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Abstract

Reliability analysis, including stress-strength analysis, for given data is more widely
used in the reliability literature. A large number of new distributions are available, but many
of them are not showing a good fit for the data under consideration. This inspires a researcher
to introduce new lifetime distributions that demonstrate superior fitness in comparison to
the existing distributions. So that more accurate reliability estimates can be obtained for
the given data. The DUS transformation technique is widely used in reliability literature
to create better models. Power generalized DUS(PGDUS) transformation to lifetime dis-
tributions, which is found to be useful to introduce more appropriate flexible distributions
for the given data. Vinyl chloride data obtained from clean upgrading and monitoring
wells in mg/L have been analyzed using DUS inverse Kumaraswamy (DUS IK), inverse Ku-
maraswamy (IK), and Weibull distributions. As a substitute for these distributions, this
paper presents a new lifetime distribution employing PGDUS transformation, utilizing the
inverse Kumaraswamy distribution as the baseline. The statistical properties of the proposed
distribution are derived. The parameters of the proposed distribution are estimated using
the maximum likelihood (ML) method, maximum product spacing (MPS), method of mo-
ment, and method of least squares. Additionally, Bayesian parameter estimates are acquired
utilizing Lindley’s approximation and the Metropolis-Hastings algorithm. The consistency of
the model is verified using mean squared error (MSE) and biases, which are obtained based
on simulated values. Then, the proposed distribution is compared with the DUS-IK, 1K, and
Weibull distributions. In this paper, single-component and multi-component stress-strength
reliability analyses are also conducted.

Key words: PGDUS transformation; inverse-Kumaraswamy distribution; Stress-strength re-
liability.

1. Introduction

An appropriate lifetime distribution is essential to conducting reliability analysis with
maximum accuracy. While using existing distributions, the fitness of the distributions for the
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given data is sometimes low. To overcome these problems, several researchers introduced new
distributions with more fitness characteristics. Appropriate distributions are necessary for
the stress-strength analysis in statistics and reliability engineering. Reliability distributions
have different failure rate properties, like increasing failure rate, decreasing failure rate,
bathtub and upside-down bathtub distributions, etc.

There are numerous ways to suggest new distributions in the statistical literature
by using some baseline distributions without incorporating scale, shape, or location parame-
ters, so that more appropriate statistical distributions can be made available in the statistical
literature. DUS transformation is one of several methods (see Kumar et al. (2015)). Gen-
eralizing this DUS transformation will lead to the introduction of new distributions, which
could be used while dealing with reliability analysis of parallel systems with components
having DUS-transformed distributions.

Kumaraswamy (1980) introduced the Kumaraswamy distribution, which is also known
as a beta-like distribution due to its similarity with the beta distribution in the sense that
both have the same basic shape parameter. But the probability density function (pdf), cu-
mulative distribution function (CDF), and quantile function are in closed form, which makes
Kumaraswamy distribution a more practical choice for many applications, including model-
ing of biomedical data, reliability engineering, finance, hydrology, etc. (see Kumaraswamy
(1976)) over Beta distribution.

Nowadays, many researchers focus on the inverse transformation of probability distri-
butions and their applications, which proves the increase in model flexibility. Abd Al-Fattah
et al. (2017) introduced the inverted Kumaraswamy (IK) distribution by introducing a

transformation
1—-X
U=-—_=
X b
where X ~ Kumaraswamy(a, f3).

Igbal (2017) generalized the IK distribution using a power transformation as
T=0U0",

where U ~ IK distribution, called generalized IK distribution. All monotonic and non-
monotonic failure rate patterns exhibits for this model. Jamal et al. (2019) proposed a new
generator function based on the IK distribution and introduced a generalized IK-G family
of distributions.

The DUS transformation approach was proposed by Kumar et al. (2015), utilizing
a few baseline distributions that are sparse in computation and interpretation since they
only ever contain the parameter(s) included in the baseline distribution. Let h(u) and H (u)

be the pdf and CDF of the baseline distribution, then the pdf g(u) and CDF G(u) of the
distribution obtained by the DUS transformation of the baseline distribution are given by
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Maurya et al. (2016) proposed the DUS transformation of the Lindley distribution,
and Tripati et al. (2019) introduced the DUS transformation of the exponential distribution.
Deepthi and Chacko (2020) introduced the DUS transformation of the Lomax distribution,
which is an upside-down bathtub-shaped failure rate model. Gauthami and Chacko (2021)
proposed the DUS inverse-Weibull distribution, which is also an upside-down bathtub-shaped
failure rate model. Anakha and Chacko (2022) introduced a non-monotonic hazard rate dis-
tribution using the DUS transformation with the IK distribution as the baseline distribution.

