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Abstract 

Poverty mapping in small areas is currently having increasing interest, because those maps 

aid governments and international organizations to design, apply and monitor more effectively 

regional development polices, directing them to the actual places or population subgroups where 

they are more urgently needed. After a simulated census method used by the World Bank, several 

other procedures have been developed that proved to have better properties. We will review several 

methods that are applied for poverty mapping in small areas, including those based on area level 

modes and used by the U. S. Census Bureau for estimating poor school age children and methods 

based on unit level models such as the traditional method used by the World Bank and empirical 

best (EB) and hierarchical Bayes (HB) methods based on optimality criteria. We will also discuss 

some variations of the unit level model methods that can used to deal with certain situations such 

as informative sampling or two-stage sampling. We will discuss pros and cons of these methods 

from a practical point of view, but based on the theory that is currently known. 

 

Key words:  Area level model; Empirical best estimation; Hierarchical bayes estimation; Local 

poverty indicators; Unit level models. 
 

 

1 Introduction 

Poverty maps are important sources of information on the regional distribution of poverty       

and are currently used extensively to support regional policy making and for allocating funds to 

local jurisdictions. Major applications include the poverty and inequality maps produced by the 

World Bank for many developing countries. In the U.S., the Small Area Income and Poverty 

Estimates (SAIPE) program (http://www.census.gov/programs-surveys/saipe.html) of the Census 

Bureau provides annual estimates of poor school-age children for all school districts, counties and 

states for the allocation of federal funds to local jurisdictions. In Europe, several efforts have been 

made to create regional databases and associated maps of poverty and social exclusion indicators 

in order to support regional development policies; see, for example, the joint project “Poverty 

Mapping in the New Member States of the European Union” between the World Bank and the 

European Commission and the TIPSE project (The Territorial Dimension of Poverty and Social 

Exclusion in Europe) commissioned by the European Observation Network for Territorial 
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Development and Cohesion (ESPON) program. In Mexico, the National Council for the 

Assessment of the Social Development Policy (CONEVAL) is committed by law to produce 

regular poverty and inequality estimates at the state level by population subgroups and at the 

municipality level. 

Producing accurate poverty maps at high level of disaggregation is not straightforward 

because of insufficient sample sizes of official surveys in some of the target regions. As a result, 

direct estimates, obtained with the region-specific sample data, are unstable in the sense of leading 

to very large sampling variances for regions with small sample sizes. In the paper, we review the 

main methods for estimating general non-linear small area parameters, focusing for illustrative 

purposes on a specific family of poverty indicators, known as FGT family of poverty indicators 

Foster et al.(1984), widely used by World Bank and others. Specifically, we describe direct 

estimation, empirical best linear unbiased prediction (EBLUP) based on the well-known Fay-

Herriot area level model Fay and Herriot (1979), the method of Elbers et al. (2003), called the ELL 

method and used by the World Bank, empirical best or empirical Bayes (EB) method of Molina 

and Rao (2010), hierarchical Bayes (HB) method of Molina et al. (2014), and other variants of the 

EB method to deal with two-stage sampling or informative sampling of units. For the benefit of a 

practitioner, we discuss, as objectively as possible, the benefits and drawbacks of each method. 

 

2 Poverty Indicators 

Suppose that the population consists of N population units with dN  units belonging to local 

(or small) area ( 1,..., )d d D . We denote the welfare variable of interest for unit i   1,..., di N  

in area d  by diE . The family of FGT poverty indicators for area d  may be expressed as 

1 1

1 1
[( ) / ] ( ) , 0

d d

di

N N

d d di d dii i
F N z E z I E z N F

   

 
      ,                                        (1) 

where z  is a specified poverty line (or threshold), ( ) 1diI E z   if diE  is below z  and ( ) 0diI E z   

otherwise. For 0  , we obtain the proportion of individuals “at risk of poverty”, that is, the 

poverty incidence or at-risk-of-poverty rate or Head Count Ratio (HCR). For 1,   we get the 

average of the relative distances to not being “at risk of poverty”, called the poverty gap. Poverty 

incidence measures the frequency of poverty, whereas poverty gap measures intensity of poverty. 

