 19, 20} 

Start state b0 

Final states F = {b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27} 

 

Table 3: Dirt classification transitions 

 

Current State Input Next State Soil texture  

b0 1 b1 Sand 

b0 2 b2 Loamy sand 

b0 3 b3 Sandy loam 

b0 4 b4 Loam 

b0 5 b5 Silty loam 

b0 6 b6 Silt 

b0 7 b7 Clay loam 

b0 8 b8 Sandy clay loam 

b0 9 b9 Silty clay loam 

b0 10 b10 Sandy clay 

b0 11 b11 Silty clay 

b0 12 b12 Clay 

 

3.1. Reference evapotranspiration  

 

The reference evapotranspiration is an important metric to understand the crop water 

requirements to obtain satisfactory yield. The reference evapotranspirationplays vital role to 

compute irrigation water requirements. To estimate reference evapotranspirationthe weather 

data such as temperature (T), wind speed (WS), solar radiation (SR), sunshine hours (SS), 

relative humidity (RH), rainfall (RF) and vapour pressure (VP) are key input variables (Allen 

and Pruitt, 1991). The most widely used model for estimation of reference 

evapotranspirationis FAO-56 Penman-Monteith method (Allen et al., 1998).  
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ET0= 
0.408∆(Rn- G)+ γ

900

T+273
U2 (es- ea)

∆+ γ (1+0.34U2)
(1) 

where, 

ET0 = Reference ET (mm day -1),  

es = Saturation vapor stress (kPa),  

ea = Actual vapor stress (kPa),  

Δ = Incline of the saturation vapor stress function (kPa °C-1), 

G = Dirt heat flux density (MJm-2 day-1),  

γ = Psychometric constant (kPa °C-1)   

Rn = Net radiation (MJm-2 day-1),  

T = Average air temperature (°C)  

U2 = Mean wind speed at 2 m height for 24-h (m s-1) and 

es- ea = Vapor stress loss (kPa). 

 

3.2. Dataset 

 

The observed weather dataset of metrological station, University of Agriculture 

Sciences, GKVK, Bengaluru is used for prediction of reference evapotranspiration. The 

Colorado Maize crop evolution water requirement data set is used for prediction of crop 

coefficient. The soil texture classification dataset is created using USDA triangle soil texture 

classification reference model. 

 

Table 4: Weather data classification transitions 

 

Current state Input Next state Weather classification  

b1 13 b13 Warm 

b1 14 b14 Temperate 

b1 15 b15 Polar 

b2 13 b13 Warm 

b2 14 b14 Temperate 

b2 15 b15 Polar 

b3 13 b13 Warm 
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b3 14 b14 Temperate 

b3 15 b15 Polar 

b4 13 b13 Warm 

b4 14 b14 Temperate 

b4 15 b15 Polar 

b5 13 b13 Warm 

b5 14 b14 Temperate 

b5 15 b15 Polar 

b6 13 b13 Warm 

b6 14 b14 Temperate 

b6 15 b15 Polar 

b7 13 b13 Warm 

b7 14 b14 Temperate 

b7 15 b15 Polar 

b8 13 b13 Warm 

b8 14 b14 Temperate 

b8 15 b15 Polar 

b9 13 b13 Warm 

b9 14 b14 Temperate 

b9 15 b15 Polar 

b10 13 b13 Warm 

b10 14 b14 Temperate 

b10 15 b15 Polar 

b11 13 b13 Warm 

b11 14 b14 Temperate 

b11 15 b15 Polar 
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b12 13 b13 Warm 

b12 14 b14 Temperate 

b12 15 b15 Polar 

 

Table 5: Transition table represents crop growth evolution classification 

 

Current state Input Next state Crop evolution  

q13 16 q16 initial stage  

q13 17 q17 development stage 

q13 18 q18 mid-season 

q13 19 q19 late season 

q14 16 q16 initial stage  

q14 17 q17 development stage 

q14 18 q18 mid-season 

q14 19 q19 late season 

q15 16 q16 initial stage  

q15 17 q17 development stage 

q15 18 q18 mid-season 

q15 19 q19 late season 

 

4. Results and Discussions 

 

 The DFA irrigation framework is reviewed using Java Formal Languages and 

Automata Package (JFLAP) tool. (Rodger et al., 2006). The model is validated for the pattern 

“11316”. The variable ‘1’ indicates sandy soil texture, ‘13’ indicates warm weather and ‘16’ 

indicates initial stage of crop. The tracing of sample pattern amp is represented in Figure 2. 

