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Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity
in individual risks to disease and death. To analyze the bivariate data on related survival times, the
shared frailty models were suggested. Shared frailty models are used despite their limitations. To
overcome their disadvantages correlated frailty models may be used. In this paper, we introduce
the inverse Gaussian correlated frailty models with three different baseline distributions namely,
the Pareto,Burr and the linear failure rate distributions. We introduce the Bayesian estimation pro-
cedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved
in these models. We apply these models to a real life bivariate survival data set of McGilchrist and
Aisbett (1991) related to the kidney infection data and a better model is suggested for the data.

Key words: Bivariate survival; Copula; Correlated inverse Gaussian frailty; Cross-ration function;
Hazard rate.

1. Introduction

The frailty model is a random effect model for time to event data which is an extension of the
Cox’s proportional hazards model. Shared frailty models are the most commonly used frailty mod-
els in literature, where individuals in the same cluster share a common frailty. Frailty models (Vau-
pel et al. 1979) are used in the survival analysis to account for the unobserved heterogeneity in the
individual risks to disease and death. The frailty model is usually modeled as an unobserved ran-
dom variable acting multiplicatively on the baseline hazard function. Hanagal and Dabade (2013),
Hanagal and Bhambure (2015, 2016) and Hanagal and Pandey (2014a, 2014b, 2015a, 2015b, 2016,
2017a) analyzed kidney infection data and Australian twin data using shared gamma and inverse
Gaussian frailty models with different baseline distributions for the multiplicative model. Hanagal
and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kidney infection data and
diabetic retinopathy data using shared gamma and inverse Gaussian frailty models for the multi-
plicative model. Hanagal and Bhambure (2014) developed shared inverse Gaussian frailty model
based on the reversed hazard rate for Australian twin data. Hanagal et al.(2017) discussed corre-
lated gamma frailty models for bivariate survival data to analyze kidney infection data and Hanagal
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and Pandey (2017b) proposed correlated gamma frailty models for bivariate survival data based on
reversed hazard rate for Australian twin data. Hanagal (2017) gave extensive literature review on
different shared frailty models.

In a univariate frailty model, let a continuous random variable T be a lifetime of an individual
and the random variable Z be frailty variable. The conditional hazard function for a given frailty
variable, Z = z at time t > 0 is,

h(t | z) = zh0(t)e
Xβ, (1)

where h0(t) is a baseline hazard function at time t > 0, X is a row vector of covariates, and β is a
column vector of regression coefficients. The conditional survival function for given frailty at time
t > 0 is,

S(t | z) = e−
∫ t
0 h(x|z)dx = e−zH0(t)eXβ

, (2)

where H0(t) is the cumulative baseline hazard function at time t > 0. Integrating over the range of
frailty variable Z having density fZ(z), we get the marginal survival function as,

S(t) =

∫ ∞
0

S(t | z)fZ(z)dz

=

∫ ∞
0

e−zH0(t)eXβ

fZ(z)dz

= LZ(H0(t)e
Xβ), (3)

where LZ(.) is the Laplace transformation of the distribution of Z. Once we get the survival
function at time t > 0, of life time random variable for an individual, we can obtain probability
structure and make their inferences based on it.

Shared frailty explains correlation’s between subjects within clusters. However, it does have
some limitations. Firstly, it forces the unobserved factors to be the same within the cluster, which
may not always reflect reality. For example, at times it may be inappropriate to assume that all
partners in a cluster share all their unobserved risk factors. Secondly, the dependence between
survival times within the cluster is based on marginal distributions of survival times. However,
when covariates are present in a proportional hazards model with gamma distributed frailty the de-
pendence parameter and the population heterogeneity are confounded (Clayton and Cuzick, 1985).
This implies that the joint distribution can be identified from the marginal distributions (Hougaard,
1986). Thirdly, in most cases, a one-dimensional frailty can only induce positive association within
the cluster. However, there are some situations in which the survival times for subjects within the
same cluster are negatively associated. For example, in the Stanford Heart Transplantation Study,
generally the longer an individual must wait for an available heart, the shorter he or she is likely to
survive after the transplantation. Therefore, the waiting time and the survival time afterwards may
be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the analysis of
multivariate failure time data, in which associated random variables are used to characterize the
frailty effect for each cluster. Correlated frailty models provide not only variance parameters of
the frailties as in shared frailty models, but they also contain additional parameter for modeling
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the correlation between frailties in each group. Frequently one is interested in construction of a
bivariate extension of some univariate family distributions (e.g., gamma). For example, for the
purpose of genetic analysis of frailty one might be interested in estimation of correlation of frailty.
It turns out that it is possible to carry out such extension for the class of infinitely-divisible distri-
butions (Iachine 1995a, 1995b). In this case an additional parameter representing the correlation
coefficient of the bivariate frailty distribution is introduced.

