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Abstract
The purpose of this paper is to present a heuristic algorithm for obtaining weighted A-

optimal balanced treatment incomplete block (BTIB) designs for making test versus test and
tests versus control comparisons. The proposed algorithm is implemented using R language.
The proposed algorithm has been used to obtain weighted A-optimal BTIB designs in a
restricted parametric range. A total of 369 weighted A-optimal BTIB designs are obtained
in the restricted parametric range.

Key words: Algorithm; BTIB Designs; Linear Integer Programming; Test Treatment; Con-
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1. Introduction

There are many experimental situations where the experimenter is interested in com-
paring a set of new treatments, called tests, with a standard treatment, called control. In the
presence of a single nuisance factor, block designs for tests versus control are recommended
for conducting such experiments. A number of useful classes of designs such as balanced
treatments incomplete block (BTIB) designs, group divisible treatment (GDT) designs, par-
tially balanced treatment incomplete block (PBTIB) designs are available in literature and
a lot of research efforts has been made on these designs. One can refer to Hedayat et al.
(1988), Gupta and Parsad (2001) and Section 5.4 of Dey (2010) for a review on designs for
tests versus control comparison.

Consider the experimental setting where v test treatments are to be compared with
a control using a block design with b blocks each of size k. Let D(v, b, k) denote the class
of connected block designs in v + 1 treatments with b blocks with size k each. In the
choice of A-optimal designs for tests versus controls comparisons, only comparison between
test treatments and the control played the role in the choice of A-optimal designs. No
consideration was made for pairwise comparison among test treatments. Since the designs
in D(v, b, k) are connected, they permit estimation of test versus test comparisons along
with test versus control comparisons. Though, the pairwise comparisons among test versus
test treatments would be required with lesser precision. To this end, Gupta et al. (1999)
introduced weighted A-optimality of the block designs. Gupta et al. (1999) derived conditions
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under which a design is weighted A-optimal for estimating these two sets of contrasts with
unequal precisions. They provided a method of construction and a catalogue of weighted
A-efficient BTIB designs. Parsad et al. (2009) proposed an algorithm based on interchange-
exchange approach to obtain weighted A-efficient and weighted A-optimal designs for test
versus test and tests versus control comparisons. They also obtained 15259 weighted A-
efficient designs using the proposed algorithm. However, they reported only 43 weighted
A-optimal BTIB designs in Table 3 of their article.

The purpose of this article is to present an algorithm for construction of weighted
A-optimal BTIB designs and a list of 369 weighted A-optimal BTIB designs in a restricted
parametric range. The article is organized as follows. Section 2 gives the concept of weighted
A-optimality. An algorithm is proposed to obtain weighted A-optimal BTIB designs in sec-
tion 3. The list of weighted A-optimal BTIB designs obtained using the proposed algorithm
is presented in section 5. The article is concluded in section 6.

2. Preliminaries

Let the control treatment be indexed as 0 and the test treatments be denoted as
1, 2, ..., v. Assume the two-way classified fixed effects homoscedastic model

yijl = µ+ τi + βj + εijl (1)

where yijl denote the response from the lth experimental units in jth block receiving ith
treatment, τi is the effect of ith treatment, βj is the effect of jth block and εijl are uncorrelated
errors with mean zero and constant variance σ2,i = 0, 1, 2, ..., v, j = 1, 2, ..., b and l =
1, 2, ..., k. It may be mentioned here that Gupta et al. (1999) considered mixed effects model
with random block effects. However, we shall restrict ourselves to fixed effects of blocks. A
design d ∈ D(v, b, k) is said to be weighted A-optimal if it minimizes

β
v∑
i=1

var (τ̂d0 − τ̂di) + α
v−1∑
i=1

v∑
i′=i+1

var (τ̂di − τ̂di′)

with β+α = 1 and 0 ≤ α, β ≤ 1. The expression above is the weighted sum of the variances
of the estimates of test-control contrasts and test-test contrasts, respectively, with weights
as β and α, respectively. Clearly, for α = 0, the criterion reduces to A-optimality for tests
vs controls and for α = β, the criterion reduces to A-optimality for all pairwise comparisons.
Since more precision is required for test-control comparisons than the test-test comparisons,
β and α may be so chosen that β > α.