It is clear from (1) that FGT measure is a separable non-linear function of the welfare variable diE

. Poverty line might vary across areas d if such area-specific thresholds are available. A limitation 

of the FGT measure is that it requires the specification of the poverty line/s. 

  More complex poverty measures have also been proposed, including the fuzzy monetary 

and supplementary indices based on ranking the individuals with respect to their level of poverty 

or welfare. An advantage of those measures is that the specification of a poverty line is not 

required. We refer the reader to Neri et al. (2005) for a description of alternative poverty indicators. 

 

3 Direct Estimators of FGT Poverty Indicators 

Let s be a probability sample of size n  drawn from the finite population P . We denote the 

subsample of size dn  drawn from area d by ds ( 1 ... Dn n n   ). A direct estimator of the poverty 
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indicator dF is obtained by using only sample observations ,di dE i s , from area (or domain) d , 

provided dn  is strictly positive. 

A basic design-based direct estimator of dF  is simply given by 

1ˆ
d

d d di dii s
F N w F 




                                                                                                                        (2) 

provided the domain population size dN  is known, where diw  is the survey weight attached to unit 

i  from area d . If the domain population size dN  is unknown, then we replace dN  in (2) by its 

design-based estimator ˆ
d

d dii s
N w


  (Biggeri et al., 2018). The resulting estimator suffers from 

ratio bias if the domain sample size dn  is small. Both estimators can lead to large sampling errors 

if dn  is small because only area-specific sample observations are used. Here we will focus on the 

direct estimators (2), assuming known dN , and use them as inputs in an area-level linking model to 

obtain more efficient model-based estimators of the poverty indicators dF . 

 

4 EBLUP Method under an Area Level Linking Model 

Fay and Herriot (1979) introduced an area level model that links the parameters of interest 

dF  for all the areas 1,...,d D . For this purpose, we need a p -vector of covariates dx  for all the 

areas related to the parameters of interest dF . This supplementary data might be obtained from a 

recent census and/or current administrative records. Under this set up, the linking model is 

specified through a linear regression model 

, 1,...,d d dF x u d D    .                                                                                                            (3) 

Here,   is the p -vector of regression parameters common for all areas and du  is the area-

specific regression error, also called random effect for area d . The random area effects du  are 

assumed to be independent and identically distributed (iid) with mean 0 and unknown variance
2

u

, that is,
2~ (0, )d iid uu  . Note that the true values dF  are not observable and therefore model (3) 

cannot be directly fitted. However, we can make use of the direct estimators ˆ
dF  given by (2) 

through the sampling model 

ˆ , 1,...,d d dF F e d D                                      (4) 

where de  is the sampling error associated with ˆ
dF . We assume that sampling is done 

independently across all the areas so that the sampling errors de  are independent given the true 

values
d

F


. We further assume that the sampling errors are independent of the random area effects 
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and satisfy ~ (0, )d ind de   with known sampling variance d . The above assumptions are 

somewhat restrictive in practice, and methods for relaxing some of the assumptions are discussed 

in Rao and Molina (2015). Combining the sampling model (4) with the matched linking model (3) 

leads to a linear mixed model given by 

ˆ , 1,...,d d d dF x u e d D     .                                  (5) 

Standard theory for linear mixed models can be applied to the model (5) to obtain the best 

linear unbiased predictor (BLUP) of dF ; see Rao and Molina (2015), chapter 6. Normality of the 

random effects and the sampling errors is not needed to obtain the BLUP. 

The BLUP of the poverty indicator dF  under model (5) is given by a weighted 

combination of the direct estimator ˆ
dF  and the synthetic estimator with weights 

2 2/ ( )d u u d      and 1 d  respectively: 

ˆ (1 )FH

d d d d dF F x      ,                                 (6) 

where the superscript FH stands for Fay and Herriot (1979) and   is the weighted least squares 

estimator of   given by 

𝛽 = (∑ 𝛾𝑑
𝐷
𝑑=1 𝑥𝑑𝑥𝑑

′ )−1(∑ 𝛾𝑑
𝐷
𝑑=1 𝑥𝑑�̂�𝛼𝑑).                                (7) 

In practice, the variance 
2

u  of the area effects du  is unknown and needs to be estimated 

from the data ˆ{( , ); 1,..., }d dF x d D  . Fay and Herriot (1979) proposed a method-of-moments 

estimator that does not require normality assumption and it performed well in applications. 