2. Inverse Gaussian Frailty

The gamma distribution is most commonly used frailty distribution because of its mathemat-
ical convenience. Another choice is the inverse Gaussian distribution. The inverse Gaussian makes
the population homogeneous with time, whereas for gamma the relative heterogeneity is constant
(Hougaard, 1984). Duchateau and Janssen (2008) fit the inverse Gaussian (IG) frailty model with
Weibull hazard to the udder quarter infection data. The IG distribution has a unimodal density and
is a member of the exponential family. While its shape resembles that of other skewed density
functions, such as lognormal and gamma, it provides much flexibility in modeling. Furthermore,
there are many striking similarities between the statistics derived from this distribution and those
of the normal; see Chhikara and Folks (1986). These properties make it potentially attractive for
modeling purposes with survival data. The models derived above are bases on the assumption that
a common random effect acts multiplicatively on the hazard rate function.

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaussian as
a frailty distribution. It provides much flexibility in modeling, when early occurrences of failures
are dominant in a life time distribution and its failure rate is expected to be non-monotonic. In
such situations, the inverse Gaussian distribution might provide a suitable choice for the lifetime
model. Also inverse Gaussian is almost an increasing failure rate distribution when it is slightly
skewed and hence is also applicable to describe lifetime distribution which is not dominated by
early failures. Secondly, for the inverse Gaussian distribution, the surviving population becomes
more homogeneous with respect to time, where as for gamma distribution the relative heterogene-
ity is constant. The inverse Gaussian distribution has shape resembles the other skewed density
functions, such as log-normal and gamma. These properties of inverse Gaussian distribution mo-
tivate us to use inverse Gaussian as frailty distribution. The inverse Gaussian distribution has a
history dating back to 1915 when Schrodinger and Smoluchowski presented independent deriva-
tions of the density of the first passage time distribution of Brownian motion with positive drift.
Villman et al., (1990) have studied the histomorphometrical analysis of the influence of soft diet
on masticatory muscle development in the muscular dystrophic mouse. The muscle fibre size dis-
tributions were fitted by an inverse Gaussian law. Barndorff-Nielsen (1994) considers a finite tree
whose edges are endowed with random resistances, and shows that, subject to suitable restrictions
on the parameters, if the resistances are either inverse Gaussian or reciprocal inverse Gaussian
random variables, then the overall resistance of the tree follows a reciprocal inverse Gaussian law.
Gacula and Kubala (1975) have analyzed shelf life of several products using the IG law and found
to be a good fit. For more real life applications (see Seshadri, 1999).



4 DAVID D. HANAGAL [Vol. 18, No. 1

Consider a continuous random variable Z follows inverse Gaussian distribution with param-
eters µ and σ2 then density function of Z is,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0

0 ; otherwise,

(4)

and the Laplace transform is,

LZ(s) = exp

[
1

µσ2
−
(

1

σ4µ2
+

2s

σ2

) 1
2

]
. (5)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability, we
assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density function
and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−1)2

2zσ2 ; z > 0, σ2 > 0

0 ; otherwise,

(6)

and the Laplace transform is,

LZ(s) = exp

[
1− (1 + 2σ2s)

1
2

σ2

]
, (7)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to zero. Let
T1 and T2 be failure times of the pair of individuals like kidney, lungs, eyes or any paired organ of
an individual or lifetimes of twins. The unconditional bivariate distribution function of lifetimes
T1 and T2 with inverse Gaussian frailty is,

LZ(H1(t1) +H2(t2)) = exp

[
1− (1 + 2θ(H1(t1) +H2(t2)))

1
2

θ

]
= S(t1, t2) (8)

where H1(t1) and H2(t2) are the cumulative baseline hazard functions of the lifetime T1 and T2
respectively. Clayton (1978) define cross-ratio function as,

θ∗(t1, t2) =

∂2S(t1,t2)
∂t1∂t2

S(t1, t2)
∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

The cross ratio function of inverse Gaussian frailty is,

θ∗(t1, t2) = 1 +
1

1
θ
− ln(S(t1, t2))
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The highest value is obtained at the start and equals 1 + θ, and goes to one as the survival function
goes to zero. It is decreasing function of t1, t2.