Let Pc = [1v : −Iv] and PT,Z = [0Z : 0Z×(v−Z−1) : 1Z : −IZ ], Z = 1, 2, ..., v − 1. Then

P =


Pc

P′T,1
P′T,2

...
P′T,v−1

 (2)
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is the coefficient matrix of the contrasts for test-control and test-test comparisons.

To search for A-optimal block designs in D(v, b, k), Gupta et al. (1999) focused their
attention in the class of BTIB(v, b, k; t, s) designs which was introduced by Stufken (1987).
Gupta et al. (1999) presented the following result to characterize weighted A-optimality of
BTIB designs.

Theorem 1: A BTIB(v, b, k; t, s) design is A-optimal over D(v, b, k) for fixed value of α if

g(t, s) = min
(x,z)∈∆

g(x, z)

where ∆ = {(x, z) : x = 0, 1, ..., int(k/2) − 1; z = 0, 1, ..., b with z > 0 when x = 0} and
g(x, z) = (β+αv)(v−1)2

A(x,z) + βb
B(x,z) ,

A(x, z) = k(v − 1)[b(k − x)− z]− [v{b(k − x)− z} − bk2 − bx2 − 2xz − z + 2k(bx+ z)],
B(x, z) = b[k(bx+ z)− (bx2 + 2xz+ z)] and α/β ≤ {(2vk−2v−k+1)2−(k−1)2(v−1)2}

v[(k−1)(v−1)]2 when k is odd

and α/β ≤ (2vk−2v−k)2−k2(v−1)2

v[k(v−1)]2 when k is even.

Theorem 1 gives a sufficient condition to check weighted A-optimality of a given BTIB
(v, b, k; t, s) design and is useful to see whether a BTIB design is weighted A-optimal or not
for given value of α. Gupta et al. (1999) used the result to check weighted A-optimality of
designs from Parsad et al. (1995). The number of weighted A-optimal BTIB designs obtained
by them are given below.

α 0 0.1 0.2 0.3 0.4
Number of designs 9 7 8 6 0

It is clear from above that more efforts are required to obtain weighted A-optimal BTIB
designs. To this end, we present an algorithm to obtain weighted A-optimal BTIB designs.

3. The Algorithm

In this section, we present the algorithm to obtain weighted A-optimal BTIB designs in
D(v, b, k) for test-test and test-control comparisons. Given v, b, k, the algorithm computes
the value of t and s which minimize g(x, z) and then obtains other parameters through
necessary parametric relations. Then it attempts to obtain the incidence matrix of a weighted
A-optimal BTIB design with these parameters through linear integer programming approach.

The steps of the algorithm are detailed below.

Step 1: Given v, b, k and α, first check whether α satisfies the condition of Theorem 1. If
α satisfies the condition of Theorem 1, obtain t and s which minimize g(x, z).

Step 2: Compute r0 = s+ bt, r = (bk − r0)/v, λ0 = (s(t+ 1)(k − t− 1) + (b− s)t(k − t))/v
and λ1 = (r(k− 1)−λ0)/(v− 1). If all of r, r0, λ and λ0 are integers then proceed, else
a weighted A-optimal BTIB does not exist.



280 BAIDYA NATH MANDAL, RAJENDER PARSAD and SUKANTA DASH [Vol. 19, No. 1

Step 3: (i) Create the first row of the incidence matrix N by assigning t+1 in s randomly
chosen columns and by assigning t in the remaining b−s columns of the row. The
first row of incidence matrix indicates the allocation of the control to b blocks.

