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Abstract
We show how to use supplemental information from a small probability sample (ps) to

do Bayesian predictive inference for finite population means of small areas using a relatively
larger non-probability sample (nps). We focus on the most practical situation when there
are common covariates in the nps and ps, where the nps has the study variable but no
survey weights and the ps has survey weights but no study variable. We assume that the
population model is correct and any functional relation between the study variable and the
covariates is unspecified. Data preparation is necessary, and there are three steps, which are
a double mass imputation, stratification of the population and allocation of the sample to the
strata (domains), and creating a spatial structure to accommodate the covariates. Our main
Bayesian analysis uses the conditional auto-regressive model, which helps to accommodate
the covariates without incorporating them into the model, thereby avoiding a functional
relation between the study variable and the covariates. However, the actual small areas are
not part of the model, but we need to keep track of them, and the strata are modeled as the
“small areas”. Our procedure allows a small area (not a stratum) to participate in several
strata, and this helps to mitigate over-shrinkage, which is common in small area models.
Using an illustrative example on body mass index data, our method appears to work better
than a standard method with a linear regression of the study variable on the covariates.
Our new framework allows several extensions and it avoids an approximation used in survey
design analysis.

Key words: BHF baseline model; Finite population mean; Gibbs sampler; Inverse probability
weighting; Mass imputation; Robustness; Stratification; Surrogate samples.
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1. Introduction

We have data from a non-probability sample, nps (1), and a probability sample, ps
(2), relatively much smaller. The nps and ps have common covariates, x, a p-vector including
an intercept. The nps has the study variable (response), y, but no survey weights, W , and the
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ps has survey weights, W , but no study variable, y. We know the small areas (e.g., counties)
in the nps, but we do not need to know these small areas in the ps. The population size,
N , may be unknown and the nonsampled covariates from the nps (or the ps) are unknown.
These two quantities can be constructed from the ps sampled data. The population has
(xi, yi), i = 1, . . . , N . Letting yij, j = 1, . . . , Ni, i = 1, . . . , ℓ, denote the values of the study
variable from the ℓ small areas, we want to make inference about the finite population mean
of the ith area,

Ȳi = 1
Ni

Ni∑
i=1

yi, i = 1, . . . , ℓ.

Again the Ni may be unknown, and these can be constructed from the ps.

Non-probability sampling has become important over the past decade. Many surveys
are done without proper survey designs. Observational studies, which are very useful, have no
probabilistic structure. A probability sample is the gold standard, but many data collection
procedures are done by walking around a mall or standing at the door of a library. Clearly,
these data are non-probability samples, and they are generally biased. On the other hand the
response rates for many probability samples have declined to situations, where the sample
can more reasonably be called a non-probability sample. Therefore, it is important to do
research into the topic of non-probability sampling; indeed, this is a “hot” topic and it is
difficult.

From the nps, we have (x1i, y1i), i = 1, . . . , n1, which are respectively the covariates
and the study variable (response) but we do not have survey weights, Wi, i = 1, . . . , n1. From
the ps, we have (W2i, x2i), i = 1, . . . , n2, but not the study variable, y2i, i = 1, . . . , n2. This
is a fairly general and practical set up; see Li et al. (2020).

In our new approach, no participation (selection mechanism) model is needed. How-
ever, our standard assumption is that the population model for the study variable is correct
and the sample model is derived from it. Therefore, robustness to its assumptions plays a
key role in this paper.

In Table 1, we show different scenarios of massively missing data and what action
can be taken, where all the data are missing for a specific variable, and mass imputation is
needed; see Kim et al. (2021). For example, for the nps, all survey weights are missing.

Sakshaug et al. (2019), Wisniowski et al. (2020) and Salvatore et al. (2023) worked
with Scenario 2a to provide a full Bayesian approach. They supplemented a probability
sample with a much larger non-probability sample. They mainly studied superpopulation
parameters, not finite populations. There is no penalty on the non-probability sample, except
for Salvatore et al. (2023) where they used the idea of Nandram and Rao (2021, 2023) on
discounting historical data for binary data via logistic regression (e.g., see Ibrahim and Chen,
2002, for the power prior). Except for Wisniowski et al. (2020), who used survey weights as a
covariate which is a bit controversial, the others did not do so. Finite population parameter
estimation was not done, and inference was not required about small areas.

Chen et al. (2020), henceforth sometimes CLW, studied Scenario 1 with propen-
sity scores. They presented a doubly robust inference with non-probability samples mainly
within the design-based approach. They estimated propensity scores via logistic regression
(parametric modeling for the participation variable) using the probability sample without
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Table 1: Data scenarios with massively missing data

nps (1) ps (2)

Scenarios w x y w x y Action

1 – + + + + – Supplement nps by ps

2 a – + + + + + Supplement ps by nps

2 b – + + + + + Data integration

3 – + – + – + Supplement ps by nps

NOTE: Here “+” means observed and “–” means missing.

study variable, and inverse probability weighting (IPW) for the finite population mean.

Based on the method of Chen, Li and Wu (2020) to estimate propensity scores,
Nandram and Rao (2021, 2023) studied Scenario 2b. They argued that the nps should be
used to construct the prior for the parameters (the study variable is observed in both nps
and ps), a less practical situation. In addition, thinking of the nps as historical data, the
prior of the parameters, obtained from it, should be partially discounted. For Bayesians,
normalized weighted density should be used to model the study variable. Nandram, Choi
and Liu (2021) discussed some mixed analyzes.

Rafei, Elliot and Flannagan (2022) and Marellla (2023) used Scenario 2b. Rafei et
al. (2022) used Bayesian additive regression trees (BART), which has its own problems.
Marella (2023) used empirical likelihood, and the study variable for the ps is manufactured
and assumed real.

There has also been some activities in small area estimation for non-probability sam-
ples. Beaumont (2020) used Scenario 2a and Beaumont and Rao (2021) used covariates from
nps in ps (e.g., Fay-Herriot model) in Scenario 3; Nandram and Rao (2024) used Scenario 2a
with unit level data and used the method of CLW to estimate propensity scores for the nps;
they also discussed Scenario 2b. Rao (2021) discussed many scenarios and how the ideas of
probability samples can be used to study non-probability samples. See Elliott and Valliant
(2017) for an earlier review, where they discussed quasi-randomization, used in CLW and
others.

Following CLW, in our current work under Scenario (1) without using propensity
scores, we do not have a participation model for the selection mechanism, and the non-
Bayesian notion of double robustness is null and void; in our case only the model for the
study variable (response) is needed. However, this situation may not be fully practical
because even though a nps is available, we may still need to plan and field a small probability
sample (an unnecessary burden). Instead it is possible to obtain the necessary information
in our set up using web-scraping. For example, it is possible to obtain population sizes and
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population total covariates from the web for many variables.

In this paper, we have a nps (1) and a ps (2) from California (NHANES III). Body
mass index (BMI) is the study variable, and for adults the normal range of BMI is [20, 25];
see Nandram and Choi (2010) for more details about the survey design and a discussion
about a much larger BMI data set. The population size is about 5000 times the sample size
(.02% sampling). The nps has about 80% of the data and the ps has about 20%. Our data
are of the form, (Wsj, xsj, ysj), s = 1, 2, j = 1, . . . , ns, where Wsj are original survey weights,
xsj, a p-vector of covariates including an intercept, and ysj is the study variable; but W1j

and y2j are unknown. It is worth noting some of the features of the data:

a. There are three covaariates :Age (20-90 years’ old), race (white, non-white), sex (male,
female) are covariates but interactions are not significant;

b. The data are partitioned into eight (8) counties (small areas), an area in the ps may
not have data, and interest is on the finite population mean of each area (county);

c. The population is stratified and the data from the nps and ps are allocated to 56 strata
(areas) with some discretization: age (20-24, 25-29,. . . , 85-90), race (0, 1), sex (0, 1),
where other covariates are redacted or missing, and the partition of age is normally
used at the National Center for Health Statistics;

d. The study variable (response) and covariates in the nps, (x, y), provide the spatial
relation (both x and y are used);

e. A double mass imputation is used to get the survey weights in the nps (W , x and y are
used), and the weights are trimmed, calibrated to the population size, and adjusted to
the effective sample size.

