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Abstract 

 

In this paper, the estimation of the future density of wind direction conditioned on the 

past and present wind direction data using the Sufficiency Approach of Predictive Inference 

under the l-modal Circular Normal model, followed by the equal tail area predictive interval 

estimation has been done. Point predictive estimator of future observation, termed as the 

frequentist predictive point estimator under the circular loss function has been obtained 

Finally, some basic properties of the estimator have been explored. 

 

Keywords: Sufficiency approach of predictive inference; l-modal circular normal model; 

Equal tail area predictive interval estimation; Circular loss function; frequentist predictive 

point estimator. 

 

 

1. Introduction 

 

The prediction of the pattern of future occurrences, based on the occurrences in past, 

is an important aim of statistics and according to some authors; it is the sole aim of this 

subject. The object of interest to be predicted can be a single value, a set of values or a 

function of these. The literature boasts of a number of techniques to obtain predictive 

likelihoods and density functions. Cox and Hinkley (1974) had initially conditioned the data 

on a minimal sufficient statistic of the parameter and it was Butler (1986) who later on 

incorporated the future observation in the data and suggested the expression for conditional 

predictive likelihood based on the minimal sufficient statistic. This constitutes the Sufficiency 

Approach. In the Bayesian Approach of predictive density estimation, the conditional 

distribution of the future observation(s) given the past data is obtained simply by 

marginalization of the joint distribution of the future observations and the population 

parameter(s) with respect to the parameter. For this purpose, at the outset, the prior densities 

of the parameters are assumed to be known. The Profile or Maximum Likelihood method 

consists in predicting the density of future observation from the maximum likelihood function 

based on the maximum likelihood estimate of both the given and future observation. 

 

After having predicted the future observations(s), one might be interested in carrying 

out both the point and interval estimation based on the predictive density, followed by 

evaluating the error or loss incurred in predicting the true value of the observation by its 

estimator. The loss incurred can be quantified using a loss function. In prediction problems, 

as stated by Hennig and Kutlukaya (2007), the quality of a predictor is judged with the help 
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of loss function, which depends on the observed value and predicted value of the observation. 

Jammalamadaka and Sen Gupta (1998) had derived the predictive density estimation of the 

future observation given present and previous data and then carried out the predictive Highest 

Posterior Density (HPD) interval estimation under von Mises model in circular case and von 

Mises-Fisher model in spherical case. In predictive analysis concerning circular data, the 

usual linear loss functions are not well-defined. Gelfand and Ghosh (1998) had proposed the 

Squared Predicted Errors (SPE) loss function and had used it to choose the best fitting model 

to circular data by minimizing the posterior predictive loss. Ravindran and Ghosh (2012) had 

proposed the Absolute Predicted Errors (APE) loss function and used it to choose the best 

fitting circular model by minimizing this loss with respect to the posterior predictive density. 

Under the circular loss defined by Sen Gupta and Maitra (1998), the same authors had studied 

the best equivariance and admissibility property of the maximum likelihood estimator of the 

mean direction for a single von Mises distribution and also for that of the several 

independently distributed circular normal distributions. In the linear statistics literature, the 

Bayes estimator of the parameters of different distributions is obtained by minimizing the 

posterior loss/predictive loss under different loss functions. Several properties of these loss 

functions have also been explored. However, in the circular statistics predictive inference 

literature, the estimation of parameters by minimization of predictive density has not been 

attempted yet. Another interesting prospect that still remains unexplored is studying the 

properties of these estimators. Keeping in view these points, the objectives of this paper have 

been decided upon. 

 

This paper attempts to predict the future density of wind direction conditioned on the 

past and present wind direction data using the Sufficiency Approach of Predictive Inference 

under the l-modal Circular Normal model and then carry out the equal tail area predictive 

interval estimation. Further, the predictive point estimation of the future observation under 

the circular loss function and for the same model has been carried out. Finally, some basic 

properties of the estimators obtained under the circular loss function are studied. 