(ii) Obtain the ith (i = 2, 3, . . . , v + 1) row for allocation of (i− 1)th test treatment
to blocks by solving the following linear integer programming formulation with
respect to binary decision variables x1, x2, . . . , xb:

Maximize φ =
b∑

j=1
wjxj

subject to constraints
b∑

j=1
xj = r

xj ≤ k − kj∀j = 1, 2, . . . , b
b∑

j=1
n1jxj = λ0

b∑
j=1

ni′jxj = λ1, ∀i′ = 2, 3, . . . , i− 1

(3)

where wj = 1
kj

if kj > 0 and wj = 1 if kj = 0, with kj being the size of the jth
block up to (i− 1) row and ni′j is the element at the i′th row and the jth column
of N.

(iii) If there is no optimal solution of the formulation (3), delete a random row m
between 2 to (i − 1)th row of the incidence matrix, store the deleted row in a
matrix T, update kj values and try to obtain a newer solution to mth row by
solving the formulation (4):

Maximize φ =
b∑

j=1
wjxj

subject to constraints
b∑

j=1
xj = r

xj ≤ k − kj ∀j = 1, 2, . . . , b
b∑

j=1
n1jxj = λ0

b∑
j=1

ni′jxj = λ1 ∀i′ = 2, 3, . . . ,m− 1,m+ 1, . . . , i− 1

b∑
j=1

tujxj < r ∀u = 1, 2, . . . , p

(4)

where p is the number of rows of the matrix T and tuj is the element at the
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uth row and the jth column of T matrix. If there is a solution then update the
incidence matrix. If there is no solution, repeat this step by drawing another
random number m. Once the mth row is obtained, then go back to step ii) to
obtain the ith row.

Step 4: If all the v + 1 rows of the matrix N are obtained, then compute the A-efficiency
by using the formula Ae = trace(PC−d∗P′)/trace(PC−d P′) to confirm weighted A-
optimality of the design. Here d∗ is a hypothetical A-optimal design in D(v, b, k) for
which trace(PC−d∗P′) is minimum. If Ae = 1, then the design is weighted A-optimal.

The formulations (3) and (4) allocate a particular test treatment to r blocks out of
the b blocks. While doing so, the objective function gives less weight to those blocks which
already contains more number of treatments compared to other blocks. The first constraint
ensures that the number of replications of the treatment is r. The second constraint is to
ensure that a block does not contain more than k treatments. The third and fourth set of
constraints ensure that for a given test treatment, the concurrences with the control and
with the other test treatments are λ0 and λ1, respectively. The additional fifth constraint in
formulation (4) prevents an already deleted solution for the mth row to recur.

Even if a weighted A-optimal BTIB design exists, sometimes the proposed algorithm
may not be able to obtain a weighted A-optimal design. For example, the algorithm may
get u < v + 1 rows of incidence matrix N and it may not be able to proceed after uth row.
This indicates that in these u rows, there may be some row(s) which do not allow the desired
structure of the required design. Though step (iii) of Step 3 is there to eliminate such rows,
however, it is not known which row(s) are actually the culprit and so step (iii) of Step 3
may not be 100% effective and this is the reason that the algorithm may not be able to get
a solution even though a weighted optimal exists for the given parameters.

We have seen that the algorithm works best when v ≤ 30 and k ≤ 10. The efficiency of
the algorithm to obtain weighted A-optimal design goes down with larger values of v. This is
due to the fact that the chances of entering improper candidate rows in the incidence matrix
increases with larger v. Further research efforts are required to obtain weighted A-optimal
BTIB designs for larger values of v and k.

The integer programming formulations (3) and (4) were solved using lpSolve R package
of Berkelaar and Others (2011) and the complete algorithm is implemented using R language.
Further, an R package Aoptbdtvc (Mandal et al., 2017a) has been built and published on
CRAN. The package is available on cran.r-project.org/web/packages/Aoptbdtvc/index.html.
A manual showing the usage of functions to implement the proposed algorithm is also avail-
able in the same web page.