Our procedure differs from all others in the literature. We stratify the population
into distinct values of the covariates in the nps, each distinct covariate vector represents a
stratum. Note that these strata are obtained using basic knowledge about the population.
We may need to discretize some covariates; in survey sampling many of the covariates are
usually discrete.

In our example on BMI, age, race and sex are covariates; age (20-90 years old), race
(white, non-white) and sex (male, female). So there are 71 × 2 × 2 = 484 possible strata.
The nps and ps data are then allocated to the strata, of course, after the sample data are
observed. Then some strata will be empty and some discretization and regular imputation
needs to be done. The covariates and study variable from the nps will be used to obtain a
spatial structure among the strata via an incidence matrix, V . Then, we construct Table
2 for BMI data with some discretization on age to get 56 strata and 8 counties to avoid
sparseness and empty strata. These are the data we actually analyze. Note that an area
may have data in different strata, and each stratum will have a different parameter in our
models. That is, a small area (county) may have several parameters associated with it, and
this helps to mitigate over shrinkage, which is very common in small area estimation. In
Section 3, we will describe how to prepare Table 2 because our new Bayesian analysis is
based on it.
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As a summary, we are using the nps data to make inference about the finite population
mean of each small area (county for the BMI data). We have data from the nps and some
information from the ps that we used to supplement the nps. This paper has six sections,
including the current one. In Section 2, we review the main ideas, relevant to our current
work, Nandram and Rao (2021, 2023) and Chen et al. (2020). In Section 3, we show how to
prepare the data for a robust analysis. Specifically, we discuss stratification of the population
by distinct covariate values, mass imputation to construct the survey weights for the nps,
and a spatial structure, which we use to replace any functional relation between the study
variable and the covariates, and Bayesian predictive inference for the finite population mean
of each area (county); see Table 2. In Section 4, we discuss the hierarchical Bayesian models,
where robustness is mostly based on a two-component mixture model. These models are
primarily based on the Scott-Smith model; see Scott and Smith (1969) and Nandram et al.
(2011). This section also has detailed discussion of an example of body mass index (BMI) in
parallel to the rest of the technical discussion. In Section 5, we discuss some improvements
and possible extensions. In Section 6, we present concluding remarks.

Table 2: Structurally complete BMI data for nps with G = 56 strata and ℓ = 8
counties

Stratum nps Size

x1 (W1j , y1j), j = 1, . . . , n1 N1

· · ·

· · ·

xg (Wgj , ygj), j = 1, . . . , ng Ng

· · ·

· · ·

xG (WGj , yGj), j = 1, . . . , nG NG

NOTE: There are G distinct values of xg, g = 1, . . . , G; G = 56 for the BMI data. In addition, for
the spatial analysis, we have the incidence matrix, V , among the strata. Weights may be equal
or unequal and adjusted weights are used in the sampling process (study variable). An actual
area (county) may be represented in several strata. The normal range of BMI for adults should be
[20, 25].

2. Review and background information

In this section, a review of Nandram and Rao (2021, 2023, 2024) is presented. We
also present the method of Chen, Li and Wu (2020) to construct the propensity scores, and
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some general comments are made about this method for propensity scores to highlight and
justify our new approach.

2.1. Review of Nandram and Rao (2021, 2023, 2024)

First, we describe the normalized weighted density. Nandram and Rao (2021, 2023,
2024) considered a single population, not sub-populations (e.g., small areas), and they
showed how to make inference for finite population mean. They assumed that sample data
are available from a nps (1) and a ps (2).

We recall here that the original survey weights are Wsi, i = 1, . . . , ns, s = 1, 2, and Wsi

is the number of units the ith sampled individual represents in the finite population of size,
N . Since we assume that both samples are drawn from the same population, ∑ns

i=1 Wsi =
N, s = 1, 2.

Nandram and Rao (2021, 2023) defined adjusted weights,

wsi = n̂s
Wsi∑ns

j=1 Wsj

, i = 1, . . . , ns, s = 1, 2, (1)

where the ysi are assumed to be independent, and the effective sample size is

n̂s =
(∑ns

j=1 Wsj)2∑ns
j=1 W

2
sj

.

The adjusted weights in (1) is needed to construct the likelihood functions. They also
assumed an estimator of the population total, based on the ps, is N̂ = ∑n2

i=1 W2i. This is
actually a Horvitz-Thompson estimator, but this interpretation is not necessary. Also, a
Horvitz-Thompson estimator of the total covariates, based on the ps, is

N̂∑
i=1

x2i =
n2∑
i=1

W2ix2i.

Of course, these two estimators are based on inverse probability weighting (IPW), where the
first one being natural.

In their approach, they assumed the population model, f(y | x, θ), is correct, and
so robustness is a serious consideration. The participation model (for selection indicators)
must also be robust; in our new approach there is no participation model, a huge gain. For
the sample distribution, they used the weighted density,

f(y | x, θ, w) = {f(y | x, θ)}w´
{f(y | x, θ)}wdy}

. (2)

In the Bayesian paradigm, the sampling process must also be proper. Because the normal-
ization constant may be a function of θ, it must be included, and therefore, the general
specification in (2) is needed.

Next, we describe Bayesian predictive inference. We have estimated the survey
weights; we use Chen, Li and Wu (2020) to get nps weights. For the nps and ps we now have

(Wsi, xsi, ysi), i = 1, . . . , ℓ, s = 1, 2.
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Therefore, the population model is

yi | β, σ2 ind∼ Normal(x′
iβ, σ

2), i = 1, . . . , N.
The sample model is

f(yi | β, σ2) ∝
[

1√
2πσ2

exp{− 1
2σ2 (yi − x′

iβ)2}
]wi

and normalizing, we have

y1i | β, σ2 ind∼ Normal(x′
1iβ,

σ2

w1i

), i = 1, . . . , n.

The prior distribution is
π(β, σ2) ∝ σ−2.

Once the sample model is fit, we use the ps to guess the population size and covariate total
and we use surrogate sampling (Nandram, 2007) to sample population (prediction).

The finite population mean is

Ȳ = 1
N

N∑
i=1

yi

and
π(Ȳ | y

s
) =
ˆ
f(Ȳ | β, σ2)π(β, σ2 | y

s
) dβ dσ2.

For Bayesian predictive inference, Nandram and Rao (2021, 2023, 2024) used surrogate
sampling,

Ȳ | β, σ2 ind∼ Normal
(∑n2

i=1 W2ix
′
2i∑n2

i=1 W2i

β,
σ2∑n2

i=1 W2i

)
.

We do not split the finite population as Ȳ = fȳs + (1 − f)ȳns, where f = n
N

is the sample
fraction, ȳs is the sample mean and ȳns is the nonsample mean, because both ȳs and ȳns are
corrupted (biased). We will use a similar procedure in our new method.

To perform Bayesian predictive inference for small areas, Nandram and Rao (2024)
assumed

(Wsij, xsij, ysij), j = 1, . . . , nsi, i = 1, . . . , ℓ, s = 1, 2,
are available,

yij | νi, β, σ
2 ind∼ Normal(x′

ijβ + νi, σ
2), j = 1, . . . , Ni, i = 1, . . . , ℓ

where Ω = (ν, β, σ2). We note that the population is too large to sample completely, pop-
ulation sizes and covariates are unknown. We use surrogate sampling (Nandram, 2007)
again.

The finite population means are

Ȳi = 1
Ni

Ni∑
j=1

yij, π(Ȳi | y
s
) =
ˆ
f(Ȳi | νi, β, σ

2)π(νi, β, σ
2, | y

s
) dνi dβ dσ

2, i = 1, . . . , ℓ.