The joint bivariate survival functions in (8) can be expressed in terms of survival copula as
(see Nelsen (2006) for details)

C(u, v) = exp

{
1− [(1− θ log u)2 + (1− θ log v)2 − 1]

1
2

θ

}

where u = ST1(·) and v = ST2(·). This is a new copula and not appeared in the earlier
literature.

3. Correlated Frailty

The correlated frailty model is the second important concept in the area of multivariate frailty
models. It is a natural extension of the shared frailty approach on the one hand, and of the uni-
variate frailty model on the other. In the correlated frailty model, the frailties of individuals in a
cluster are correlated but not necessarily shared. It enables the inclusion of additional correlation
parameters, which then allows the addressing of questions about associations between event times.
Furthermore, associations are no longer forced to be the same for all pairs of individuals in a clus-
ter. This makes the model especially appropriate for situations where the association between event
times is of special interest, for example, genetic studies of event times in families. The conditional
survival function in the bivariate case (here without observed covariates) looks like

S(t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1H01(t1)e−Z2H02(t2), (9)

where Z1 and Z2 are two correlated frailties. The distribution of the random vector (Z1, Z2) needs
to be specified and determines the association structure of the event times in the model. Integrat-
ing the above bivariate survival function over Z1 and Z2, we get unconditional bivariate survival
function as

S(t1, t2) = EZ1,Z2 [e
−Z1H01(t1)e−Z2H02(t2)] (10)

where (Z1, Z2) has some known bivariate frailty distribution.

Consider some bivariate event times – for example, the lifetimes of twins, or age at onset of a
disease in spouses, time to blindness in the left and right eye, or time to failure in the left and right
kidney of patients. In the (bivariate) correlated frailty model, the frailty of each individual in a
pair is defined by a measure of relative risk, that is, exactly as it was defined in the univariate case.
For two individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty
model. We are assuming that the frailties are acting multiplicatively on the baseline hazard function
(proportional hazards model) and that the observations in a pair are conditionally independent,
given the frailties. Hence, the hazard of the individual i(i = 1, 2) in pair j(i = j, ..., n) has the
form

h(t|Xij, Zij) = Zijh0i(t)e
β′Xij , (11)
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where t denotes age or time,Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij , h0i(.) are baseline hazard functions, and Zij
are frailties. Bivariate correlated frailty models are characterized by the joint distribution of a
two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are independent, the resulting
lifetimes are independent, and no clustering is present in the model. If the two frailties are equal,
the shared frailty model is obtained as a special case of the correlated frailty model with correlation
one between the frailties (Wienke(2011)).

In order to derive a marginal likelihood function, the assumption of conditional independence
of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual i(i = 1, 2) in
pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event of interest, and 0
otherwise. According to (2.2), the conditional survival function of the ith individual in the jth pair
is

S(t|Xij, Zij) = e−ZijH0i(t)eβ
′Xij , (12)

with H0i(t) denoting the cumulative baseline hazard function. The contribution of individual i(i =
1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijh0i(t)e
β′Xij

]δij
eZijH0i(tij)eβ

′Xij , (13)

where tij stands for observation time of individual i from pair j. Assuming the conditional in-
dependence of lifespans, given the frailty, and integrating out the frailty, we obtain the marginal
likelihood function

n∏
j=1

∫
R×

∫
R

[
u1jh01(t1j)e

β′X1j

]δ1j
eu1jH01(t1j)eβ

′X1j

[
u2jh02(t2j)e

β′X2j

]δ2j
eu2jH02(t2j)eβ

′X2jf(z1j, z2j)dz1jdz2j (14)

where f(., .) is the probability density function of the corresponding frailty distribution. All these
formulas can be easily extended to the multivariate case, but need a specification of the correla-
tion structure between individuals in a cluster in terms of the multivariate density function, which
complicates analysis. For more details see (Hanagal(2011, 2019) and Wienke(2011)).