Alternatively, assuming normality, maximum likelihood (ML) method or restricted ML (REML) 

method may be used. REML corrects for the degrees of freedom due to estimating   and leads 

to a less biased estimator of 
2

u  for finite overall sample sizen . Moreover, REML estimator of 
2

u  

remains asymptotically consistent under non-normality, under certain regularity conditions (Jiang, 

1996). 

Let 
2ˆ
u  denote the estimator of 

2

u  obtained by any one of the above methods. Substituting 

2ˆ
u  for 

2

u  in (7), we obtain the empirical BLUP (EBLUP) of the poverty measure dF , denoted as 

ˆ FH

dF  and called hereafter as FH estimator. It follows from (6) that the FH estimator gives more 

weight to the synthetic estimator ˆ
dx   as ˆ

d   decreases or as the sampling variance d  increases. 

Thus, the FH estimator automatically borrows strength through the synthetic estimator 𝑥𝑑
′ �̂� for the 

areas where the direct estimator is not reliable. Molina and Morales (2009) provide an 

approximately unbiased estimator of the mean squared error (MSE) of the FH estimator of dF  in 

the case of REML estimator of
2

u , following Datta and Lahiri (2000). 



2019]               SMALL AREA ESTIMATION METHODS FOR POVERTY MAPPING            15                         

 
 

The FH estimator accounts for informative sampling within areas through the use of direct 

estimators as inputs. It is design-consistent as the area-specific sample size increases. Also, it 

requires only area-level covariates and thus avoids any confidentiality issues associated with micro 

(or unit level) data. However, in the context of estimating poverty indicators, available area level 

covariates may not adequately explain the variation in the poverty indicators across areas. For 

example, Molina and Morales (2009) applied the FH estimator to data from the 2006 Spanish 

Survey of Income and Living Conditions (SILC) to estimate poverty incidences and poverty gaps 

in Spanish provinces. They compared the values of the MSE estimator of the FH estimator to the 

sampling variance of the direct estimator and found overall gain in precision but the efficiency 

gains are only modest. To improve the efficiency gains, various extensions of the basic area level 

model have been proposed, including multivariate FH models (Benavent and Morales 2016) and 

area level time models that can borrow strength across both areas and time (Esteban et al. 2012). 

 

5 ELL Method 

 

As noted earlier, the ELL method is widely used by the World Bank to estimate poverty 

measures for specified small areas in developing countries. It is based on simulating multiple 

censuses of the desired welfare variable, calculating the poverty measures for specified small areas 

from each simulated census and then taking the averages over the censuses as the ELL estimates. 

To implement the ELL method, we need the following data: (i) unit level auxiliary variables from 

recent census or other administrative sources and (ii) survey data on the welfare variable of interest 

and the same census auxiliary variables, obtained from a two-stage sample with clusters as first 

stage units and households as second stage units. The welfare variable klE  is first transformed to 

log( )kl kly E  and a nested error linear regression model is assumed for the sample data 

{( , ), ; }kl kl ky x l s k s  , where s is the sample of clusters and ks   is the sample of units l   in the 

sample cluster k . 