Again, Nandram and Rao (2024) used surrogate sampling for small areas.
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1. For i = 1, . . . , ℓ,

Ȳi | Ω ind∼ Normal
(∑n2i

j=1 W2ijx
′
2ij∑n2i

j=1 W2ij

β + νi,
σ2∑n2i

j=1 W2ij

)
; Ȳ (h)

i | Ω(h), y
s

2. For the hth iterate from the Gibbs sampler,

Ȳ
(h)

i | Ω(h), y
s

ind∼ Normal
(∑n2i

j=1 W2ijx
′
2ij∑n2i

j=1 W2ij

β(h) + ν
(h)
i ,

σ2(h)∑n2i
j=1 W2ij

)
.

We note that ∑n2i
j=1 W2ij is very large, and in this case the variance can be very small with

Ȳ
(h)

i | Ω(h), y
s

essentially a point mass.

2.2. Propensity scores (Chen, Li and Wu, 2020)

We review the method of Chen et al. (2020), recall CLW, and we make some com-
mentaries about their method; see also Wu (2022).

Denote the common covariates by zi, i = 1, . . . , N , with nps, z1i, i = 1, . . . , n1, and
ps, z2i, i = 1, . . . , n2. Again we note that nonsampled covariates are unknown.

Let Ri, i = 1, . . . , N , where Ri = 1 if unit i is sampled and Ri = 0 if unit i is not
sampled. With ri = 0, 1, they used the parametric assumption,

πi = P (Ri = 1 | zi) = π(zi; θ),

p(r | θ) =
N∏

i=1
{π(zi; θ)}ri{1 − π(zi; θ}1−ri

=
n∏

i=1

π(zi; θ)
1 − π(zi; θ)

N∏
i=1

{1 − π(zi; θ}

with independence over i.

Then, the population log-likelihood is

ℓ(θ) =
n1∑
i=1

log
{

π(z1i; θ)
1 − π(z1i; θ)

}
+

N∑
i=1

log{1 − π(zi; θ)},

and the pseudo-log-likelihood is

ℓ1(θ) =
n1∑
i=1

log
{

π(z1i; θ)
1 − π(z1i; θ)

}
+

n2∑
i=1

W2i log{1 − π(z2i; θ)}.

The propensity scores for the nps are then π(z1i; θ̂), i = 1, . . . , n1, where θ̂ is the MLE of θ

Now, we make some comments about the CLW Approach.

1. Horvitz-Thompson estimator may be sub-optimal with survey weights because the ratio
of the study variable and the selection probabilities may not be close to a constant;
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2. Propensity scores depend only on z (common variables only), and there may be other
important variables;

3. Propensity scores are not selection probabilities because the entire population should
be taken into consideration, and a proper quasi-randomization (see Elliot and Valiant,
2017) cannot be executed;

4. Logistic regression is not robust against its assumptions (e.g., the linearity assumption
on logit);

5. They assume ignorable selection, but nonignorable selection is preferred;

6. There are difficulties in optimization (convergence) especially for small samples;

7. In the Bayesian paradigm, the uncertainty in the estimation of the propensity scores
must be taken into consideration, and this is a difficult problem, but a bootstrap
procedure shows a 50% increase in standard deviation;

8. Need more robust participation models, perhaps a mixture of several link functions
(e.g., t4, t8, etc.).

Our new method has the following features: (a) We avoid using propensity scores
because they are not selection probabilities in the CLW method; (b) We avoid direct link
between the study variable and covariates (robustness, spatial model); (c) We do not need
non-sample covariates for prediction; (d) We avoid using the Horvitz-Thompson estimator for
prediction because it is sub-optimal with survey weights; (e) We consider a robust population
model in which a two-component mixture model is used to accommodate outliers and non-
normality.

We are particularly interested in inference about the finite population mean of each
small area. The small areas (counties) are not modeled in our procedure, but rather the
strata are modeled as small areas. Therefore, the phrase “small areas” is used in two ways,
one for the constructed strata and one for counties. Another approach for non-probability
samples with small areas is given by Nandram and Rao (2023b), where the actual small
areas are modeled directly, and inference is about finite population means and percentiles
(e.g., 85th and 95th percentiles for BMI are useful). Our new approach avoids many difficult
problems, except one of them is to incorporate the uncertainty in the estimated propensity
scores, but we are still working on this problem.

3. Data preparation

In this section, we show how to prepare the data to construct our procedures and
methods. We show how to obtain survey weights in the nps, form the strata, allocate the
sample units to the strata, and obtain the the neighborhood structure among the strata. As
we stated already, the strata are formed by distinct covariates. This is done for the BMI
data; see Table 2 for the data we analyze in this paper.

We note the following steps in our procedure.
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a. A few strata may be empty, and we can donate one unit from a stratum with at least
two units (with all variables) to a “nearby” empty stratum separately for the nps (1)
and the ps (2). For the nps, there was one empty stratum and for the ps there were
three empty strata when the BMI data is processed.

b. The W1ij, j = 1, . . . , n1i, are unknown, but it is true that ∑n1i
j W1ij = ∑n2i

j W2ij =
Ni, i = 1, . . . , G.

c. Assume all W1ij are the same with the same xi (ith stratum); under simple random
sampling (SRS) without replacement W1ij = Ni/n1i (multiple-level regression and
post-stratification (MRP) uses equal weights).

d. We have also obtained unequal weights, W1ij, j = 1, . . . , n1i, and this can be accom-
plished using a double (reverse) mass imputation.

e. All weights are trimmed to mitigate the effects of outlying weights. Outliers decrease
the effective sample size. Trimmed weights are calibrated to the population size and
adjusted to the effective sample size for modeling, but too much trimming can lead to
a false sense of security (decreased variance but increased bias).

We use double mass imputation to provide a structurally complete nps data set; see
Kim et al. 2021. In mass imputation with two data sets, an entire variable may be missing
from one data set, and both data sets are used to impute the missing data. For nps, we have
(x1i, y1i), i = 1, . . . , n1, and for the ps we have (W2i, xi), i = 1, . . . , n2 (no intercept). The
procedure is straightforward:

a. Use (x1i, y1i), i = 1, . . . , n1, to fill in y2i, i = 1, . . . , n2. This is done using the Maha-
lanobis distance among the x1i and x2i via nearest neighbors.

b. Stack the y1i under the x1i to create a new vector, x∗
1i. Similarly, stack y2i under the

x2i to create a new vector, x∗
2i.

c. Use (W2i, x
∗
2i), i = 1, . . . , n2, to fill in W1i, i = 1, . . . , n1. This is done using the Maha-

lanobis distance among the x∗
1i and x∗

2i via nearest neighbor again.

We compare two situations, which are equal weights within strata (different strata
can have different weights) and unequal weights within strata (small areas can have different
weights). Actually the situation of equal weights correspond to ignorable selection and the
situation of unequal weights corresponds to the situation of non-ignorable selection. See
Nandram and Choi (2010) and more recently Nandram (2022).

Next, we show how to use the nps to get the spatial structure, which is used as a
surrogate of the covariates to avoid the specification of any functional relation between the
study variable and the covariates. Recall robustness is very important because the population
model is assumed to be correct.

We follow the steps below:
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a. Use a surrogate for any functional relation between the study variable and the co-
variates (Lockwood 2023, PhD Dissertation). The spatial approach can provide this
surrogate.

b. Use ordinary least squares to find the G×G incidence matrix, V , which has zeros every
where except when two strata are neighbors. We use a distribution-free procedure,
where we assume that

ygj = x′
gβ + νg, j = 1, . . . , ng,

ν̂g = ȳg − x′
gβ̂, g = 1, . . . , G,

ȳg = n−1
g

ng∑
j=1

ygj, β̂ =
 G∑

g=1
ngxgx

′
g

−1
G∑

g=1
ngxgȳg.

The neighbors of stratum g are Ng = {h : |ν̂g − ν̂h| < to}, h = 1, . . . , G.

c. Choose to to make the Moran’s I correlation coefficient strong.

d. Once the strata are obtained, we never need the covariates again. Specifically, we
do not need to estimate the nonsampled covariates, a huge saving, and the uncertain
Horvitz-Thompson estimator of the population total covariate is not needed.