4. Correlated Inverse Gaussian Frailty Model

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and ρ ∈
[0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform LZ(s) such
that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = LρZ(s1 + s2)L
1−ρ
Z (s1)L

1−ρ
Z (s2) (15)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z pro-
vided that ρ > 0. The case ρ = 1 is known as the shared frailty model.
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The above equation can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = LρZ(s1, s2, ...., sk)L
1−ρ
Z (s1)....L

1−ρ
Z (sk).

The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace transform

L(si, σ
2) = exp[

1− (1 + 2σ2si)
1
2

σ2
] (16)

The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

[
ρ
1− (1 + 2σ2(s1 + s2))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2s1)

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2s2)

1
2

σ2

]
(17)

where Corr(Z1, Z2) = ρ.
The correlated frailty model with inverse Gaussian frailty distribution is characterized by the bi-
variate survival function of the form:

S(t,t2j) = exp

[
ρ
1− (1 + 2σ2ηj(H1(t1j) +H2(t2j)))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2ηjH1(t1j))

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2ηjH2(t2j))

1
2

σ2

]
(18)

where H01(t1j) and H02(t2j) are the cumulative baseline hazard functions of the life time random
variables T1j and T2j respectively.

According to different assumptions on the baseline distributions we get different correlated
inverse Gaussian frailty models.

5. Baseline Distributions

5.1 Pareto Distribution

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model
the distribution of incomes. This distribution is not limited to describing wealth or income, but to
many situations in which an equilibrium is found in the distribution of the ”small” to the ”large”.
In insurance applications, heavy-tailed distributions are essential tools for modeling extreme loss,
especially for the more risky types of insurance such as medical malpractice insurance. In financial
applications, the study of heavy-tailed distributions provides information about the potential for
financial fiasco or financial ruin. The Pareto distribution is great way to open up a discussion on
heavy-tailed distribution. A continuous random variable T is said to follow the Pareto distribution
with the scale parameter λ and the shape parameter α if its survival function is,

S(t) = (λt+ 1)−α; t > 0, λ > 0, α > 0 (19)
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and the hazard function and the cumulative hazard function as

h(t) = (αλ)/(λt+ 1); t > 0, λ > 0, α > 0 (20)
H(t) = α log(λt+ 1); t > 0, λ > 0, α > 0 (21)

Observe that h(t) decreases with t ; λ > 0, α > 0. Hence this distribution belongs to the decreasing
failure rate class. The exponential and Rayleigh are the two most commonly used distributions for
analyzing lifetime data. These distributions have several desirable properties and nice physical
interpretations. Unfortunately the exponential distribution only has constant failure rate and the
Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes
both these distributions. We consider this is the second baseline distribution.

5.2 Linear Failure Rate Distribution

The linear failure rate distribution of a continuous random variable T with the parameters
α > 0 and λ > 0, will be denoted by LFRD (α, λ) has the following survival function

S(t) = exp(−αt− λ/2t2); t > 0, λ > 0, α > 0 (22)

It is easily observed that the exponential distribution (ED(α)) and the Rayleigh distribution (RD
(λ)) can be obtained from LFRD(a,b) by putting λ = 0 and α = 0 respectively. Moreover, the
probability density function (PDF) of the LFRD (α, λ) can be decreasing or unimodal but the
failure rate function is either constant or increasing only. See for example Bain (1974), Sen and
Bhattacharya (1995), Lin et al. (2006), Ghitany and Kotz (2007) . The hazard function and the
cumulative hazard function of linear failure rate distribution are respectively as stated below:

h(t) = α + λt; t > 0, λ > 0, α > 0 (23)
H(t) = αt+ λt2/2; t > 0, λ > 0, α > 0 (24)

5.3 Burr Distribution (Type XII)

The Burr XII distribution, having logistic and Weibull as special sub-models, is a very pop-
ular distribution for modeling life time data and for modeling phenomenon with monotone failure
rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice
because of its negatively and positively skewed density shapes. However, it does not provide a
reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the
bathtub shaped and the unimodal failure rates that are common in reliability and biological studies.
Such bathtub hazard curves have nearly at middle portions and the corresponding densities have a
positive anti-mode. Unimodal failure rates can be observed in course of a disease whose mortality
reaches a peak after some finite period and then declines gradually. This distribution covers the
curve shape characteristics for a large number of distributions. The versatility and flexibility of
the Burr-XII distribution turns it quite attractive as a tentative model for data whose underlying
distribution is unknown. A continuous random variable T with the parameters λ > 0 and α > 0,
will be denoted by Burr(λ, α) has the following survival function