The pattern “11316”, demands high water supply because of sandy soil texture, warm 

weather and initial stage of crop. Hence for pattern 1, the model halts at state q16, which 

indicates high crop-water requirement for the given input condition.  
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Figure 2: Tracing over input pattern “1 13 16” 

 

4.1. Evapotranspiration prediction 

 

The evapotranspiration is an important metric to understand the crop water 

requirements to obtain satisfactory yield. The linear regression method is used for prediction 

of evapotranspiration, which determines water requirement considering weather data. The 

relevant data instances are reported in Table 6. The models are analyzed using statistical 

performance measures such as Mean Absolute Error (MAE) and coefficient of correlation 

(R). The different weather input variable combinations are reported in Table 7. The 

prediction accuracy is highlighted in Figure 3. 

 

Table 6: Evapotranspiration estimation sample instances 

 

Maximum 

temperature  

 

Minimum  

Temperature  

Vapor 

Pressure 

 

Relative 

Humidity  

 

Wind 

Speed  

Bright 

Sun 

Shine 

Hours  

Evapotranspi

ration  

32.4 21.8 17.8 80 4.4 2.6 3.5 
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32.6 22.0 16.5 84 4.0 7.6 3.9 

33.6 22.4 19.1 85 3.8 8.8 4.2 

34.2 20.8 19.4 87 4.8 8.0 4.3 

31.8 21.2 17.7 82 9.0 9.7 4.5 

34.2 21.2 18.8 85 7.7 8.7 4.7 

 

Table 7: Statistical analysis of linear regression model over different input combination 

 

 

Input 

combination No. 

Input Variables Statistical Analysis 

MAE R2 

1 Max.Temp, Min.Temp, Vapor pressure, Relative 

humidity, Wind speed, Bright sunshine hours 

0.16 0.90 

2 Max.temp, Min.Temp, Vapor pressure, Relative 

humidity, Wind speed 

0.27 0.82 

3 Max. Temp, Min.Temp, Vapor pressure, 

Relative humidity 

0.27 0.82 

4 Max. Temp, Min.Temp, Vapor pressure 0.32 0.74 

5 Max. Temp, Min.Temp 0.32 0.73 
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Figure 3: Linear regression model prediction analysis over different input combinations 

 

4.2. Dirt texture and crop-evolution coefficient prediction using K-NN algorithm 

 

The dirt texture determines the water holding capacity of soil and which helps to 

increase the water productivity of irrigation system. The crop evolution-based coefficient 

indicates the crop water requirement based on the plant growth stage and it supports for 

computing water budget in irrigation automation. The K-NN algorithm is applied to predict 

dirt texture and crop coefficient. The sand, silt and clay fraction are input variables for soil 

texture classification, which are reported in Table 8.  The Maize crop growth stage water 

requirement is input for crop coefficient prediction. The experimental results exhibited the 

accuracy of 95.88% over soil texture prediction and 99.98% accuracy over crop coefficient 

prediction and reported in Table 9. 

 

Table 8: Dirt texture classification sample instances 

 

Sand Silt Clay Type 

91 6 3 Sand 

50 20 30 Sandy clay loam 

15 55 30 Silty clay loam 

40 10 50 Clay  
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Table 9: Dirt texture and crop coefficient estimation accuracy  

 

Algorithm Prediction Input Accuracy 

K-NN Dirt texture  Sand, silt and clay 

fraction  

95.88% 

K-NN Crop-coefficient  Crop growth stage 

and crop species 

99.98% 

 

5. Conclusion 

 

In the proposed research work the finite automata and soft computing concepts are 

integrated to design a DECEL model to optimize water usage in irrigation management. The 

automated irrigation framework is proposed using deterministic finite state machine, linear 

regression and K-NN algorithm. The proposed irrigation automation framework predicts the 

water requirement considering soil texture, evapotranspiration and weather data.  The linear 

regression model experimental results proved that the best input features combination for 

prediction of reference evapotranspiration are Max.Temp, Min.Temp, vapor pressure, relative 

humidity, wind speed and bright sunshine hours. The soil texture class and crop coefficient 

values are predicted using K-NN algorithm and results exhibited the 95.88% and 99.98% 

accuracy respectively.  As far as we know, the proposed DECEL model is a novel idea, 

which is designed to increase water productivity in irrigation system. The proposed research 

work opens the future research on development of efficient intelligent irrigation system and 

also deployment in the field. 
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