We note that there are difficulties using the Mahalanobis distance to find the incidence
matrix. The distinct covariates should not be used, and there is virtually no control over
this procedure.

Finally, we show how to do Bayesian predictive inference for the finite population
means of the small areas using surrogate sampling as described in the review. Again, the
population model is

ygj | µg, σ
2 ind∼ Normal(µg, σ

2), j = 1, . . . , Ng, g = 1, . . . , G.

Let Cig, g = 1, . . . , G, i = 1, . . . , ℓ, denote the set of sampled units of the ith area in
gth stratum. Define the sum of the weights associated with ith area in the gth stratum as

Nig =
∑

j∈Cig

Wgj.

Note that many of these Nig are zeros. Then, for Nig > 0,

Ȳig | µg, σ
2 ind∼ Normal{µg,

σ2

Nig

}

and
Ȳi =

∑G
g=1 NigȲig∑G

g=1 Nig

, i = 1, . . . , ℓ.

For posterior inference, we have (µ(h)
g , σ2(h)), h = 1, . . . ,M, g = 1, . . . , G, from the

sample model. Then, we have Ȳ (h)
i , h = 1, . . . ,M, i = 1, . . . , ℓ.
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4. Hierarchical Bayesian models and a numerical example

This is the main section of the paper in which we present the hierarchical Bayesian
models to analyze the new data. In parallel, we present our numerical example on body
mass index (BMI) data.

First, we fit a small area model with covariates. This is the basic model of Battese et
al. (1988); henceforth the BHF model. A full Bayesian approach of the BHF model is given
by Toto and Nandram (2011) and Molina et al. (2014). However, this model is notoriously
non-robust to its assumptions (normality, linearity, outliers). We use the BHF model as the
baseline model for comparison.

Second, we use the Scott-Smith model (Scott and Smith, 1969), which does not have
covariates; this model was intended for cluster sampling, but nowadays we have been using
it for small area estimation; see Nandram et al. (2011), henceforth SS model. Note that
the SS model is a special case of the BHF model. For example, we will construct a spatial
model to accommodate the covariates and we will add robustness through mostly a two-
component mixture model (Chakraborty et al., 2019, Goyal et al., 2020) and one slightly
different model with a stick-breaking prior (Ishwaran and James, 2001). So we are using
the SS model to drop the linearity assumption of the study variable and the covariates, to
robustify the assumption of normality, and accommodating outliers. Note all SS models have
a spatial component to accommodate the covariates.

We will compare the models with (a) equal weights and (b) unequal weights using
posterior inference about the finite population means by actual small areas (counties in
the application on BMI). For comparison, we use posterior mean (PM), posterior standard
deviation (PSD), numerical standard error (NSE), posterior coefficient of variation (PCV)
and 95% highest posterior density interval (HPDI). All our data analyses will be done on
the BMI data.

All computations were done on WPI’s Solar Cluster. The Gibbs sampler was used
for almost all models. The computations used more time (increasing complex models) as
we go from Table 3 to Table 7 because longer runs are needed to ensure strong mixing in
the Gibbs samplers. Apart from the data preparation, which took just a few minutes, the
computational time for all models (equal & unequal weights) took just about one hour.

Baseline (BHF) model

In the BHF model we use the original 8 counties. The stratum table with the weights
is reverted to the small areas (not strata). We note that BHF model is notoriously not robust
to its assumptions.

The population model is

yij | νi, β, σ
2 ind∼ Normal{x′

ijβ + νi, σ
2}, j = 1, . . . , Ni, i = 1, . . . , ℓ.

The sample model is

yij | νi, β
ind∼ Normal{x′

ijβ + νi,
σ2

wij

}, j = 1, . . . , ni,
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νi | σ2, ρ
ind∼ Normal(0, ρ

1 − ρ
σ2), i = 1, . . . , ℓ,

π(β, σ2, ρ) ∝ 1
σ2 . (3)

The joint posterior density for the sample model described in (3) is proper if the design
matrix is full rank and ℓ ≥ 2. It can be sampled using a random sampler; a noisy Gibbs
sampler is not necessary.

Bayesian predictive inference is now standard using surrogate sampling,

Ȳi | νi, β, σ
2 ind∼ Normal{X̄ ′

iβ + νi,
σ2

Ni

},

π(Ȳi | y
s
) =
ˆ
f(Ȳi | νi, β, σ

2)π(νi, β, σ
2, | y

s
)dνi dβ dσ

2, i = 1, . . . , ℓ.

In Table 3 we compare the BHF models, with equal weights and unequal weights.
We observe that the PMs are rougher, PSDs are larger and PMs are closer to 25 (but not as
close as we want) under the model with unequal weights than the model with equal weights.
Note that counties 4 & 8 are mostly different from the others. But can we do better on these
three measures?

SS model with spatial effects

We next delete the covariates and replace them with the spatial covariance matrix.
This is the SS model with spatial effects.

Now the population model is

ygj | µg, σ
2 ind∼ Normal{µg, σ

2}, j = 1, . . . , Ng, g = 1, . . . , G.

The sample model is

ygj | µg, ρ
ind∼ Normal{µg,

σ2

wgj

}, j = 1, . . . , ng,

µg | σ2, ρ
ind∼ Normal(θ, ρ

1 − ρ
σ2), g = 1, . . . , G,

π(θ, σ2, ρ) ∝ 1
σ2 . (4)

The model, described in (4) and the few lines above it, is the basic SS model, which can be
fit using a random sampler.

However, we need to add the spatial structure and we use the simultaneous conditional
auto-regressive (CAR) model (e.g., He and Sun, 2000; Chung and Datta, 2022). The sample
model is now given by

ygj | µg, σ
2 ind∼ Normal

{
µg,

σ2

wgj

}
, j = 1, . . . , ng, g = 1, . . . , G,
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Table 3: BHF model is fit directly to the small areas

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.629 0.365 0.004 0.013 (26.905, 28.351)
2 138 28.277 28.025 0.398 0.004 0.014 (27.293, 28.847)
3 667 27.340 27.629 0.192 0.002 0.007 (27.248, 27.995)
4 133 25.980 27.051 0.405 0.004 0.015 (26.221, 27.814)
5 96 27.075 27.547 0.406 0.004 0.015 (26.767, 28.368)
6 119 27.313 27.318 0.395 0.004 0.014 (26.538, 28.108)
7 100 27.518 27.881 0.449 0.005 0.016 (27.002, 28.777)
8 137 26.698 27.470 0.370 0.004 0.013 (26.741, 28.205)

b. Unequal weights

1 140 27.324 27.234 0.440 0.004 0.016 (26.359, 28.085)
2 138 28.277 28.594 0.436 0.005 0.015 (27.728, 29.442)
3 667 27.340 27.193 0.197 0.002 0.007 (26.821, 27.590)
4 133 25.980 25.901 0.463 0.005 0.018 (25.002, 26.794)
5 96 27.075 27.855 0.497 0.005 0.018 (26.838, 28.790)
6 119 27.313 27.372 0.457 0.005 0.017 (26.489, 28.302)
7 100 27.518 27.394 0.514 0.005 0.019 (26.443, 28.439)
8 137 26.698 26.266 0.460 0.005 0.017 (25.355, 27.136)

NOTE: ȳ1 = n−1
i

∑ni
j=1 yij , i = 1, . . . , ℓ, is the ordinary sample average. Posterior inference is

based on 1,000 iterates that provide posterior mean (PM), posterior standard deviation (PSD),
numerical standard error (NSE), posterior coefficient of variation (PCV), and 95% highest
posterior density interval (HPDI). Only random samplers, no Gibbs samplers, are used.

µ | θ, ρ, ψ, σ2 ∼ Normal
{
jθ,

ρ

1 − ρ
σ2(R − ψV )−1

}
,

(j is a vector of ones),

π(θ, ρ, ψ, σ2) ∝ 1
σ2 ,

0 < ρ < 1, 1
λ1

< ψ <
1
λG

,

where λ1 < . . . < λG, are eigenvalues of R−1V, and R = diagonal(rg, g = 1, . . . , G) with rg

the gth row (column) sum of V . We note that the joint posterior density is proper and it
can be fit using the Gibbs sampler. This is our first SS model.