S(t) = (1 + tλ)−α; t > 0, λ > 0, α > 0 (25)
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Hazard function and Cumulative hazard function are

h(t) =
αλt(λ−1)

1 + tλ
(26)

H(t) = α log(1 + tλ) (27)

6. Proposed Models

Substituting cumulative hazard functions for the Pareto, linear failure rate (LFR) and Burr
baseline distributions in equation (18), we get the unconditional bivariate survival functions at time
t1j > 0 and t2j > 0 as,

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1 log(λ1 + 1) + α2 log(λ2 + 1)))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα1 log(λ1 + 1))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα2 log(λ2 + 1))

1
2

σ2

]
(28)

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1t+ λ1t

2/2 + α2t+ λ2t
2/2))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηj(α1t+ λ1t

2/2))
1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηj(α2t+ λ2t

2/2))
1
2

σ2

]
(29)

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1 log(t

λ1 + 1) + α2 log(t
λ2 + 1)))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα1 log(t

λ1 + 1))
1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα2 log(t

λ2 + 1))
1
2

σ2

]
(30)

Here onwards we call equation (28), (29) and (30) as Model I, Model II, and Model III
respectively and they denote correlated inverse Gaussian frailty model with baseline as Pareto,
LFR and Burr distributions respectively.
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7. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure times
are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth individ-
ual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. We also assume that
independence between the censoring time and the life-times of individuals.

The contribution of the bivariate life time random variable of the jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), t1j < c1j, t2j < c2j,
f2(t1j, c2j), t1j < c1j, t2j > c2j,
f3(c1j, t2j), t1j > c1j, t2j < c2j,
f4(c1j, c2j), t1j > c1j, t2j > c2j.

and the likelihood function is,

L(ψ,β, θ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (31)

where θ, ψ and β are respectively the frailty parameter (σ1, σ2, ρ), the vector of baseline parame-
ters and the vector of regression coefficients.

The counts n1, n2, n3 and n4 are the number of individuals for which first and second failure
times (t1j, t2j) lie in the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and
t1j > c1j, t2j > c2j respectively and

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) =
∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) =
∂S(c1j, t2j)

∂t2j
and f4(c1j, c2j) = S(c1j, c2j) (32)

Usually maximum likelihood estimators can be used to estimate the parameters invloved in
the model. Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a fourteen dimensional optimization problem for Model I and Model III and eleven dimensional
optimization problem for Model II and Model IV. As the method of maximum likelihood fails
to estimate the parameters due to convergence problem in the iterative procedure, so we use the
Bayesian approach. The traditional maximum likelihood approach to estimation is commonly used
in survival analysis, but it can encounter difficulties with frailty models. Moreover, standard max-
imum likelihood based inference methods may not be suitable for small sample sizes or situations
in which there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a Bayesian
approach, which does not suffer from these difficulties, is a natural one, even though it is relatively
computationally intensive
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To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology.

To estimate the parameters of the model, the Bayesian approach is now popularly used,
because computation of the Bayesian analysis become feasible due to advances in computing tech-
nology. Several authors have discussed Bayesian approach for the estimation of parameters of
the frailty models. Some of them are, Ibrahim et al.(2001) and references their in, Santos and
Achcar (2010). Santos and Achcar (2010) considered parametric models with Weibull and gener-
alized gamma distribution as baseline distributions and gamma, log-normal as frailty distributions.
Ibrahim et al. (2001) and references therein considered Weibull model and piecewise exponential
model with gamma frailty. They also considered positive stable frailty models.

The joint posterior density function of parameters for given failure times is obtained as,

π(α1, λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(θ)
5∏
i=1

pi(βi)

where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyper parameters
of corresponding arguments for baseline parameters and frailty variance; pi(.) is prior density
function for regression coefficient βi; βi represents a vector of regression coefficients except βi,
i = 1, 2, . . . , k and likelihood function L(.) is given by equation (31). Here we assume that all the
parameters are independently distributed.