 

For achieving the objectives of this paper, daily data on wind direction for Dibrugarh 

Meteorological station located in Assam, measured during morning for the Monsoon season 

(June-September) during the years 2012 and 2013 has been procured from the Regional 

Meteorological Center, Guwahati.  

 

2. Predictive Density Estimation of the Future Observation Through Sufficiency 

Approach Under the l-modal Circular Normal Model 

 

Suppose that 𝜃1, 𝜃2, … , 𝜃𝑛 is a sample from l-modal Circular Normal distribution, 

whose p.d.f is given by 

 

𝑓(𝛼; 𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝{𝜅 cos 𝑙(𝜃 − 𝜇)}                0 < 𝜃, 𝜇 < 2𝜋;  𝜇 <

2𝜋

𝑙
 

 

Here, μ and κ represent the mean direction and concentration parameter of the 

population respectively and the parameter l stands for the number of modes of the distribution 

(Rao and Sengupta, 2001).  

 

Upon computation, while fixing the value of l as the number of modes in the sample as 

it appears in the corresponding histogram, the maximum likelihood estimators of μ and κ 

have been found to be 
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�̂� =
1

𝑙
𝑎𝑟𝑐𝑡𝑎𝑛 {

∑ sin(𝑙𝜃𝑖)𝑛
𝑖=1

∑ cos(𝑙𝜃𝑖)𝑛
𝑖=1

}                   and                 �̂� = 𝐴−1 [
1

𝑛
∑ cos 𝑙(𝜃 − 𝜇)𝑛

𝑖=1 ] 

 

𝐴−1(. ) being the inverse function of the ratio of the first and zeroth order Bessel functions of 

the first kind, both of which are evaluated at a specified non-negative real number. 

 

Now, for a known l, (𝐶𝑙,𝑛, 𝑆𝑙,𝑛) is a minimal sufficient statistic for (𝜇0, 𝜅) (Rao and 

SenGupta, 2001, pp.209), where 𝐶𝑙,𝑛 = ∑ cos 𝑙𝜃𝑖
𝑛
𝑖=1  and 𝑆𝑙,𝑛 = ∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 . Based on the 

(𝑛 + 1) observations, for which (𝐶𝑙,𝑛+1, 𝑆𝑙,𝑛+1) is the sufficient statistic, the conditional 

probability of the future observation 𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 is given by 

 

𝑃𝑟( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) =
𝑃𝑟(𝜃1, 𝜃2, … , 𝜃𝑛,  𝜃𝑛+1)

𝑃𝑟(𝐶𝑙,𝑛+1, 𝑆𝑙,𝑛+1)
 

=
[

1
2𝜋𝐼0(𝜅)

𝑒𝑥𝑝{𝜅 cos 𝑙(𝜃𝑖 − 𝜇)}]
𝑛+1

[
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝{𝜅(𝐶𝑙,𝑛 sin 𝜇 + 𝑆𝑙,𝑛 cos 𝜇)}] 𝑙𝜓𝑛(𝑟𝑙)

 

=
1

(2𝜋)𝑛𝜓𝑛+1 (√𝐶𝑙,𝑛+1
2 + 𝑆𝑙,𝑛+1

2)

                                                                                                     (1) 

 

where 𝐶𝑙,𝑛+1 = ∑ cos 𝑙𝜃𝑖
𝑛+1
𝑖=1  , 𝑆𝑙,𝑛+1 = ∑ sin 𝑙𝜃𝑖

𝑛+1
𝑖=1  and 

 

𝜓𝑛(𝑟) = ∫ 𝐽0(𝑟𝑡)𝐽0
𝑛(𝑡)𝑡𝑑𝑡

∞

0

,                                0 ≤ 𝑟 ≤ 𝑛 

𝐽0(𝑧) being the Bessel function of zeroth order. 