In Table 4 we notice that the PSDs for some of the areas are smaller under unequal
weights (not desirable). The PMs are smoother under the unequal weights, but closer to 25.
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We need to improve this model, which can be done by robustification of either the sampling
process or the area means or both. All these models require the use of the Gibbs sampler.
Details of number of iterations used are described in the notes of the tables. To come up
with those numbers, we have used the Geweke test of stationarity and the effective sample,
and in all cases the Gibbs sampler mixed strongly.

Table 4: Scott-Smith model is fit to the strata with spatial effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.197 0.314 0.009 0.012 (26.638, 27.832)
2 138 28.277 26.741 0.258 0.008 0.010 (26.233, 27.276)
3 667 27.340 27.104 0.204 0.007 0.008 (26.709, 27.485)
4 133 25.980 27.050 0.269 0.010 0.010 (26.602, 27.591)
5 96 27.075 26.829 0.300 0.009 0.011 (26.256, 27.435)
6 119 27.313 27.082 0.356 0.012 0.013 (26.378, 27.812)
7 100 27.518 27.125 0.411 0.013 0.015 (26.358, 27.867)
8 137 26.698 27.076 0.279 0.008 0.010 (26.592, 27.632)

b. Unequal weights

1 140 27.324 26.640 0.299 0.008 0.011 (26.113, 27.229)
2 138 28.277 26.730 0.253 0.006 0.009 (26.232, 27.208)
3 667 27.340 26.546 0.178 0.005 0.007 (26.225, 26.895)
4 133 25.980 26.687 0.424 0.016 0.016 (25.831, 27.375)
5 96 27.075 26.149 0.310 0.008 0.012 (25.575, 26.758)
6 119 27.313 26.412 0.293 0.010 0.011 (25.779, 26.954)
7 100 27.518 25.877 0.372 0.012 0.014 (25.257, 26.632)
8 137 26.698 25.951 0.289 0.010 0.011 (25.399, 26.538)

NOTE: The Gibbs sampler is run 11, 000 times with a “burn-in” of 1, 000 and a systematic
sample of every tenth is taken.

SS model with spatial effects and robust study variable

The population model is

ygj | µg
ind∼ (1 − p)Normal(µg, γσ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ < 1.

The sample model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ

σ2

wgj

) + pNormal(µg,
σ2

wgj

),
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j = 1, . . . , ng, g = 1, . . . , G

µ
ind∼ Normal{θj, ρ

1 − ρ
σ2(R − ψV )−1},

π(θ, σ2, p, ρ, γ, ψ) ∝ 1
σ2 ,

1
λ1

< ψ <
1
λG

.

The joint posterior density is

π(z, µ, θ, σ2, γ, ρ, ψ | y) ∝

1
σ2

G∏
g=1

ng∏
j=1

[(1 − p)Normal(µg, γ
σ2

wgj

)]1−zgj [pNormal(µg,
σ2

wgj

)]zgj

×Normal{θj, ρ

1 − ρ
σ2(R − ψV )−1},

and this posterior can be sampled using the Gibbs sampler; see note to Table 5. The results
are better than those in BHF model and the SS model with only spatial effects.

SS Model with spatial effects, robustness on study variable and random
effects

The population model is now

ygj | µg
ind∼ (1 − p)Normal(µg, γ0σ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ0 < 1.

The sample model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0

σ2

wgj

) + pNormal(µg,
σ2

wgj

), (5)

j = 1, . . . , ng, g = 1, . . . , G,

µg
ind∼ (1 − q)Normal(νg, γ1

ρ1

1 − ρ1
σ2) + qNormal(νg,

ρ1

1 − ρ1
σ2), (6)

0 < q < 1/2, 0 < γ1 < 1,

ν ∼ Normal{θj, ρ2

1 − ρ2
σ2(R − ψV )−1},

π(θ, σ2, p, q, ρ1, ρ2, ψ, γ0, γ1) ∝ 1
σ2 .

The assumptions in (5) and (6) express a form of Bayesian double robustness.

The joint posterior density is

π(z, t, µ, ν, θ, σ2, p, q, ρ1, ρ2, ψ, γ0, γ1 | y) ∝
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Table 5: Scott-Smith model is fit to the strata with spatial effects and robust
study variable

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.257 0.309 0.008 0.011 (26.701, 27.839)
2 138 28.277 27.100 0.248 0.010 0.009 (26.579, 27.541)
3 667 27.340 27.315 0.202 0.006 0.007 (26.969, 27.667)
4 133 25.980 27.206 0.252 0.007 0.009 (26.715, 27.674)
5 96 27.075 26.956 0.358 0.011 0.013 (26.341, 27.538)
6 119 27.313 27.286 0.233 0.008 0.009 (26.821, 27.712)
7 100 27.518 27.040 0.425 0.014 0.016 (26.251, 27.731)
8 137 26.698 27.235 0.238 0.008 0.009 (26.838, 27.628)

b. Unequal weights

1 140 27.324 27.021 0.345 0.011 0.013 (26.349, 27.668)
2 138 28.277 27.084 0.311 0.009 0.011 (26.464, 27.584)
3 667 27.340 26.835 0.186 0.005 0.007 (26.493, 27.203)
4 133 25.980 26.752 0.381 0.011 0.014 (26.095, 27.410)
5 96 27.075 26.503 0.367 0.011 0.014 (25.784, 27.121)
6 119 27.313 27.003 0.341 0.011 0.013 (26.340, 27.619)
7 100 27.518 26.163 0.457 0.016 0.017 (25.311, 26.969)
8 137 26.698 26.417 0.281 0.010 0.011 (25.823, 26.902)

NOTE: The Gibbs sampler is run 40, 000 times with a “burn-in” of 10, 000 and a systematic
sample of every thirtieth.

1
σ2

G∏
g=1

ng∏
j=1

[(1 − p)Normalygj
(µg, γ0

σ2

wgj

)]1−zgj [pNormalygj
(µg,

σ2

wgj

)]zgj

×
G∏

g=1
[(1 − q)Normalµg(νg, γ1

ρ1

1 − ρ1
σ2)]1−tg [qNormalµg(νg,

ρ1

1 − ρ1
σ2)]tg

×
(

1 − ρ2

ρ2σ2

)G/2

|R − ψV |1/2 exp
{

−1 − ρ2

2ρ2σ2 (ν − θj)′(R − ψV )(ν − θj)
}
,

and this can be sampled using the Gibbs sampler; see note to Table 6. Again the results look
better than the previous ones. This model appears to be the best: The PSDs for unequal
weights are larger than those for equal weights, and the PMs for unequal weights are smaller
than those for equal weights (therefore closer 25).
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Table 6: Scott-Smith model is fit to the strata with spatial effects and robust
study variable and robust random effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 26.826 0.268 0.008 0.010 (26.283, 27.321)
2 138 28.277 26.798 0.270 0.007 0.010 (26.305, 27.324)
3 667 27.340 27.096 0.221 0.006 0.008 (26.679, 27.523)
4 133 25.980 27.166 0.198 0.006 0.007 (26.778, 27.550)
5 96 27.075 26.722 0.239 0.007 0.009 (26.280, 27.172)
6 119 27.313 26.997 0.238 0.006 0.009 (26.539, 27.451)
7 100 27.518 26.814 0.227 0.007 0.008 (26.379, 27.238)
8 137 26.698 27.185 0.202 0.006 0.007 (26.815, 27.597)

b. Unequal weights

1 140 27.324 26.228 0.355 0.010 0.014 (25.479, 26.839)
2 138 28.277 26.523 0.333 0.010 0.013 (25.889, 27.167)
3 667 27.340 26.367 0.270 0.008 0.010 (25.851, 26.899)
4 133 25.980 26.460 0.236 0.007 0.009 (26.000, 26.915)
5 96 27.075 25.949 0.283 0.008 0.011 (25.389, 26.477)
6 119 27.313 26.432 0.317 0.010 0.012 (25.746, 26.953)
7 100 27.518 25.917 0.274 0.008 0.011 (25.376, 26.412)
8 137 26.698 26.171 0.245 0.008 0.009 (25.709, 26.653)

NOTE: The Gibbs sampler is run 60, 000 times with a “burn-in” of 15, 000 and a systematic
sample of every forty-fifth.