To estimate the parameters of the model, we used Metropolis-Hastings algorithm and Gibbs
sampler. We monitored the convergence of a Markov chain to a stationary distribution by Geweke
test (Geweke 1992)and Gelman-Rubin Statistics (Gelman and Rubin, 1992). Trace plots, coupling
from the past plots and sample autocorrelation plots are used to check the behaviour of the chain,
to decide burn-in period and autocorrelation lag respectively.

Algorithm consists in successively obtaining a sample from the conditional distribution of
each of the parameter given all other parameters of the model. These distributions are known as
full conditional distributions. In our case full conditional distributions are not easy to integrate out.
So full conditional distributions are obtained by considering that they are proportional to the joint
distribution of the parameters of the model.

We have full conditional distribution of the parameter α1 with frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β) · g1(α1) (33)

We have full conditional distribution of the parameter α1 without frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2,β) · g1(α1) (34)

Similarly full conditional distributions for other parameters can be obtained.

To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology.
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8. Analysis of Kidney Infection Data

To illustrate the Bayesian estimation procedure we use kidney infection data of McGilchrist
and Aisbett (1991). The data related to recurrence times counted from the moment of the catheter
insertion until its removal due to infection for 38 kidney patients using portable dialysis equipment.
For each patient, the first and the second recurrence times (in days) of infection from the time of
insertion of the catheter until it has to be removed owing to infection is recorded. The catheter may
have to be removed for reasons other than kidney infection and this is regarded as censoring. So
the survival time for a given patient may be the first or the second infection time or the censoring
time. After the occurrence or censoring of the first infection sufficient (ten weeks interval) time
was allowed for the infection to be cured before the second time the catheter was inserted. So the
first and the second recurrence times are taken to be independent apart from the common frailty
component. The data consists of five risk variables age, sex and disease type GN, AN and PKD
where GN, AN and PKD are short forms of Glomerulo Neptiritis, Acute Neptiritis and Polycyatic
Kidney Disease.

Table 1 in appendix shows the first and second recurrence times with recurrence indicator
variable (0-censored, 1-recurrence) and covariates age, sex (0-male, 1-female), and three indicator
variables GN, AN, and PKD for six patients only. One can get the entire Table from McGilchrist
and Aisbett(1991).

Let T1 and T2 be the first and the second recurrence time to infection. Five covariates age,
sex and presence or absence of disease type GN, AN and PKD are represented by X1, X2, X3,
X4, and X5. First we check goodness of fit of the data for the inverse Gaussian frailty distributions
with two baseline distributions and then we apply the Bayesian estimation procedure. To check
goodness of fit of kidney data set, we consider Kolmogrove-Smirnov (K-S) test for two baseline
distributions. Table 2 gives the p-values of goodness of fit test for Model I and Model III. Thus
from p-values of K-S test we can say that there is no statistical evidence to reject the hypothesis
that data are from the Model I and Model III in the marginal case and we assume that they also fit
for bivariate case.

A widely used prior for frailty parameters σ1 = σ2 are the gamma distribution
G(0.0001, 0.0001). In addition, we assume that the regression coefficients are normal with
mean zero and large variance say 1000. Similar types of prior distributions are used in Ibrahim
et al. (2001), Sahu et al. (1997) and Santos and Achcar (2010). So in our study we also use
same non informative prior for frailty parameters σ1, σ2 and regression coefficients βi, i = 1, .., 5.
Since we do not have any prior information about baseline parameters, λ1, α1, λ2 and α2, prior
distributions are assumed to be flat. We consider two different non-informative prior distributions
for baseline parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters
a1, a2, b1 and b2 are known. Here G(a, b) is the gamma distribution with the shape parameter a
and the scale parameter b and U(b1, b2) represents uniform distribution over the interval (b1, b2).
For correlation parameter we use uniform distribution U(0, 1). We use different values of baseline
parameters for Model I, Model II and Model III. We assume the value of the hyper-parameters as
a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 100.

We run two parallel chains for all four models using two sets of prior distributions with the
different starting points using the Metropolis-Hastings algorithm and the Gibbs sampler based on
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normal transition kernels. We iterate both the chains for 100000 times. As seen in the simulation
study here also we got nearly the same estimates of parameters for both the set of prior, so estimates
are not dependent on the different prior distributions. The convergence rate of the Gibbs sampler
for both the prior sets is almost the same. Also both the chains shows somewhat similar results, so
we present here the analysis for only one chain with G(a1, a2) as prior for the baseline parameters,
for all the four models.