 

Again, 

 

𝐶𝑙,𝑛+1 = 𝐶𝑙,𝑛 + cos 𝜃𝑙,𝑛+1 , 𝑆𝑙,𝑛+1 = 𝑆𝑙,𝑛 + sin 𝜃𝑙,𝑛+1 , 𝐶𝑙,𝑛 = 𝑅𝑙,𝑛 cos �̅�𝑙,𝑛 , 𝑆𝑙,𝑛 = 𝑅𝑙,𝑛 sin �̅�𝑙,𝑛, 

so that 𝑅𝑙,𝑛 = √𝐶𝑙,𝑛
2 + 𝑆𝑙,𝑛

2
 and �̅�𝑙,𝑛 = arctan (

𝑆𝑙,𝑛

𝐶𝑙,𝑛
). 

Therefore, it follows from equation (1) that the predictive density of  𝜃𝑛+1 given 

𝜃1, 𝜃2, … , 𝜃𝑛 is 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) =
1

(2𝜋)𝑛𝜓𝑛+1 (√𝑅𝑙,𝑛
2 + 1 + 2𝑅𝑙,𝑛 cos(𝜃𝑙,𝑛+1 − �̅�𝑙,𝑛))

 

                               ∝  
1

𝜓𝑛+1 (√𝑅𝑙,𝑛
2 + 1 + 2𝑅𝑙,𝑛 cos(𝜃𝑙,𝑛+1 − �̅�𝑙,𝑛))

 

 

(Rao and Sen Gupta, 2001, pp. 209). 

 

By Rayleigh’s approximation for large n of the length of the sample resultant length 

(Lord Rayleigh, 1880), it can be seen that 
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𝜓𝑛(𝑟) ≈
2

𝑛
𝑒𝑥𝑝 (−

𝑟2

𝑛
) 

Then it follows that  

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) ∝
1

𝑒𝑥𝑝 ((−
2𝑅𝑙,𝑛

𝑛 + 1) cos(𝜃𝑙,𝑛+1 − �̅�𝑙,𝑛))

 

                                      ∝  𝑒𝑥𝑝 ((
2𝑅𝑙,𝑛

𝑛 + 1
) cos(𝜃𝑙,𝑛+1 − �̅�𝑙,𝑛))  

 

which is the p.d.f of a von Mises distribution with center at �̅�𝑙,𝑛 and concentration parameter 
2𝑅𝑙,𝑛

𝑛+1
 , i.e., �̂�1 = �̅�𝑙,𝑛 and �̂�1 =

2𝑅𝑙,𝑛

𝑛+1
 . 

 

Thus, 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛)~𝑉𝑀 (�̅�𝑙,𝑛,
2𝑅𝑙,𝑛

𝑛 + 1
) 

 

We see that the predictive distribution is symmetric and unimodal in nature, the mode being 

at �̅�𝑙,𝑛. In the following section, we discuss the predictive interval estimation. 

 

3.  Predictive Interval Estimation 

 

Let 𝑓(𝜃, 𝜇, 𝜅) be the predictive density of 𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛. A 100(1 − 𝛼)% 

Predictive Interval for 𝜃 is given by [𝜃𝐿 , 𝜃𝑈] where 𝜃𝐿 and 𝜃𝑈 are such that 

 

              ∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃 =
𝜃𝑈

𝜃𝐿
 1 −  𝛼              (2) 

 

In addition to (2), if the area under the predictive density to the left of 𝜃𝐿 is equal to the 

area under the predictive density to the right of 𝜃𝑈, i.e. if 

∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃 = ∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃

2𝜋

𝜃𝑈

𝜃𝐿

0

=
𝛼

2
                                                                                     (3)     

then the corresponding predictive interval is termed as 100(1 − 𝛼)% equal tail area 

predictive interval. 

 

It can further be seen that the 100(1 − 𝛼)% equal tail area predictive lower and upper 

limits, viz. 𝜃𝐿 and 𝜃𝑈 are nothing but the (
100𝛼

2
)th and (100 −

100𝛼

2
)th percentiles of the 

predictive distribution respectively, since the density is symmetrical. 