SS model with spatial effects, robust study variable and stick-breaking
priors on random effects

The population model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0σ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ0 < 1.

The sampling model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0

σ2

wgj

) + pNormal(µg,
σ2

wgj

), (7)

j = 1, . . . , ng, g = 1, . . . , G,

µ ∼ Normal{θj + η,
ρ1

1 − ρ1
σ2(R − ψV )−1},
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where j is a vector of ones, and the Pitman-Yor two-parameter process is

ηg | t ind∼
G0∑
s=1

psNormal(ts,
ρ2

1 − ρ2
σ2), G0 ≤ G, g = 1, . . . , G, (8)

p1 = ν1, p2 = ν2(1 − ν1), . . . , pG0 =
G0−1∏
s=1

(1 − νs),

νs | δ1, δ2
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , G0,

ts
ind∼ Normal(0, ρ3

1 − ρ3
σ2), s = 1, . . . , G0.

The assumptions in (7) and (8) are a form of Bayesian double robustness; these are more
flexible than the assumptions in (5) and (6). We have used the prior,

π(σ2) ∝ 1
σ2 , θ ∼ Normal(θo, σ

2
o),

where θo and σ2
o must be specified. Also, for computational stability, we have kept 0 < δ1 <

1
2 < δ2 < 1 with uniform priors on δ1, δ2, γo, p, ψ, ρ1, ρ2, ρ3.

In Table 7, this model is similar to the model in which there is robustness on both
the study variable and the area effects. But there are some aberrations as some of the PSDs
under the stick-breaking prior are smaller with unequal weights, which is a bit concerning.

As a summary, we compare all the models in Table 8. We use the summaries,

RD = {1 − AV GUW − 25
AV GEW − 25}100%, RP = {GMUW

GMEW

− 1}100%, (9)

where AV GUW and AV GEW are the arithmetic means of the 8 PMs for respectively the
unequal weights (UW ) case and the equal weights (EW ) case, and GMUW and GMEW are
the geometric means of the 8 PSDs for respectively the unequal weights (UW ) case and the
equal weights (EW ) case. Here RD is the percent AV GUW is closer to 25 than AV GEW

(expected to be positive), and RP is the percent increase of GMUW over GMEW (expected
to be positive).

Under the RD measure, three models stand out with robust study variable. Under
the RP measure, three models stand out. For both measures the model that wins is the
model in which study variable and the area effects are both robust; indeed, this is a novel
model. While the stick-breaking of the area effects is robust, it is a bit concerning that
RP is negative, but it is possible to overcome this problem. Detailed results, like the other
models, were not shown for the first and second SS model in Table 8. These results show
that robustness on the study variable is important, because for the first SS model, without
robustness on the study variable, there are artificially low PSDs relative to the BHF model
and the second SS model with robust study variable.
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Table 7: Scott-Smith model is fit to the strata with spatial effects and robust
study variable and stick-breaking priors on random effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.286 0.347 0.012 0.013 (26.708, 28.092)
2 138 28.277 26.674 0.330 0.010 0.012 (25.989, 27.256)
3 667 27.340 27.172 0.214 0.006 0.008 (26.762, 27.580)
4 133 25.980 27.105 0.303 0.009 0.011 (26.573, 27.689)
5 96 27.075 26.880 0.367 0.010 0.014 (26.152, 27.533)
6 119 27.313 27.226 0.575 0.021 0.021 (26.194, 28.372)
7 100 27.518 27.174 0.378 0.010 0.014 (26.403, 27.824)
8 137 26.698 27.133 0.311 0.009 0.011 (26.534, 27.739)

b. Unequal weights

1 140 27.324 26.738 0.347 0.009 0.013 (26.144, 27.448)
2 138 28.277 26.738 0.282 0.008 0.011 (26.193, 27.296)
3 667 27.340 26.581 0.201 0.006 0.008 (26.213, 26.943)
4 133 25.980 26.715 0.424 0.012 0.016 (25.872, 27.429)
5 96 27.075 26.076 0.310 0.011 0.012 (25.522, 26.747)
6 119 27.313 26.453 0.410 0.011 0.016 (25.642, 27.223)
7 100 27.518 25.856 0.372 0.009 0.014 (25.189, 26.543)
8 137 26.698 25.914 0.324 0.009 0.013 (25.283, 26.503)

NOTE: The Gibbs sampler is run 100, 000 times with a “burn-in” of 25, 000 with a systematic
sample of every seventy-fifth, and it took twenty-five minutes.

5. Improvements and extensions

In this section, we show what improvements can be made to our new procedure and
possible extensions. We also show how to make inference about all propensity scores, not just
those associated with the non-probability sample, but its non-sampled part of the population
as well.

5.1. Improvements, Mahalanobis distance

We discuss how to replace the Mahalanobis distance because it is not appropriate
with discrete variables. Leon and Carriere (2005) introduced a generalized Mahalanobis
distance for mixed data but this method is cumbersome; so we seek a simpler mathod that
avoids the Mahalanobis distance completely. Basically we use the nps (1) and the ps (2) to
get propensity scores, and matching to get surrogates for y2j, j = 1, . . . , n2. Then, we use
the nps (1) and ps (2) with the surrogates, to get propensity scores again, and matching to
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Table 8: Comparison of the six models by summaries of the PMs and PSDs over
the eight counties

PM PSD

Models EW UW RD (%) EW UW RP (%)

Covariates (BHF) 27.569 27.226 15.391 0.363 0.418 15.295
NR, NS-RE (SS)∗ 27.540 27.174 16.840 0.143 0.152 5.844
RS, NS-RE (SS)∗ 27.186 26.732 26.243 0.265 0.329 24.381

RS, S-RE (SS) 27.034 26.372 48.264 0.294 0.298 1.200
RS & S-R-RE (SS) 26.917 26.215 57.703 0.233 0.284 22.009
RS & S-SB-RE (SS) 27.081 26.384 50.402 0.341 0.326 -4.423

NOTE: Scott-Smith (SS) spatial models have the CAR prior and the non-spatial models∗

replace R− ψV by the identity matrix. The summaries are respectively the arithmetic mean of
the eight PMs and geometric mean of the eight PSDs. The first three models are non-spatial
(NS), and last four models have robust study variable (RS).

get surrogates for W1j, j = 1, . . . , n1. The y2j are not used for further analysis.

Our procedure has two steps. First, we massively impute y2i, i = 1, . . . , n2, using
propensity scores (i.e., matching via nearest neighbors). Second, we match (nearest neighbor)
propensity scores conditional on the nps and ps data now available.

In the first step, we define Ii = 0 if i = 1, . . . , n1 (nps) and Ii = 1 if i = n1+1, . . . , n1+
n2 = n (ps); xi = x1i, i = 1, . . . , n1 and xn1+i = x2i, i = 1, . . . , n2. We then assume logistic
regression model,

Ii
ind∼ Bernoulli( ex′

iβ

1 + ex′
iβ

), i = 1, . . . , n = n1 + n2.

Let β̂ denote the maximum likelihood estimator of β, we have propensity scores,

πi = ex′
iβ̂

1 + ex′
iβ̂
, i = 1, . . . , n.

We fill in the missing y2i, i = 1, . . . , n2, using matching on the πi. For each i = n1+1, . . . , n1+
n2, we find which j, j = 1, . . . , n1, minimizes |πi − πj|, say j∗; j∗ may not be unique. Then,
the value of the study variable given to unit i is y2j∗ , i = n1 + 1, . . . , n1 + n2.