The Gelman-Rubin convergence statistic values are nearly equal to one and the Geweke test
statistic values are quite small and the corresponding p-values are large enough to say that the
chains attain stationary distribution. The posterior mean and the standard error with 95% credible
intervals, the Gelman-Rubin statistics values and the Geweke test values with p-values for Model
I to III are presented in Table 3, 4, and 5. The AIC, BIC and DIC values for all three models are
given in Table 6. The Bayes factors for all models are given in Table 7.

In order to compare the proposed models we use the Akaike information criteria (AIC),
Bayesian information criteria (BIC) and deviance information criteria (DIC). The comparison be-
tween three proposed models is done using AIC, BIC and DIC values given in Table 6. The smallest
AIC value is Model-II (linear failure distribution with frailty). Same result hold for BIC and DIC
value. To take the decision about Model I, Model II, and Model III, we use the Bayes factor. The
Bayesian test based on the Bayes factors for Model II against Model I is 40.4254 and Model II
against Model III is 48.6518 which are high and strongly support Model II for kidney infection
data set. Some patients are expected to be vary prone to infection compared to others with same
covariate value. This is not surprising, as seen in the data set there is a male patient with infection
time 8 and 16, and there is also male patient with infection time 152 and 562. Table 6 shows that
Model II is better then other two models. From Table 6 and 7, we can observe that, Model II is best.
We can observe that the regression coefficients for all the three models are different. The credible
interval of the regression coefficient β2 does not contain zero which indicates that the covariate sex
is significant for all the models. But in Model I and Model III β5 is significant. Negative value of
β2 indicates that the female patients have a slightly lower risk for infection. Negative value of β5,
the regression coefficient corresponding to the covariate X5 (the disease type PKD) indicates the
absence of the disease type PKD in the patients have lover risk of infection in Model I and Model
II.

9. Conclusions

In this paper we discuss results for inverse Gaussian correlated frailty models with three
different base line distributions. We use the Pareto, LFR and Burr as a baseline distributions. Main
aim of our study is to check which distribution with inverse Gaussian correlated frailty fits better.
To estimate the parameters in the inverse Gaussian frailty models, we use Bayesian approach.

Different prior gives the same estimates of the parameters. The convergence rate of the
Gibbs sampling algorithm does not depend on these choices of the prior distributions in our pro-
posed model for kidney infection data. The estimate of σ from the correlated frailty models show
that there is a strong evidence of high degree of heterogeneity in the population of patients. The
covariate sex is the only covariate which is significant for all models. Negative value of regres-
sion coefficient (β2) of covariate sex indicates that the female patients have a slightly lower risk of
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infection. Negative value of β5 indicates that the absence of the disease type PKD in the patients
have lover risk of infection in Model I and Model II

The comparison between three proposed models is done using AIC, BIC and DIC values.
The smallest AIC value is for Model II (linear failure rate distribution with correlated frailty). The
same result holds for BIC and DIC values. We observe from Tables 8 and 9 that the Model II
is best. Also we can conclude that the correlated inverse Gaussian correlated frailty with the lin-
ear failure rate distribution as the baseline distribution is a better fit than other correlated inverse
Gaussian correlated frailty models. We compare also with correlated gamma frailty and corre-
lated inverse Gaussian frailty models suggested by Hanagal et al. (2017) and Hanagal and Pandey
(2020) and observe that correlated inverse Gaussian frailty with linear failure rate baseline distribu-
tion performs better than correlated gamma frailty and correlated inverse Gaussian frailty models
proposed by Hanagal et al. (2017) and Hanagal and Pandey (2020) for kidney infection data set.
By referring all the above analysis, now we are in a position to say that, we have suggested a new
correlated inverse Gaussian frailty model with the linear failure rate distribution as the baseline
distribution which is the best in the proposed models for modeling of kidney infection data.
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Appendix : Summary of Tables

Table 1: Kidney infection data

Pat Time1 Ind1 Time2 Ind2 Age Sex GN AN PKD
1 8 1 16 1 28 0 0 0 0
2 23 1 13 0 48 1 1 0 0
3 22 1 28 1 32 0 0 0 0
4 447 1 318 1 31.5 1 0 0 0
5 30 1 12 1 10 0 0 0 0
6 24 1 245 1 16.5 1 0 0 0