 

4.  Predictive Risk Function and Predictive Loss in Predictive Density Estimation of 

Circular Random Variable 

 

Analogous to the posterior expected loss in the Bayesian parametric inference 

literature; we have the concept of induced loss in the Predictive inference literature. 

Suppose 𝐿(𝑦, 𝑎) is the loss function associated with predicting the true value 𝑦 ∈ 𝑌 of a 

future observation (or set of observations) by 𝑎 ∈ 𝑌, where Y is the set of future 
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observation(s). Further assume that g(y|�̃�)  is the predictive density conditioned on the past 

and present observations �̃�. 

Then the expected loss with respect to the predictive density 𝑔(𝑦|�̃�) is given by 

 

𝐿(𝑎) = ∫ 𝐿(𝑦, 𝑎)𝑔(𝑦|�̃�)𝑑𝑦

𝑦

 

 

In Bayesian predictive context, Aitchison and Dunsmore (1975) had termed this 

expected predictive loss as the “Induced Loss” and the value of a that minimized the induced 

loss had been called as the Bayes point predictor of the future observation y. 

In the Frequentist predictive inference literature, the expected loss w.r.t the predictive density 

may be termed as the predictive risk function and our aim would consist in minimizing the 

predictive risk function or equivalently, to find an optimum value of a for which the 

predictive risk function will be the minimum. This predictor may be termed as the frequentist 

predictive point estimator.  

 

Here, we are dealing with the predictive density estimation of a circular random 

variable which lies in the range (0,2𝜋). So, special loss functions need to be designed which 

consider the periodicity property of the circular r.v. The loss function is essentially a non-

negative function as the loss incurred is positive if the predicted value is different from the 

true value and zero, otherwise. In other words, the loss function should be an increasing 

function of the absolute difference between the true value and its predicted value. The 

circular loss function is hereby considered and the frequentist predictive point estimator of 

the future observation y under this loss function for the l-modal Circular Normal predictive 

density has been worked out. 

 

The circular loss function is defined in the literature as follows: 

 

𝐿(𝑦, 𝑎) = 1 − cos(𝑎 − 𝑦); 0 < 𝑎, 𝑦 < 2𝜋 
 

The circular loss function can be seen to be a mapping from the set [0, 𝜋] to [0,2]. 
 

The predictive risk function of  𝜃𝑛+1 under circular loss function is found to be 

 

1 − 𝐴(�̂�1) cos(𝑎 − �̂�1) 

 

Solution of the equation 
𝑑

𝑑𝑎
𝐿(𝑎) = 0 yields the stationary value of a to be 

 

𝑎 = 𝑛𝜋 + �̂�1     ,            𝑛 = 0,1 

 

We further see that the value a0 of a for which 
𝑑2

𝑑𝑎2
𝐿(𝑎)|𝑎=𝑎0

> 0 is attained and hence, 

becomes the frequentist predictive point estimator of  𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 under the 

circular loss function is found to be 

 

𝑛𝜋 + �̂�1     ,            𝑛 = 0 
 

or 
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                                                                �̂�1  =   �̅�𝑙,𝑛                                                                         (4) 

 

We, thus, see that the frequentist predictive point estimate under the circular loss 

function coincides with the mean direction of the observations 𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛. 

 

5.    Properties of the frequentist predictive point estimate under the circular loss 

function 

 

The frequentist predictive point estimates under the circular loss function is equal to the 

sample circular mean direction of the observations 𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛. It has the following 

properties: 

 

a) The conditional sampling distribution of �̅�𝑙,𝑛 given the resultant length 𝑅 = 𝑟𝑙,𝑛, is 

given by 

𝑓(�̅�𝑙,𝑛 |𝑅 = 𝑟𝑙,𝑛)~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

 

b) �̅�𝑙,𝑛 is an unbiased estimate of 𝑙𝜇. 