In the second step, we define xi = x1i, i = 1, . . . , n1, xi = x2i, i = 1, . . . , n2. Similarly,
we define yi = y1i, i = 1, . . . , n1, yi = y2i, i = 1, . . . , n2. Also, define Ii = 1, i = 1, . . . , n1,
for the nps (1) and Ii = 0, i = n1 + 1, . . . , n1 + n2 = n, for the ps (2). Note that xi

has p components, including an intercept. For the nonignorable model, we assume logistic
regression,

Ii | β, yi
ind∼ Bernoulli

 e
(x′

iβ(p)+yiβp+1)

1 + e
(x′

iβ(p)+yiβp+1)

 , i = 1, . . . , n.
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We optimize the likelihood function to obtain the maximum likelihood estimator of β, which
we now denote by β̂. The propensity scores are then

πi = ex′
iβ̂+yiβ̂p+1

1 + ex′
iβ̂+yiβ̂p+1

, i = 1, . . . , n.

For each i = 1, . . . , n1, we find which j, j = n1 + 1, . . . , n, minimizes |πi − πj|, say j∗; j∗ may
not be unique. Then, the weight given to unit i is W2j∗ , i = 1, . . . , n1. Denote these weights
by W1i, i = 1, . . . , n1. Letting N = ∑n2

i=1 W2i, the design estimate of the population size, our
final weights for the nps (1) are

W1i ≡ N
W1i∑n1

i=1 W1i

, i = 1, . . . , n1.

Note that the y2i are discarded and are not used in any further analysis.

5.2. Extensions

Unfortunately, in our new procedure sample sizes and the sub-population sizes of the
strata (domains) are random variables. The uncertainty in their values should be taken into
consideration.

Let j = (1, . . . , 1)′, a vector of ones, and O = (0, . . . , 0)′, a vector of zeros, Ng >>
ng, g = 1, . . . , G denote G-vectors.

a. Population sizes

Letting N = (N1, . . . , NG)′, domain sizes from ps (1), we assume

N − j ∼ Multinomial(N −G,P ), P ∼ Dirichlet(O),

P | N ∼ Dirichlet(N − j), T − j | P ,N ∼ Multinomial(N −G,P )

b. Sample sizes

Letting n = (n1, . . . , nG)′, observed domain sizes, we assume

n− j ∼ Multinomial(n−G, p), p ∼ Dirichlet(O),

p | n ∼ Dirichlet(n− J), t− j | p, n ∼ Multinomial(n−G, p).

c. Posterior inference

Using Bayes’ theorem, the joint posterior density is

π(Ω, z, t, T | y,W, n,N),

where z is a vector of latent variables; zgj, j = 1, . . . , tg, g = 1, . . . , G. There are three cases,
which we must consider,
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a. If tg < ng, take a simple random sample without replacement from ygj, j = 1, . . . , ng

(carry on Wgj);

b. If tg = ng, retain (ygj,Wgj), j = 1, . . . , ng;

c. If tg > ng, take all (ygj,Wgj), j = 1, . . . , ng and draw a simple random sample with
replacement from them to get the others.

We use the following decomposition of the joint posterior density,

π(Ω, z, t, T | y,W, n,N) =

π1(Ω | z, t, T , y,W, n,N) π2(z | t, T , y,W, n,N) π3(t, T | y,W, n,N).
We assume

π(Ω, z, t, T | y,W, n,N) =
π1(Ω | z, t, y,W , n) π2(z | t, y,W , n) π30(t | n) π31(T | N).

5.3. Inference for all propensity scores

As usual, there are two cases, ignorable selection and non-ignorable selection. For
ignorable selection in our new procedure, logistic regression is null and void. Basically, we
have a simple random sample without replacement from each stratum. So the selection
probabilities for the gth stratum are ng/Ng, j = 1, . . . , Ng; obviously these vary with the
sizes of the strata/domains. It does not affect the modeling of the study variable. It is
trivial to deal with random sample sizes of the strata/domains; see Section 5.2. Now the
method of Chen, Li and Wu (2020) is completely useless.

For nonignorable selection, we do not need the Horvitz-Thompson estimator (pseudo-
likelihood). However, we will obtain the propensity scores for the entire population of N
individuals, and therefore these propensity scores can be interpreted as selection probabili-
ties. We use the following logistic regression model,

G∏
g=1

 ng∏
j=1

ex′
gβ+ygjβp+1

1 + ex′
gβygjβp+1

{ 1
ex′

gβ+ygjβp+1

}Ng/ng−1
 .

Note that we are assuming each individual in the gth stratum in the sample is reproduced
Ng/ng with the same value of the study variable. Maximum likelihood estimators, β̂, can be
obtained for β. Hence, the propensity scores, πgs, are given by

πgs = ex′
gβ̂+ygsβ̂p+1

1 + ex′
gβ̂ygsβ̂p+1

, s = (j − 1)Ng

ng

+ 1, . . . , jNg

ng

, j = 1, . . . , ng.

Some comments are in order.

(a) It is possible to provide a full Bayesian method to obtain the propensity scores.

(b) The πgs are very variable, and they will not add up to n, and we can rake them up to
n. String out the πgs as πi, i = 1, . . . , N .
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(c) The raking procedure can be a bit problematic because 0 < πi < 1, i = 1, . . . , N and∑N
i=1 πi = n for sampling without replacement. Of course, if ∑n

i=1 πi ≥ n, raking does
not cause any problems. If ∑n

i=1 πi < n, there are difficulties because raking up will
make some of the raked πi > 1, which we do not want. Keep the πi in the fourth
quartile unchanged. Suppose ∑i∈Q4 πi = no, where Q4 is the fourth quartile; then rake
up the πi in the first three quartiles to n− no.

(d) It is not much more difficult to make inference about the study variable with random
sample sizes of the strata/domains.

6. Concluding remarks

A structurally complete probability sample is obtained from the non-probability sam-
ple using double mass imputation with supplemental data from a relatively small probability
sample (no study variable). The population is stratified by distinct covariates and the nps
and ps are allocated to the strata. The study variable and the covariates are used to con-
struct an incidence matrix (spatial structure), which is used to accommodate the covariates.
The covariates are never used in the proposed models.

We have used the Scott-Smith model to avoid specifying the uncertain relationship
between the study variable and covariates for unit level data without consideration of the
participation variable. Robust models are specified for both the study variable and the
random effects, and in one model, the Pitman-Yor two-parameter stick-breaking process is
used. This is needed because the population model, used for prediction, is assumed to be
correct. The nps data are used to construct an incidence matrix with the neighboring strata.

The small areas are not modeled directly, rather the model is placed on the strata
with the non-probability samples. Inference about the actual small areas is obtained in the
output analysis. This helps with over-shrinkage.

A simulation study to assess the predictive power of the proposed models will be
useful. Sensitivity of Bayesian predictive inference of the finite population mean to the
size of the ps sample needs to be investigated. Further robustification can be done using the
stick-breaking process for the sampling process (study variable) instead of the two component
mixture model for the study variable in the Scott-Smith model. An alternative approach,
using structural error models, is presented by Nandram (2023).

The method is promising, and the non-Bayesian notion of double robustness is null
and void. The probability sample plays a fairly minor role, and it can be eliminated if the
required population information can be obtained using web-scraping, an emerging science.
There is a good comparison with the BHF (baseline) model. Future work will be focused in
this direction (stratification and matching).

At one of my talks, a participant asked if the means of the two components in mixture
model can be different. Of course, they can be different; the mixture model in the stick-
breaking process has a different mean for each cluster. The model of Goyal et al. (2020) is
limited, and so in Appendix B, we describe how one might use different means for a single
area; thereby adding flexibility to this two-component mixture model.
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Appendices

Appendix A: Extension of the Scott-Smith model with stick breaking process

We extend the Scott-Smith model to have a robust model on the study variable,
spatial effects and random effects, where the random effects have a stick-breaking prior
(Ishwaran and James, 2001).

For g = 1, . . . , G, j = 1, . . . , Ng, again we have the mixture population model (ro-
bustness),

ygj | µg ∼ (1 − p)Normal(µg, γσ
2) + pNormal(µg, σ

2), (A.1)
where 0 < p < 1

2 , 0 < γ < 1.