4. Working of The Algorithm

In this Section, we illustrate the working of the algorithm with the help of an example.

Example 1: Consider construction of weighted A-optimal BTIB design for v = 4, b =
4, k = 4, α = 0.4 The algorithm finds that t = 0, s = 4 in Step 1. From Step 2, algorithm
gives r0 = 4, r = 3, λ0 = 3, λ = 2. Now in Step 3, the algorithm attempts to obtain an
treatment-block incidence matrix of such a BTIB design with these parameters.



282 BAIDYA NATH MANDAL, RAJENDER PARSAD and SUKANTA DASH [Vol. 19, No. 1

In the first step of Step 3, the algorithm obtains first row of the treatment-block
incidence matrix as

(
1 1 1 1

)
. To obtain the second row of the incidence matrix, following

linear integer program is solved:

Maximize φ = x1 + x2 + x3 + x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 1
x2 ≤ 4− 1
x3 ≤ 4− 1
x4 ≤ 4− 1
x1 + x2 + x3 + x4 = 3.

An optimal solution to the above linear program is
(
0 1 1 1

)
. So after two steps, the

incidence matrix obtained is
(

1 1 1 1
0 1 1 1

)
. To obtain the third row, the linear integer

formulation is Maximize φ = x1 + 1
2x2 + 1

2x3 + 1
2x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 1
x2 ≤ 4− 2
x3 ≤ 4− 2
x4 ≤ 4− 2
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2.

An optimal solution to this formulation is
(
1 0 1 1

)
which gives incidence matrix up

to third row as

1 1 1 1
0 1 1 1
1 0 1 1

. For obtaining the fourth row, the formulation is Maximize

φ = 1
2x1 + 1

2x2 + 1
3x3 + 1

3x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 2
x2 ≤ 4− 2
x3 ≤ 4− 3
x4 ≤ 4− 3
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2
x1 + x3 + x4 = 2.

The algorithm gives an optimal solution to this formulation as
(
1 1 0 1

)
and hence, the
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incidence matrix obtained till fourth row is


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

. For getting the last row of the

incidence matrix, the formulation is as follows: Maximize φ = 1
3x1 + 1

3x2 + 1
4x3 + 1

4x4 subject
to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 3
x2 ≤ 4− 3
x3 ≤ 4− 3
x4 ≤ 4− 4
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2
x1 + x3 + x4 = 2
x1 + x2 + x4 = 2.

An optimal solution to this formulation is
(
1 1 1 0

)
. As a result, the algorithm gives

treatment-block incidence matrix as


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and the corresponding design is

Block-1 (0 2 3 4)
Block-2 (0 1 3 4)
Block-3 (0 1 2 4)
Block-4 (0 1 2 3)

For confirmation of A-optimality, Ae is computed which isAe = trace(PC−d∗P′)/trace(PC−d P′)
= g(t, s)/trace(PC−d P′) = 3.2/3.2 = 1. Thus, the design so obtained is weighted A-optimal
BTIB design for v = b = k = 4, α = 0.4.

Let us consider another example with α = 0.5.

Example 2: Consider v = 6, b = 7, k = 4, α = 0.5. In Step 1, it can be found that
t = 0, s = 4 which gives r = r0 = 4, λ0 = λ1 = 2. Step 3 gives us the following design.

Block-1 (2 3 4 6)
Block-2 (0 2 3 4)
Block-3 (0 2 5 6)
Block-4 (1 2 4 5)
Block-5 (0 1 4 6)
Block-6 (1 2 3 6)
Block-7 (0 1 3 5)
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Clearly, the design is a balanced incomplete block design and is A-optimal for all possible
pair wise comparisons.

5. List of Weighted A-optimal BTIB Designs

The proposed algorithm in Section 3 can be used to construct weighted A-optimal BTIB
designs for given parameters v, b, k, and α. We utilized the algorithm to obtain weighted
A-optimal BTIB designs in a limited parametric range 2 ≤ v ≤ 30, v + 1 ≤ b ≤ 50, 2 ≤ k ≤
min(10, v), α = 0.2, 0.4, 0.6, 0.8. We denote this parametric range as P for further reference.