Table 2: p-values of K-S statistics for goodness of fit test for Kidney infection data set

Recurrence time
Distribution first second
Model I 0.6641 0.7349
Model II 0.7523 0.8386
Model III 0.6256 0.7256

Table 3: Posterior summary for Kidney infection data set Model I

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3150; autocorrelation lag = 300

α1 7.2734 0.32204 6.8439 7.8768 0.005102 0.50203 1.0014
λ1 0.0879 0.0179 0.0094 0.1076 -0.001360 0.49945 1.0089
α2 2.0142 0.10723 1.6334 2.51025 -0.003313 0.49867 1.0043
λ2 0.0943 0.02331 0.0096 0.2722 -0.014091 0.49437 0.9999
ρ 0.6594 0.05703 0.5540 0.76740 -0.018870 0.49247 1.0009
σ 0.6009 0.04958 0.5072 0.69349 -0.004090 0.49836 1.0008
β1 0.0134 0.00802 0.0092 0.02820 -0.003226 0.49871 0.9999
β2 -1.0468 0.41285 -1.8688 -0.81025 0.005089 0.50203 1.0008
β3 0.2210 0.22927 0.3472 0.30237 0.006850 0.50273 1.2086
β4 0.5262 0.03882 0.3940 0.64252 -0.002433 0.49902 1.0013
β5 -0.7012 0.17155 -0.6208 -0.81960 0.005508 0.50219 0.9999
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Table 4: Posterior summary for Kidney infection data set Model II

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3500; autocorrelation lag = 300

α1 0.0318 1.59643 0.01178 0.0563 0.00874 0.5034 1.0010
λ1 0.0316 0.01825 0.0191 0.0495 -0.00126 0.4994 1.0089
α2 0.0222 0.01799 0.0139 0.0304 -0.00242 0.4990 1.0064
λ2 0.0093 0.0019 0.0076 0.0229 -0.00082 0.4996 1.0110
ρ 0.8053 0.09019 0.62666 0.9720 0.00595 0.5023 1.0005
σ 0.7014 0.30422 0.16458 1.2912 -0.00405 0.4983 1.0026
β1 0.0166 0.00960 -0.00129 0.0345 -0.00481 0.4980 1.0041
β2 -1.9902 0.37287 -2.71766 -1.2694 0.00942 0.5037 1.0002
β3 0.2212 0.21856 -0.16428 0.2657 -0.01161 0.4953 1.0015
β4 0.7261 0.03457 -0.08878 -0.0388 -0.02241 0.4910 1.0058
β5 -0.9701 0.2743 -2.14538 -0.7748 0.00394 0.5015 0.9999

Table 5: Posterior summary for Kidney infection data set Model III

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3500; autocorrelation lag = 300

α1 2.2412 0.19643 2.0217 2.4363 0.00874 0.5034 1.0010
λ1 0.0071 0.0009 0.0041 0.0098 -0.00126 0.4994 1.0089
α2 0.0272 0.0199 0.0143 0.0404 -0.00242 0.4990 1.0064
λ2 0.0113 0.0009 0.0069 0.0242 -0.00082 0.4996 1.0110
ρ 0.7045 0.08419 0.62686 0.8720 0.00595 0.5023 1.0005
σ 0.7324 0.2002 0.56458 0.8912 -0.00405 0.4983 1.0026
β1 -0.016 0.0082 -0.0712 0.0215 -0.00481 0.4980 1.0041
β2 -1.6413 0.1737 -1.9766 -1.4694 0.00942 0.5037 1.0002
β3 0.0867 0.0185 -0.16428 0.2243 -0.01161 0.4953 1.0015
β4 0.2182 0.03247 -0.0987 0.3368 -0.02241 0.4910 1.0058
β5 -0.1284 0.0274 -0.2453 0.0848 0.00394 0.5015 0.9999

Table 6: Comparison of AIC, BIC and DIC

Model AIC BIC DIC

Model I 678.3812 781.5814 660.5836
Model II 656.4315 665.3621 641.2143
Model III 793.2195 799.5715 774.8951
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Table 7: Bayes Factor for three models

Numerator model Bayes factor Range Evidence against
against model in denominator

denominator model
Model II against Model I 40.4254 > 10 very strong
Model I against Model III 12.3912 > 10 very strong
Model II against Model III 48.6518 > 10 very strong