 

The proofs of both these properties are deferred to the Appendix A. 

 

6. Result and Analysis 

 

6.1. l-modal circular normal distribution as density of the past data on wind direction 

 

Figure 1 displays the histogram of the daily wind direction data collected from 

Dibrugarh Meteorological station measured during morning for the Monsoon season (June-

September) during the years 2012 and 2013: 

 
 

Figure 1: Histogram of the wind direction data collected from Dibrugarh 

Meteorological station measured during morning for the monsoon season 

during the years 2012 and 2013 

 

The histogram of the wind direction data under consideration is showing the data to 

have 3 equidistant modes. The maximum likelihood estimates of the parameters of the l-

modal Circular Normal distribution are 
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�̂� = 0.1745 (measured in radians), �̂� = 0.0127, 𝑙= 3. 

 

The goodness-of-fit test that has been employed here is based on Watson’s U2 test of 

circular uniformity (Mardia and Jupp, 2000). The critical value of the test statistic at 1% 

level of significance has been found to be 0.267 whereas the observed value is 0.2397. 

Thus, the l-modal Circular Normal distribution is found to be a good fit to the data on 

wind direction for Dibrugarh Meteorological station measured during morning for the 

Monsoon season (June-September) during the years 2012 and 2013. We, therefore, carry 

out the predictive density estimation of the future observation through sufficiency 

approach under the l-modal Circular Normal model. 

 

6.2. Predictive density estimation 

 

From the data, we have found 

 

�̅�𝑙,𝑛 = 0.5235 and  
2𝑅𝑙,𝑛

𝑛+1
= 0.0126 

Thus, 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛)~𝑉𝑀(0.5235,0.0126) 
 

i.e., the distribution of  𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 is von Mises with parameters 0.5235 and 

0.0126. 

 

6.3.  Predictive Interval Estimation 

 

 A 95% equal tail area predictive interval for  𝜃𝑛+1 is given by [𝜃𝐿 , 𝜃𝑈] where 𝜃𝐿=2.5th 

Percentile and 𝜃𝑈=97.5th Percentile of  𝑉𝑀(0.5235,0.0126) distribution. 

 

Solving (3) for 𝛼 = 0.05 yields 

 

𝜃𝐿 = 0.157 and 𝜃𝑈=6.126 

 

Thus, the 95% equal tail area predictive interval for  𝜃𝑛+1 is given by [0.157, 6.126]. The 

interpretation of the above statement is “There is 95% chance that the future observation 

 𝜃𝑛+1 would lie between 0.157 and 6.126”. 

 

Similarly, a 90% equal tail area predictive interval for  𝜃𝑛+1, is represented by [𝜃𝐿′, 𝜃𝑈′] 
where 𝜃𝐿′=5th Percentile and 𝜃𝑈′=95th Percentile of  𝑉𝑀(0.5235,0.0126) distribution. 

 

Solving (3) for 𝛼 = 0.10 gives 

 

𝜃𝐿′ = 0.282  and    𝜃𝑈′ = 6.001 

 

Thus, the 99% equal tail area predictive interval for  𝜃𝑛+1 is given by [0.282, 6.001]. 
This means there is a 99% chance that the future observation  𝜃𝑛+1 would lie within the 

values 0.282 and 6.001. 
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6.4. Predictive risk function and frequentist predictive point estimator of the future 

observation under the circular loss function 

 

In this section, we determine the frequentist predictive point estimator of the future 

observation under the circular loss function. 