Figure 1: Parallel system

While considering a parallel system, for example, as shown in Figure 1, where each
component is distributed to any DUS-transformed baseline distribution. Then the resulting
distribution of parallel systems has to be investigated in detail. In order to address this
problem, Thomas and Chacko (2021) introduced a method called exponentiation of DUS
transformation, called PGDUS transformation, and introduced the PGDUS-Exponential
distribution with exponential as the baseline distribution. Weibull and Lomax distribu-
tions are used by Thomas and Chacko (2023) to introduce new distributions using PGDUS
transformation.

This paper introduces a new lifetime distribution for a system with components con-
nected in parallel in which each of the components follows the DUS transformation of the
IK distribution to study the distributions having monotone and non-monotone failure rate
functions.

Consider a random variable U with pdf h(u) and CDF H(u). Then the pdf ¢(u) and
CDF Q(u) of the PGDUS-IK(a, 8, A) distribution can be obtained as

A
0(0) = 2 D), A0, w0 0
and
eHw) _ 1\
Q(u)—< — ) A>0, u>0. (2)

respectively.
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Similarly, the failure rate function of the PGDUS-IK distribution can be written as

_ Ah(u)e @ (ef ) — 1)A=1
r(u) = (e — X — (eHw) — 1))

A>0, u>0. (3)

This paper is divided into 10 sections: the PGDUS-IK distribution is proposed in Sec-
tion 2. In Section 3, a detailed investigation into the properties of the PGDUS-IK distribution
is undertaken. Section 4 discusses the mean residual life function of the PGDUS-IK distri-
bution. In Section 5, the estimation of parameters for the proposed distribution has been
done using the methods of maximum likelihood (ML), maximum product spacing (MPS),
moments, and least squares. Also, bayesian estimators of «, 3, and \ based on the squared
error loss function, by taking gamma priors, are derived. The asymptotic confidence interval
and bootstrap confidence interval for the unknown parameters of PGDUS-IK are derived in
Section 6. The efficacy of the proposed estimators is investigated in terms of their bias and
mean squared error (MSE) values in Section 7. Section 8 illustrates the applications of pro-
posed estimators using the vinyl chloride data given in Bhaumik et al. (2009). In Section 9,
stress-strength reliability for single components and for multi-components for the proposed
distribution is investigated. A Simulation study to investigate and compare the performance
of the reliability estimators is conducted, and data analysis for estimating single component
and multi-component reliability is given, in the same section. Conclusions are provided in
Section 10.

2. Power generalized DUS transformation of inverse-Kumaraswamy
distribution

Kumaraswamy (1980) introduced the Kumaraswamy (K) distribution, which is em-
pirically useful for a wide range of reliability applications. The pdf of the K distribution is
given as

fly;a, B) = afy® (1 —y*)P71, 0<y<l1l, a>0 g>0. (4)
IK distribution has the following pdf, CDF, and failure rate function
h(u) =af(l4+u)" @1 - (14+u)) 1t w>0, a>0, 8>0, (5)
Huwao,8)=1—1+u)™? wu>0, a>0 >0, (6)
and
QB+ W)@ (1 = (14 u)=)°

= 0 >0 >0 7
respectively.
The DUS-IK distribution with pdf and CDF can be defined as
g(u) = 0‘51(1 +u) (1 (14 u)_a)ﬁ_le(l_(l’w)ﬂ)ﬁ, w>0, a>0, 3>0, (8)
e —
and

S1—(w=)8 _
G(u) = 1 , u>0, a>0, >0 9)
e j—
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respectively. The survival function will be

e — 6(1_(1'1'“)7&)6

e—1 ’

G(u) = for w>0, a>0, 5>0. (10)

PGDUS-IK(a, 3, \)

By using the PGDUS transformation to IK distribution, the pdf, CDF, and failure
rate functions can be written as

)\ —a —a
Q(U) _ ( aﬂl))\(l + u)f(oHrl)(l . (1 + u)fa)ﬁfle(lf(1+u) )8 <€(17(1+u) N 1))\71’ (11)
e —_
p(1=(1+u) )% 1\ A
o = (S, (12)
and
_ aBAQ )L = (L)) el (0 gt
r(u) = (e — 1) — (6(1—(1+u)*0‘)6 — 1) (13)

respectively, where, v >0, A >0, a>0, §>0.
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Figure 2: pdf plot for PGDUS-IK distribution

The PGDUS-IK(«, 8, ) distribution has both monotonic and non-monotonic hazard
rates.