The nested error linear regression model assumed in the ELL method is given by 

, ; ,kl kl k kl ky x u v l s k s                                              (8) 

where the cluster effects ku  are assumed to be independent random variables with mean 0  and 

common variance 
2

u , and independent of the unit errors klv , which are also assumed to be 

independent with mean 0  and possibly unequal variances. ELL method uses ordinary least squares 

(OLS) to estimate the residuals kl k kju v    as ˆˆ
kl kl kl OLSy x    and then split the estimated 

residuals into components 1ˆ ˆˆ
k

k k k kll s
u n


 

    and ˆˆ
kl kl kv     , where kn the number of 

sample units in cluster is k . A simulated census of the welfare variable corresponding to the 

auxiliary variable tx  in the finite population U  is generated as 
* *{ exp( ), }t tE y t U   by first 

randomly drawing values 
*

tu  and 
*

tv  with replacement from the fitted sample values ˆ{ , k }
k

u s   

and ˆ{ , ; }kl kv l s k s   respectively and then taking the simulated value of ty  as 
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* * *ˆ
t t OLS t ty x u v   . In the original ELL method, the OLS estimator of   is replaced by 

*  

selected randomly from a normal distribution with mean ˆ
OLS

  and covariance matrix equal to the 

estimated covariance matrix of the OLS estimator, but this seems to be not necessary. From the 

simulated census values
*{ , }ty t U  , the poverty measure dF  for any desired small area or domain 

d  may be readily computed and we denote it as
*

dF . Note that it is not necessary to specify the 

domains in advance of generating the simulated census because domain effects are not included in 

the ELL model (8) unless domains coincide with clusters. 

The process of generating a simulated census is repeated a large number of times, A , to 

obtain A  simulated values 
*( ){ ; 1,..., }a

dF a A   } of the poverty measure dF  for the domain d . 

The ELL estimator of dF  is then taken as 

1 *( )

1

ˆ AELL a

d da
F A F 




  .                                  (9) 

Note that the ELL method implicitly assumes that the model (8) fitted to the sample data also holds 

for the population. This assumption is valid under non-informative sampling or absence of sample 

selection bias. 

The ELL estimator of mean squared error (MSE) of  ˆ ELL

dF  is simply obtained as 

1 *( ) 2

1

ˆ ˆ ˆmse( ) ( )
AELL a ELL

d d da
F A F F  




                   (10) 

Das and Chambers (2017) noted that the MSE estimator (10) can lead to significant 

underestimation when the between-area variability is significant and it is not adequately accounted 

by the covariates used in the model (8) for the sample data. One way to remedy this problem is to 

include area-level contextual variables in the vector of covariates, if such variables are available 

both in the sample and in the census. In this case, areas need to be specified in advance of 

generating simulated censuses. If a different set of area estimates are needed, then different 

simulated censuses need to be generated by including area level covariates corresponding to those 

areas. 

ELL method can be implemented without linking the sample to the census because a 

simulated census generates values for all the population units including the sampled units. This is 

an attractive feature of the method. In the application of the ELL method to developing countries, 

the number of areas represented in the two-stage sample is typically small compared with the 

number of areas in the population which means that, for most of the areas in the population, no 

sample observations are available. In other applications, especially for poverty estimation in 

European countries, many small areas are represented in the sample and hence methods that take 

account of the sample data (Section 6 and 7) lead to significantly more efficient estimators for 

sampled areas than the ELL method. For the non-sampled areas, both ELL and the other methods 

use regression-type synthetic estimators. In the U.S. SAIPE program, all the counties (small areas) 

are sampled and the area level FH model is used on direct county estimators. 

Bilton et al. (2017) relaxed the assumption of linear regression in the ELL model (8) by 

using classification tree models, which can automatically select predictor variables and readily 
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incorporate interactions between predictor variable by selecting only the important combinations. 

Molina and Rao (2010) considered a two-stage sampling design with areas as primary sampling 

units and the sample data is given by {( , ), 1,..., ; 1,..., }ij ij iy x j n i m   , where m is the number of 

sampled areas, in  is the number of units sampled from sampled area i , log( )ij ijy E  is the 

transformed welfare variable for the sampled unit j  in the sampled area i . Following Molina and 

Rao (2010) and other papers on unit level models, we denote area by i  instead of d  and unit 

within area i  by j  instead of i  used earlier for the area level model (section 4). They used a nested 

error linear regression model on ijy  incorporating random area effects iv  to account for between-

area variability not explained by the predictor variables ijx . The model for the sample data is given 

by 

, 1,..., ; 1,...,ij ij i ij iy x v e j n i m     ,                          (11) 

where  the random area effects iv   are iid 
2(0, )vN   and independent of the unit errors ije , which 

are assumed to be iid 
2(0, )eN  and ijx is a p -vector of covariates including the intercept term.   