 

It can be seen from expression (4) that the frequentist predictive point estimator of the 

future observation  𝜃𝑛+1  under the Circular loss function (measured in radians) is 

 

 𝜃𝑛+1 = 0.5235 
 

7. Discussion 

 

Through this paper, the future density of wind direction prevailing at Dibrugarh 

Meteorological station located in Assam, measured during morning for the Monsoon season 

(June-September) during the years 2012 and 2013, conditioned on the past and present wind 

direction data using the Sufficiency Approach of Predictive Inference under the l-modal 

Circular Normal model has been derived and then the equal tail area predictive interval 

estimation of the future observation has been carried out. The predictive point estimator of 

the future observation under circular loss function has been obtained, which has been termed 

as the frequentist predictive point estimator. Lastly, the properties of the frequentist 

predictive point estimator have been explored and it has been found that it follows von Mises 

or Circular Normal distribution. 

 

 As a future scope of the present study, the frequentist predictive point estimator under 

the different circular distributions can be studied assuming several loss functions and 

compare their relative efficiencies. Having obtained these estimators, one can then attempt to 

explore the properties of these estimators. 
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APPENDIX A 

 

A.1: If  𝜃1, 𝜃2, … , 𝜃𝑛 is a random sample from l-modal Circular Normal distribution with 

mean direction 𝜇 and concentration parameter 𝜅, the conditional sampling distribution of �̅�𝑙,𝑛, 

the mean direction of  𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛 given the resultant length 𝑅 = 𝑟𝑙,𝑛, is given by 

 

𝑓(�̅�𝑙,𝑛 |𝑅𝑙,𝑛 = 𝑟𝑙,𝑛)~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

 

Proof: Given the random sample  𝜃1, 𝜃2, … , 𝜃𝑛 from l-modal Circular Normal distribution 

with mean direction 𝜇 and concentration parameter 𝜅, the joint density of the observations 
( 𝜃1, 𝜃2, … , 𝜃𝑛) is given by 

 

𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛) =
1

𝐼0
𝑛(𝜅)(2𝜋)𝑛

𝑒𝜅 ∑ cos(𝑙𝜃𝑖−𝑙𝜇)𝑛
𝑖=1  

     =
1

𝐼0
𝑛(𝜅)(2𝜋)𝑛

𝑒𝜅 ∑ (cos 𝑙𝜃𝑖 cos 𝑙𝜇+sin 𝑙𝜃𝑖 sin 𝑙𝜇)𝑛
𝑖=1  

 

 =
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)(2𝜋)𝑛

 

 

                 = {
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

}
1

(2𝜋)𝑛
 

 

                                               

= {
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

} 𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛)         (5) 

 

𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛) being the joint density of a random sample from Circular Uniform 

distribution, whose concentration parameter 𝜅 = 0. 
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It was established by Kent et al. (1979) that for circular uniform samples, the resultant 

length 𝑅𝑙,𝑛 and �̅�𝑙,𝑛 and hence, (�̅�𝑙,𝑛 − 𝜇) =  𝛽 is independently distributed and 𝑅𝑙,𝑛, 𝛽 have 

the following respective distributions: 

𝑓0(𝑟𝑙,𝑛) = 𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛),     𝑓0(𝛽) =
1

2𝜋
 

Again, we know that the sample mean direction is rotationally equivariant. So, (�̅�𝑙,𝑛 −

𝑙𝜇) =  𝛽′ (say) is also uniformly distributed in the range (0,2𝜋). 

 

Following Rao and Sen Gupta (2001), pp. 71, it can be seen that the pdf of cos 𝛽′ = 𝑐′ 

(say) is 

𝑓0(𝑐′) =
1

𝜋√1 − 𝑐′2
 

Consequently, the joint distribution of the resultant length 𝑟𝑙,𝑛 and 𝑐′ for a sample from 

circular uniform distribution is 

𝑓0(𝑟𝑙,𝑛, 𝑐′) =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

 

The joint density of the resultant length 𝑅𝑙,𝑛 and the quantity cos(�̅�𝑙,𝑛 − 𝑙𝜇) = 𝑐′ for the l-

modal Circular Normal (𝜇, 𝜅) distribution can be obtained from the joint density in 

expression (5) by integrating over the samples that have given values of 𝑅𝑙,𝑛 and 𝑐′. 