3. Statistical properties

Statistical properties are discussed in this section.
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Figure 3: Failure rate plot of PGDUS-IK distribution
3.1. Moments
The r** raw moment of the PGDUS-IK(a, 3, \) distribution can be derived as follows
py=EU")

e A — —
= [ ) I = (1) ) 0 gy
e

Substitute a = (1 — (1 +u)~*)? in the above integral,
1 )\ 1\ 1 r
1 _ ale® _ 1 A—1 1—q? “_ 11 d
& /o<e—1>ke<€ ) <( “) ) '

< R [ I N B

_ AAzlz ytr—s (A 1) ( )/ (1—a¥) *e"0da

5=0 2=0
A—1 r oo —1)str—z+l N 1 _ s
/\ZZZ ) ()\ 1) (7’) (/\—s)l/ al(l—a%) “da
s=0 2=0 [=0 5 o 0
A—1 r oo 1)s+r 2+l A—1 r s
Ay CUEE A (Jo-srs(- S a
s=0 z2=01=0
By putting r = 1,2, ..., we get the corresponding raw moments as
A—1 oo l
s s A—1 (A_S) S
= Aszmz(:){ gy (V) AL s L) oo
A—1 oo l
s s s A—1 A—s
= o Sy e ey (1) B
s=0 1=0 '

5(1_5’5l+5)' (16)



2024] PGDUS-IK DISTRIBUTION 329

3.2. Moment generating function

Let U ~ PGDUS-IK(«, /3, \), it’s moments generating function is derived as
My (t) = E(e™)
_ e aBA —(a+1) (1 —a\B—1_(1—(14u)~ )8/ (1—(14u)~)8  1yA—1
= e (1+u) (1—(14+u)y"*)" e (e 1) du
0 (e —1)*
L afhn &
(6 - 1))\ =0 ]'

/ (1 ) (1 (1)) (O gy (1)
0

Substituting a = (1 — (1 + u)~*)” and by solving, we get

My (t) = 5>\ o tfilii )Sﬂ ot (Aj) @ (A—s)lﬁ(l—g,ﬁuﬁ).

= s=0 z=0

(18)
3.3. Characteristic function

The characteristic function of the distribution is derived as
oo A-1 j oo 1)s+] z+1 A—1 ] o S
o) = 22 33 EU (M) (D) - sya(a - 2 ),

7=0 5=0 2=0[=0

(19)

where 7 = v/—1.

3.4. Cumulant generating function

The cumulant generating function of the distribution is derived as
Ky (t) = log ¢y (t)

(AR EEEE () B
B(1- &,5l+5)>
BA

(e — 1)

co A—1

+log<ZZ§j:

7=0 s=0 2=0 =

= log

where ¢ = /—1.
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3.5. Quantile function

The " quantile function, denoted by D(i), of PGDUS-IK(«, 3, )\) distribution is
obtained by solving
Q(DG) =1, 0<i<]l.

(1=(14+D)=)F _ 1\ * .
e—1 !

By solving this, the quantile function of the distribution is obtained as

That is,

@

D(i):(1—(log(1+ii(e—1)))é> —1,  ie0,1). (21)

Median of PGDUS-IK(e, 3,A) can be derived by substituting ¢ = § in D(i). That is,

>_a ~ 1. (22)

Similarly, the inter-quartile range (IQR) of the distribution is,

ey

Median = (1 — (log(l + O.5§(e — 1)))

1 1

IQR = (1 — [log(1 +0.75% (e - 1))]5>_a - (1 — [log(1 +0.25%(e — 1)) 5>_a. (23)

3.6. Order statistics

Let Uy, Uy, ..., Uy be the order statistics for the random sample U = (Uy, Us, ..., Uj)
taken from PGDUS-IK(«, 8, A). The pdf and CDF are given as

) = =A@ (1 = Q)

(1 + u)—(a+1)(1 _ (1 + u)—a)ﬁ—le(lf(lﬂi)*a)ﬂ (6(1—(1+u)*‘*)5 _ 1)/\r—1
=R

(24)
and

Quiw =3 (! @ura - quy-

S=Tr

! (1=(1+u)=)% 1\ (=(14u)=)% _ \ M\ 3
O ()
= \5 e—1 e—1

respectively. Substituting » = 1 and r = [ into equations (24) and (25) allows us to derive
the pdf and the CDF of the 1% and I order statistics, respectively.
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3.7. Entropy

Renyi entropy is derived as

iclog</qc(u)du>, (>0, (#1.