Sampling is assumed to be non-informative at both stages of sampling so that the sample model 

(11) also holds for the population data{( , ), 1,..., ; 1,..., }ij ij iy x j N i M  , where M is the number 

of areas in the population and iN  is the number of units in the population area i . Under the above 

set-up, they showed that the EB estimators of the FGT poverty indicators iF for the sampled areas 

lead to large gains in efficiency over the corresponding ELL estimators. In fact, the ELL estimators 

can be less efficient than the corresponding direct estimators ˆ
iF . On the other hand, for the non-

sampled areas, the two estimators are comparable in terms of efficiency. 

The traditional ELL method applied to (11) is not dependent on the normality assumption, 

unlike the method studied in Molina and Rao (2010). However, it does not provide a correct 

prediction of the area-specific effect iv  across the A  simulated censuses, because each drawn a  

selects different values 
*( )a

iv  from the empirical area level residuals 1̂
ˆ( ,..., )mv v . As a result, the 

traditional ELL method uses a combination of estimated random effects from other areas to predict 

the poverty indicator for a specific area i  and leads to loss in efficiency. Diallo and Rao (2018) 

proposed a modification of the original method to reduce the MSE. This modification retains the 

estimated area-specific effect ˆ
iv  for area i  in constructing the simulated census values 

*( )a

ijy  as

*( ) *( )ˆ ˆa a

ij ij i ijy x v e   , where the unit residuals 
*( )a

ije  are drawn from the empirical distribution of 

the estimated residuals îje . Diallo and Rao (2018) conducted a simulation study to demonstrate 

that the modified ELL method leads to large reduction in MSE related to the traditional ELL 

method for sampled areas. Note that the modified ELL method also does not require normality 

assumption. 
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6 EB Method under Unit Level Model 

 

Molina and Rao (2010) studied EB estimation of FGT poverty indicators written as

( ) ( )
( )i ij ijj U i j U i

F F h y   
   , where ( )U i  denotes the set of population units in area

1,...,i M . The vector of population values ijy  in area i  is partitioned into the vector of sampled 

values , ( )ijy j s i  and the vector of non-sampled values , ( )ijy j r i , where ( )s i  and ( )r i  denote 

the set of sampled units and the set of non-sampled units, respectively. The nested error regression 

model (11) is assumed to hold for both the sampled units and the non-sampled units, which is 

equivalent to assuming non-informative sampling. 

The best estimator of ( )ijh y  for ( )j r i is obtained as its expectation with respect to the 

conditional distribution of ijy  given the vector of sampled values in sampled area i . A closed form 

expression for the best predictor does not exist, but it can be approximated by a Monte Carlo 

approximation, by generating values 
( ) , 1,...,l

ijy l L  from the conditional distribution. Under 

normality of the random area effects iv  and the unit errors ije  in the nested error regression model 

(11), the desired values 
( )l

ijy  can be generated from a univariate normal distribution; see Molina 

and Rao (2010) for details. The Monte Carlo approximation to the best estimator of ijF  for 

( )j r i  is given by 

1 ( )

1

ˆ ( ), ( )
LB l

ij ijl
F L h y j r i 




  .                                   (12) 

The best estimator (12) depends on the unknown parameters 
2 2( , , )v e    of the model. 