 

Let 𝒜 = {( 𝜃1, 𝜃2, … , 𝜃𝑛): 𝑅𝑙,𝑛 = √(∑ cos 𝜃𝑖
𝑛
𝑖=1 )2 + (∑ sin 𝜃𝑖

𝑛
𝑖=1 )2 = 𝑟𝑙,𝑛, 𝑐′ = cos 𝛽′}. 

Thus, the joint density of (𝑟𝑙,𝑛, 𝑐′) for the l-modal Circular Normal distribution is given 

by 

𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝑐′) = ∫ 𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛
𝒜

 

 

                  

=
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

∫ 𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛
𝒜

 

 

                  =
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

𝑓0(𝑟𝑙,𝑛, 𝑐′) 

 

                  =
𝑒(𝜅 cos 𝑙𝜇)(𝑟𝑙,𝑛 cos �̅�𝑙,𝑛)+(𝜅 sin 𝑙𝜇)(𝑟𝑙,𝑛 sin �̅�𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

 

                  =
𝑒(𝜅𝑟𝑙,𝑛) cos(�̅�𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

               

                  

=
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
                                                                                             (6) 
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Integrating expression (6) over the range (−1,1) of 𝑐′, we get the marginal density of 

the resultant length  𝑅𝑙,𝑛 of a sample from the l-modal Circular Normal distribution as 

 

𝑓𝜅,𝑙(𝑟𝑙,𝑛) = ∫ 𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝑐′)𝑑𝑐′
1

−1

 

 

                = ∫
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2

1

−1

𝑑𝑐′ 

 

                =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

∫
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝜋√1 − 𝑐′2

1

−1

𝑑𝑐′ 

 

                =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

∫
𝑒(𝜅𝑟𝑙,𝑛) cos 𝛽′

2𝜋

2𝜋

0

 𝑑𝛽′ 

 

                

=
𝐼0(𝜅𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)                                                                                               (7) 

 

Again, as 𝑅𝑙,𝑛 and �̅�𝑙,𝑛 are independently distributed for circular uniform samples, their joint 

distribution is 

𝑓0(𝑟𝑙,𝑛, �̅�𝑙,𝑛) = 𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋
 

 

Suppose ℬ = {( 𝜃1, 𝜃2, … , 𝜃𝑛): 𝑅𝑙,𝑛 = √(∑ cos 𝜃𝑖
𝑛
𝑖=1 )2 + (∑ sin 𝜃𝑖

𝑛
𝑖=1 )2 = 𝑟𝑙,𝑛, �̅�𝑙,𝑛 =

𝑎𝑟𝑐𝑡𝑎𝑛
∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1

∑ cos 𝑙𝜃𝑖
𝑛
𝑖=1

 } 

 

The joint density of (𝑟𝑙,𝑛, �̅�𝑙,𝑛) for l-modal Circular Normal distribution is 

𝑓𝜅,𝑙(𝑟𝑙,𝑛, �̅�𝑙,𝑛) = ∫ 𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛

ℬ

 

 

                         =
𝑒(𝜅 cos 𝑙𝜇)(𝑟𝑙,𝑛 cos �̅�𝑙,𝑛)+(𝜅 sin 𝑙𝜇)(𝑟𝑙,𝑛 sin �̅�𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑓0(𝑟𝑙,𝑛, �̅�𝑙,𝑛) 

 

                          =
𝑒(𝜅𝑟𝑙,𝑛) cos(�̅�𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋
                                                        (8) 

 

Therefore, the conditional distribution of �̅�𝑙,𝑛 given 𝑅𝑙,𝑛 = 𝑟𝑙,𝑛 is obtained as follows: 

 

𝑓(�̅�𝑙,𝑛 |𝑅𝑙,𝑛 = 𝑟𝑙,𝑛) =
𝑓𝜅,𝑙(𝑟𝑙,𝑛, �̅�𝑙,𝑛)