For g = 1, . . . , G, j = 1, . . . , ng, again we have the sample model,

ygj | µg ∼ (1 − p)Normal(µg, γ
σ2

wgj

) + pNormal(µg,
σ2

wgj

), (A.2)

where 0 < p < 1
2 , 0 < γ < 1.

Then,
µ | η ∼ Normal{jθ + η,

ρ1

1 − ρ1
σ2(R − ψV )−1}. (A.3)

We consider the Pitman-Yor two parameter stick-breaking process for ηg, g = 1, . . . , G.

The stick-breaking process is

π(ηg | t, etc.) =
Go∑
s=1

psNormal(ts,
ρ2

1 − ρ2
σ2),

where Go is the number of distinct clusters with independence over g = 1, . . . , G. Using the
latent variables, dg, it can be expressed in a computationally convenient form,

π(ηg, dg | t, etc.) =
G∏

s=1
[pdgNormalηg{tdg ,

ρ2

1 − ρ2
σ2}]I(dg=s)

with independence over (ηg, dg), g = 1, . . . , G. The number of clusters, Go, is the number of
distinct dg and dg informs which cluster ηg belongs. Note that the limit of the product is ℓ



26 BALGOBIN NANDRAM [SPL. PROC.

and it cannot be larger; this is different from a Dirichlet process, where the upper limit in
the product goes to infinity. Here p1 = ν1, p2 = ν2(1 − ν1), . . . , pGo = ∏Go−1

s=1 (1 − νs) and

νs
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , G, 0 < δ1, δ2 < 1.

Then, for η, we have

η | t, d ∼ Normal{Pt, ρ2

1 − ρ2
σ2I}, (A.4)

where P is an incidence (partition) matrix (i.e., it consists of zeros and ones), mapping the
areas to the clusters. Finally, we assume

ts
ind∼ Normal{0, ρ3

1 − ρ3
σ2}, s = 1, . . . , Go. (A.5)

Note that η and t are Go-vectors.

Also, it is clear that

Pr(dg = s | t, etc.) ∝ psNormalηg(ts,
ρ2

1 − ρ2
σ2), s = 1, . . . , G, g = 1, . . . , G.

Once dg, g = 1, . . . , G, are sampled, the incidence matrix, P is obtained, and all other
parameters can be sampled. That is, draw the dg first, and all other parameters can be
sampled easily. Note at this moment, if we do not have enough zs or νs, we must sample
their priors.

We need to specify a proper prior for θ. Actually, µg = ϕg + ηg, g = 1, . . . , G,
where the ϕg are spatial effects and the ηg are clustering effects. Therefore, there is weak
identifiability and we must take care of this issue. Now, E(µg | θ, ηg) = E(ϕg | θ, ηg) + ηg,
and E(ϕg | θ, ηg) = θ. Also, note that E(η) = E{E(η | t)} = E(Pt) = 0. Therefore, we
have centered the µg on θ by taking E(ϕg | ηg) = θ and E(η) = 0 This centering together
with proper diffused priors on θ can overcome the weak identifiability in this hierarchical
Bayesian model. It is possible to improve this model further.

However, there are some additional problems that are likely to occur with stick break-
ing. First, there can be a single cluster, but at least three clusters are needed in any partition.
One can use a random grouping with three clusters if this happens ( this is rare). Second,
to allow a relatively larger number of clusters, we take 1 − δ1 >

1
2 , better than Jeffrey’s

prior for the first parameter of the beta density, and 1−δ2
δ2

< 1, thereby assisting the second
beta parameter from getting too large a priori. These two conditions give 0 < δ1 <

1
2 and

1
2 < δ2 < 1. Third, an informative prior for θ is required. This can be obtained by using a
small sub-sample of the data to avoid double using all the data. These three things help to
obtain a more efficient Gibbs sampler.

To obtain the prior for θ, we can take a random sample of 10% of the data, ȳg, g =
1, . . . , G. Now calculate the average, θo, and the variance, σ2

o . Then, we take θ ∼ Normal(θo, σ
2
o).

This is like a proper diffused prior, which avoids the uncertainty in inflating σ2
o near to
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vagueness. Admittedly it double uses the data, but only 10% of the data, not all the data.
Otherwise, we would need a prior for θ from an independent source. For example, if we also
have the study variable from a small probability sample, we can use that as we have done
here. Alternatively, we can take a small percent (e.g., 5%) of the nps data, and do the same,
and we can use the remaining data for the analysis. So that we do not need the ps for the
construction of the prior.

The CPD of θ consists of two pieces, one from the proper prior and other from the
model. It is easy to show that the contribution from the model is

θ ∼ Normal
{∑G

g=1 rgµg∑G
g=1 rg

,
ρ1

1 − ρ1
σ2 1

(1 − ψ)∑G
g=1 rg

}
,

where rg are the row (column) sums of V . It is now a standard calculation to combine the
two pieces.

Starting values for the Gibbs sampler can be obtained by first doing three things.

a. Find the sample averages, ȳg = 1
ng

∑ng

j=1 ygj, g = 1, . . . , G.

b. Find clusters in these G stratum means, say 10 clusters, and this will give initial values
of the dg.

c. Form the partition matrix, P .

With this set up, we can generate starting values for all pertinent parameters. We can set
ρs = 1

2 , s = 1, 2, 3, and δ1 = δ2 = 1
2 . Also, ts, s = 1, . . . , 10, can be obtained by averaging the

appropriate yg. Then, we can now sample the ηg, g = 1, . . . , G. At the first iterate of the
griddy Gibbs sampler, we can easily sample the dg followed by all the parameters.

Appendix B: Unequal means in the two-component mixture model

We consider a single area (or stratum) to show how we can proceed. We assume

yi | p, µ, σ2, ρ, γ
ind∼ (1 − p)Normalyi

(µ− γ, ρσ2) + pNormalyi
(µ, σ2), i = 1, . . . , n,

where the first component has smaller mean and variance, and a priori,

π(p, µ, σ2, ρ, γ) ∝ 1
σ2 , 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0.

Continuous survey data are typically skewed to the right, and so it is safe to take γ > 0. Of
course, we can do regression (with covariates) in a similar manner.

The joint posterior density is

π(p, µ, σ2, ρ, γ | y) ∝

1
σ2

n∏
i=1

{
1 − p√
ρσ2ϕ{(yi − µ+ γ)/

√
ρσ2} + p√

σ2
ϕ{(yi − µ)/

√
σ2}

}
, (B.1)
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where ϕ(·) is the standard normal density and 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0.

We can simplify drawing samples from the joint posterior density by introducing latent
variables, zi, i = 1, . . . , n, where zi = 0 if an observation comes from the first component
and zi = 1 if an observation comes from the second component. Then, the augmented joint
posterior density, starting with (B.1), is now

π(z, p, µ, σ2, ρ, γ | y) ∝

1
σ2

n∏
i=1


[

1 − p√
ρσ2ϕ{(yi − µ+ γ)/

√
ρσ2}

]1−zi
[
p√
σ2
ϕ{(yi − µ)/

√
σ2}

]zi
 , (B.2)

where 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0. It is now easy to run a Gibbs sampler to fit
the joint posterior density in (B.2). It is advisable to sample the joint conditional posterior
density of (µ, σ2) (i.e., blocking).

Note that if we have only the first (or the second) component in the model (i.e., p = 0
or p = 1), then γ and ρ will not be identifiable. Therefore, it is necessary to assume there
are at least two observations from each component of the mixture to avoid impropriety of
the joint posterior density (i.e., 2 ≤ ∑n

i=1 zi ≤ n − 2). One way to do this is to arrange
y1, . . . , yn in increasing order y(i), i = 1, . . . , n, and take the corresponding z1 = z2 = 0 and
zn−1 = zn = 1, where zi, i = 3, . . . , n − 2, are determined from the joint posterior density.
Doing so will avoid specifying this difficult constraint in the joint posterior density in (B.2).
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