Replacing the model parameters by suitable estimators in (12), such as restricted maximum 

likelihood (REML) estimators, leads to the empirical best (EB) estimator, denoted by ˆ EB

ijF . The 

resulting EB estimator of iF  for sampled area i  is given by 

1

( ) ( )

ˆ ˆ( )EB EB

i i ij ijj s i j r i
F N F F  



 
    ,                         (13) 

where ijF  for ( )j s i  is computed from the sampled data , ( )ijy j s i . Molina and Rao (2010) 

showed in a simulation study that the EB estimator (13) leads to large gains in efficiency over the 

ELL estimator for sampled areas under the present set up for populations exhibiting significant 

area effects in the model. For the non-sampled areas, Molina and Rao (2010) proposed a synthetic 

estimator of the FGT poverty indicator similar to the ELL estimator. They also obtained a proper 

MSE estimator through parametric bootstrap method by re-estimating the model parameters from 

each of the L  simulated data sets, unlike the ELL estimator of MSE given by (10). 

In the case of complex parameters, such as the FGT poverty indicators, analytical 

approximations to the MSE of the EB estimator are hard to derive. Molina and Rao (2010) 

proposed a parametric bootstrap-based MSE estimator of the EB estimator, under the normality 

assumption. It performed well in empirical studies in tracking the true MSE of the EB estimator. 
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The EB estimator (13) requires the linking of the sample to the population to identify the non-

sampled units ( )r i , unlike the ELL estimator. If the linking is not possible, then we can obtain the 

EB predictors  ˆ EB

ijF   for all ( )j U i and use the Census EB estimator (Correa et al. 2012) of iF  

given by 

1

( )

ˆ ˆCEB EB

i i ijj U i
F N F 




   .                              (14) 

The Census EB estimator is less efficient than the EB estimator when the linking of the 

sample to the population is feasible, but the loss in efficiency is small if the area sampling fraction 

/i in N  is small. 

In some applications, we may be interested in producing EB estimates of poverty indicators 

for both areas and subareas nested within areas. For example, in the Valencia region of Spain 

provinces are areas and comarcas (which are similar to counties) within areas are subareas. 

Marhuenda et al. (2017) proposed a two-fold nested error model to handle this case and obtained 

EB estimators for both provinces and sampled comarcas as well as non-sampled comarcas. This 

model includes random effects to explain the heterogeneity at the two levels of aggregation. 

Compared to EB estimators based on a one-fold model with only random subarea effects, the EB 

estimators under the two-fold model lead to considerable gain in efficiency for non-sample 

subareas by taking advantage of the estimated area effect corresponding to the subareas. 

The EB method of Molina and Rao (2010) does not take account of the sampling design 

by assuming non-informative sampling within areas. Guadarrama et al. (2017) developed a variant 

of the EB estimator, called pseudo-EB estimator, which can provide protection against informative 

sampling. 

The EB method has also been developed for the specific case of skewed response variable, 

when even after transformation of the welfare variable we do not achieve normality. Diallo and 

Rao (2018) developed EB estimators and simplified EB estimators under a unit level model with 

skew normal random effects iv  and skew normal unit errors ije . They showed that the normality-

based EB estimators perform well in terms of efficiency when only the area random effects are 

skew-normal. On the other hand, if the unit errors are skew normal, considerable loss in efficiency 

results from the normality-based estimators. Van der Weide and Elbers (2013) studied normal 

mixture models on the area effects iv , but assuming normality on the unit errors ije  and their 

results are in agreement with Diallo and Rao (2018) in the sense that the normality-based EB 

method of Molina and Rao (2010) is robust provided the unit errors remain normal. Graf et al. 

(2018) developed estimators by modeling the welfare variable using a Generalized Beta 

distribution of the Second Kind (GB2). 

 

7 HB Method under Unit Level Model 

 

Computation of EB (or Census-EB) estimates supplemented with their bootstrap MSE 

estimates is very intensive and might not be feasible for very large populations or for very complex 

poverty indicators. Note that to approximate the EB estimate by Monte Carlo, we need to construct 

a large number A  of simulated censuses, where each one might be of a huge size. Moreover, to 
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obtain the parametric bootstrap MSE estimates, the Monte Carlo approximation needs to be 

repeated for each bootstrap replicate. Seeking for a computationally more efficient approach, 

Molina et al. (2014) developed a hierarchical Bayes (HB) method for estimating complex non-

linear parameters. This approach does not require the use of bootstrap for MSE estimation because 

it provides samples from the posterior distribution, from which posterior variances (playing the 

role of MSEs) and any other useful posterior summary, such as credible intervals, can be easily 

obtained. 