𝑓𝜅,𝑙(𝑟𝑙,𝑛)
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=

𝑒(𝜅𝑟𝑙,𝑛) cos(�̅�𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋

𝐼0(𝜅𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

 

 

=
𝑒(𝜅𝑟𝑙,𝑛) cos(�̅�𝑙,𝑛−𝑙𝜇)

2𝜋𝐼0(𝜅𝑟𝑙,𝑛)
 

 

which is the pdf of Von Mises distribution with mean direction 𝑙𝜇 and concentration 

parameter 𝜅𝑟𝑙,𝑛. 
 

 

A.2: The mean direction �̅�𝑙,𝑛 of  𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛, where  𝜃1, 𝜃2, … , 𝜃𝑛 is a sample from the 

l-modal Circular Normal distribution with mean direction 𝜇 and concentration parameter 𝜅 is 

an unbiased estimator of 𝑙𝜇. 

 

Proof: In the context of circular statistics, an estimate t taking values on the unit circle is 

said to be unbiased for a parameter 𝛼 of a circular probability distribution (Mardia and Jupp, 

2000, pp.83) if 

 
𝐸(cos 𝑡, sin 𝑡)

∥ 𝐸(cos 𝑡, sin 𝑡) ∥
= (cos 𝛼, sin 𝛼) 

 

It follows from proof (1) that the for samples from l-modal Circular Normal distribution,  

 

�̅�𝑙,𝑛~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

Thus, 

 

𝐸(cos �̅�𝑙,𝑛, sin �̅�𝑙,𝑛) = (𝐸(cos �̅�𝑙,𝑛), 𝐸(sin �̅�𝑙,𝑛)) 

 

                                     =  (
𝐼1(𝜅𝑟𝑙,𝑛)

𝐼0(𝜅𝑟𝑙,𝑛)
cos 𝑙𝜇,

𝐼1(𝜅𝑟𝑙,𝑛)

𝐼0(𝜅𝑟𝑙,𝑛)
sin 𝑙𝜇) 

 

                                     = (𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇, 𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇) 

 

and 

 

∥ 𝐸(cos �̅�𝑙,𝑛, sin �̅�𝑙,𝑛) ∥= √(𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇)
2

+ (𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇)
2
 

 

                                          = √(𝐴(𝜅𝑟𝑙,𝑛))
2

 

 

                                          = 𝐴(𝜅𝑟𝑙,𝑛) 

 

Finally, 
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𝐸(cos �̅�𝑙,𝑛, sin �̅�𝑙,𝑛)

∥ 𝐸(cos �̅�𝑙,𝑛, sin �̅�𝑙,𝑛) ∥
=

(𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇, 𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇)

𝐴(𝜅𝑟𝑙,𝑛)
 

 

           = (cos 𝑙𝜇, sin 𝑙𝜇) 

or �̅�𝑙,𝑛 is an unbiased estimator of 𝑙𝜇 

 

APPENDIX B 

 

Table B.1: Data set on daily wind direction for Dibrugarh Meteorological station 

located in Assam, measured (in degrees) during morning for the Monsoon season 

(June-September) during the years 2012 and 2013 
 

 

Wind direction measured in degrees 

50 230 150 230 

320 230 150 140 

150 20 270 320 

360 50 230 270 

320 180 180 150 

140 150 50 50 

150 320 180 50 

230 320 150 320 

20 270 320 320 

210 180 270 230 

20 270 50 360 

150 210 140 20 

320 230 20 270 

230 150 320 360 

150 50 150 150 

360 320 320 180 

210 270 50 230 

210 150 320 320 

150 20 150 230 

210 150 230 

 230 320 230 

  
Source: Regional Meteorological Center, Guwahati, Assam 

 

For the remaining days, no wind flow was detected and so, the measure of wind direction 

corresponding to those days were reported as NIL (and are, hence, excluded from the data 

set). 

 