Within P, we obtained 369 A-optimal designs out of which 70 are R-type and 299
are S-type. The list of designs along with the layouts is available at https://drs.icar.
gov.in/WAoptBTIB/WAoptBTIB.htm, (Mandal et al., 2017b). The distribution of the designs
according to various values of block size k and α is given in Table 1.

Table 1: Distribution of weighted A-optimal designs according to block size and
α

α
Block size 0.2 0.4 0.6 0.8 Total Number of Designs

3 19 18 17 19 73
4 28 16 14 20 78
5 31 12 11 10 64
6 5 13 8 11 37
7 16 14 7 6 43
8 0 12 6 10 28
9 3 10 6 6 25
10 3 10 3 5 21

Total Number of Designs 105 105 72 87 369

We made a comparison of the weighted A-optimal designs obtained above with those
of Gupta et al. (1999) and Parsad et al. (2009). Out of 15 distinct weighted A-optimal BTIB
design given by Gupta et al. (1999), 7 fall in the parametric range P. Out of these 7 designs,
we obtained six of them and are shown in Table 2. Out of the 43 designs reported by Parsad
et al. (2009), only 14 designs fall in the parametric range P. We have obtained all these 14
designs and are given in Table 3.

Table 2: Weighted A-optimal BTIB designs in P from Gupta et al. (1999)

v b k t s α Type
6 15 5 0 15 0.2 S
6 18 3 0 12 0.2 S
4 12 4 0 8 0.6 S
4 18 4 0 16 0.4 S
7 7 7 0 7 0.4 S
4 24 4 0 12 0.8 S
4 36 4 0 32 0.4 S
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Table 3: Weighted A-optimal BTIB designs in P from Parsad et al. (2009)

v b k t s α Type
3 3 3 0 3 0.2 S
3 4 3 0 3 0.4 S
6 7 3 0 3 0.4 S
9 18 3 0 9 0.2 S
4 4 4 0 4 0.2 S
4 5 4 0 4 0.4 S
5 5 5 0 5 0.2 S
5 5 5 0 5 0.4 S
7 7 5 0 7 0.2 S
7 7 5 0 7 0.2 S
9 12 7 0 12 0.2 S
8 8 8 0 8 0.4 S
9 9 9 0 9 0.4 S

10 10 10 0 10 0.4 S

An interesting observation is that among the 369 designs in the parametric range P,
we found certain designs with same parametric combinations which are weighted A-optimal
for more than one value of α. The list of those designs are depicted in Table 4.

Table 4: Weighted A-optimal designs for multiple values of α

Sr No. v b k t s α Type
1 3 4 3 0 3 0.4, 0.6 S
2 4 4 4 0 4 0.2, 0.4 S
3 4 4 4 1 0 0.2, 0.4 R
4 4 5 4 0 4 0.4, 0.6 S
5 5 5 5 0 5 0.2, 0.4 S
6 5 5 5 1 0 0.2, 0.4 R
7 6 7 3 0 3 0.4, 0.6 S

6. Concluding Remarks

We have presented an algorithm to construct weighted A-optimal BTIB designs and
also listed 369 weighted A-optimal designs. We believe most of the designs, particularly
those with α > 0 are new and has not been reported elsewhere. The proposed algorithm will
be useful for experimenters and statisticians to obtain weighted A-optimal BTIB designs
for various values of parameters including other values of weights given to the contrasts.
Further efforts are required to devise algorithms which are able to construct weighted A-
optimal BTIB designs for larger number of treatments. The proposed algorithm in this
article has been restricted to construct weighted A-optimal BTIB designs where only one
control is considered. The algorithm may be extended for weighted A-optimal block designs
for more than one control treatment. Effort may also be made to obtain weighted A-optimal
block designs beyond the class of BTIB designs.
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