The HB method is based on reparametrizing the unit level nested error regression model 

(11) in terms of the intra-class correlation coefficient 
2 2 2/ ( )v v e      and considering non-

informative prior distributions for the resulting model parameters (
2, , e   ) that reflect lack of 

knowledge. In particular, the joint prior distribution is taken as 

2 2 2( , , ) , 1 , 0, p

e e e R               ,                (15) 

where 0   is chosen very small to reflect lack of knowledge. Molina et al. (2014) showed that 

posterior inferences are not sensitive to a small change of . 

Under the HB approach, the vector of random effects 1( ,..., )mv v v   is regarded as an 

additional model parameter. Then, the joint posterior of the model parameters 
2, ,  and ev     

given all the sample data, sy , may be expressed as the product of (a) conditional posterior of 

2 given ,  and ev    , (b) conditional posterior of
2 given  and e   , (c) conditional posterior of 

2  given e   and (d) the posterior of  . The conditional posteriors (a), (b) and (c) have known 

explicit forms, but not the conditional posterior (d). Samples can be generated directly from the 

joint posterior distribution avoiding the use of Markov Chain Monte Carlo (MCMC) methods. 

The HB estimator of the poverty measure iF  is given by its conditional expectation with 

respect to the joint posterior predictive distribution of the unobserved ijy for ( )j r i given sy . It 

can be approximated by Monte Carlo as follows: First generate a value 
( )a  from the posterior (d) 

using a grid method, then a value 
2( )a

e  from the conditional posterior (c) by letting 
( )a  , next 

a value 
( )a  from the conditional posterior (b) by letting 

2 2( ) ( ) and =a a

e e    , and finally a value 

( )av  from the conditional posterior (a) by letting 
( ) 2 2( ) ( ),  and a a a

e e        .  Now noting 

that the population value{ , ( ), 1,..., }ijy j U i i M   given the model parameters 
2, ,  and ev     are 

independent and distributed as
2( , )ij i eN x v   , we generate out of sample values 

( ){ , ( )}a

ijy j r i  

by letting 
( ) ( ) 2 2( ),  and a a a

i i e ev v        in the conditional distribution of , ( )ijy j r i . We also 

have the available sample data{ , ( )}ijy j s i . Putting the sample data and the generated out of 
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sample values, we construct the full population vector 
( ){ , ( ); , ( )}a

ij ijy j s i y j r i   for each area i . 

Using the constructed population data, we compute the parameter of interest iF  as 

𝐹𝛼𝑖
(𝑎)

= 𝑁𝑖
−1{∑ ℎ𝛼(𝑦𝑖𝑗𝑗∈𝑠(𝑖) ) + ∑ ℎ𝛼(𝑦𝑖𝑗

(𝑎)
𝑗∈𝑟(𝑖) )}.                               (16) 

We repeat the above process a large number of times, A  and obtain the values 
(1) ( ), ..., A

i iF F   from 

the posterior distribution of iF . The HB estimator is the posterior mean and approximated by 

�̂�𝛼𝑖
𝐻𝐵 ≃ 𝐴−1∑ 𝐹𝛼𝑖

(𝑎)𝐴
𝑎=1  .                                       (17) 

Posterior variance, computed from the generated values
(1) ( ),..., A

i iF F  , plays the role of MSE in the 

Bayesian set up. Other measures, such as credible intervals, can also be computed from the 

generated values. 

 

8 Concluding Remarks 

 

In this review paper, we presented a brief account of model based methods for small area 

estimation of complex poverty measures, in particular focusing on the ELL, EB and HB methods. 

Alternative approaches to estimation of small area poverty measures, based on the M-quantile 

method of Chambers and Tzavidis (2006), are reviewed in Tzavidis et al. (2008). The book edited 

by Pratesi (2016) contains a collection of articles on small area estimation of poverty measures 

and provides a “comprehensive guide to implementing SAE methods for poverty studies and 

poverty mapping”. 
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