— (&)CC(AZH(_UC(A—I)—S <C()\S— 1))

s=0

es(lf(lJru)“’)‘*(l o) O (] — (1 4 ) )4

0

() £ (O ) ey

z2=0 s=0

/ (14 )¢ (1 — (1 4 u)~@) BBy,
0

Using the transformation a = 1 — (1 + u) ™,

«Q 2!

00 a Cq oo CA=1) /4 \¢(A=1)—s
/0 o (u)du = ((6—6/1\)’\> lz 3 (=)o

z2=0 s=0

ﬁ<§(6—1)+6z+1,§(1+i> -

Then Renyi entropy form will be

)~ 1 10g<( aBA > 1§:<(A21) 1)<(A 1)-s (g()\s—l)> (€ +s)°

1=¢

zOsO

5(¢<ﬁ—1>+ﬁz+1,g<1+;>—

1-¢ (e —1)A
B(c-n s g D) -

a 1-¢

where o > 0,6 >0,A>0,( >0, # 1.

e—1
+ ) @D (] — (1 4 1) =@) S0l (1+w) ™) (o (1=(1+u) =)

B-1) =140 g0,

¢ oo ((A-1) —1)—s
_ 1 1Og< afA >1+ 1 log<z (—1)s-D)

331

— 1)C()‘_1)du
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4. Mean residual life function

The mean residual life function at age v is defined as the expected remaining life
given survival at age v and it is expressed as

MRL(v) = ng) /00 udQ(u) —

pA SES sH+1 aiy (A1) (A=)
= (6 _ 1),\ — (6(1_(14_7”)7(1)6 _ 1)>\ Z g{(_l) : + (_1) l} ( s > T
B1—=.81+8)—v. (27)

5. Estimation

To estimate the unknown parameters, methods of maximum likelihood, maximum
product spacing, moments, and least squares are described below. Let U = (Uy, Us, ..., U;)
be a random sample of size [ taken from PGDUS-IK(«, 5, \).

5.1. Maximum likelihood estimation

To obtain the maximum likelihood estimate (MLE) of unknown parameters «, 3, and
A, consider

!
= w0 -0 I S G S Vo
e —

L
= <( 1 ) H 1 + U (Oé+1)(]_ — (]_ + ui>_@)5—16(1—(1+ui)*a)6 (6(1_(1+ui)—(1)[3 - 1))\_17
€ — :

the likelihood function and its logarithm will be

l
log LF(u) = l(loga + log B + log A — Alog(e — 1)) —(a+1)> log(1+ )
i=1
l

+F(B-DYlog(1— (1 +u)™™)+ 31— (1+u)*

i=1 i=1

A-1) Zlog( Tt ),
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To obtaine the MLEs, we find the first-order derivative of log L and equate it with zero.

Olog LF 1 L1 4 uy) " log (1 + uy)
= = — — N log(1 + uy
Ocx a gog( ) l; (1= (1+u)™)

831 ) log(1 -+ w)(1 — (14 1))

=1

i ) (1 = (1 +ui) )" log(1 + el ()™

2 o(—(1Fu) )P _ | =0
(29)
dlog LF l :
Oagﬁ 3 og(1 = (1)) 31 = (1)) log(1 = (1+u) ™)
(1= (1 ) )  log (1 — (14 u;)~)el (™)
A=Y e —0  (30)
dlog LF 1 ! a
% =3~ llog(e —1) + > log (e(l_(H“i) - 1) =0. (31)
=1

To solve equations (29), (30), (31) simultaneously, statistical software has to be used.

5.2. Maximum product spacing estimation

The maximum product spacing (MPS) estimation method was introduced by Cheng
and Amin (1983) and explored in detailed by Ranneby (1984). The MPS estimation method
ensures consistent estimators whether the MLE method exists or not.

To find the MPS estimators of «, [, and A, first define the spacings

Di = Q(uiaoﬁﬁa )\) - Q(ui—bOéaﬂa )‘>77’ = 17 2a >l+ L.

Hence, MPS estimators are nothing but parameter values that maximize the geometric mean
of the spacings obtained from the observed samples. That is,

I+1 1/1+1
- (117 (32)

ﬁ p(1=(1+uy) ™) 1\ A e=(4ui) ™) 1\ A 1/i+1
- \is e—1 e—1 '

1 Ll 6(1—(1+ui)—a)5 1 A 6(1—(1+u¢_1)‘“)‘3 -1 A
logA=-—->"1 - :
owa= (5
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dlog A px & ((1 )" (1 = (1 + ;) )P0 Hu) ™) o (1 + ;)
(e

da [+1 ; (1=(14u)—)8 _ 1)>\ _ (6(1—(1+ui_1)—a)5 — 1))\

(6(1_(1+Ui)7a)’8 _ 1))\—1 _ (6(1_(1""1%71)7&)6 _ 1)/\—1

(1+ui_1)fa(1 _ (1+ui_1)*a)5*1 (1—-(14ui-1) 10g(1+u1 1)
(™) — 1) — (A=) — 1)) |

dlogA X X ((1 — (14 ;) )Pl (tu) ™) (((=(4u) ™7 _ PA-1]o0(1 — (1 + u;)"%)

(33)

o8 1+1 Z (e(=(4u) =) _ 1) — (e(l=(Huim1)™)" _ 1)A

=1

_ (1_(1_,_%_1)—@),36(1—(1+u¢—1)_O‘)’B(6(1—(14—%—1)_“)5_1))\—1 log(1—(1+u;—1)~%)
(1= +uy) =P _ A _(o(1=(Fui_1) =P 1) '

(34)
and
dlogA 1 § ( (e0—0Fu) ™) _ 1)A]og (%)
N 1+ 1=\ (e0-0+u)™)7 )N — (o(-(Fui) =7 _ 1))
(6(1_(1+Ui)_a)ﬁ —1)*1 g( - (”“; 11)_ )5—1)
- (eA=(Fu) )" _ 1)A — (e0—(+ui-1)=*)% _ 1),\> (35)

Setting the equations (33), (34) and (35) to zero, and solving simultaneously we get the
MPS estimates of «, 3, and A. It is easy to obtain estimates using R software by numerical
methods.

5.3. Method of moment estimation

The r** order moment of PGDUS-IK(a, 3, \) is

= AT e S EUEE ) (oot )

s=0 2=01=0

Taking » = 1,2, and 3 we get first 3 raw moments of the PGDUS-IK distribution. Then, by
equating these raw moments to corresponding sample moments, we get

_! i " (36)
Z u; (37)
=7 ; u; (38)

l\.'H—A

and solving these equations (36), (37), (38) simultaneously we get moment estimators. Sta-
tistical software can be used to solve these equations.



2024] PGDUS-IK DISTRIBUTION 335

5.4. Method of least square estimation

The least-square estimators for the parameters in PGDUS-IK(a, 3, A) can be derived

as follows:
!

Ls =Y (Qu) - )"

=1

where, Q(U;) - theoretical CDF of the observation u;

and Q; - empirical CDF which is usually estimated by
A i
%=
There for,
! (1=(l4u) ™) 1\ 2
e i
LS = _
; (( e—1 > [+ 1)
oLS
—— =0=>
oo
! B-1 g a8 A1
D> (1 + ;)" log(1+ uz)(l -1+ ui)_a) e=(+u)™?) (e(l_(l’””) g 1)
i=1
e(1=(4ui) )P _ 1 i
— =0. 39
<( e—1 ) [+ 1) (39)
oLS
op
! B —a\8 —a\8 A—1
> (1 —(1+ ui)*a) log(1 — (1 + ;) ~)elt=(Hu)™) (e(l’(lﬂ”) g 1)
i=1
(I=tu)™ )" _ 1 ]
e i
— =0. 4
() -0 2
oLS
=2 0=
o\
l — ug)— )P _ u;)~ )8 .
Z (6(1*(1+uz‘)*a)ﬁ _ 1>)\10g 6(1 (I+ug) )" 1 (6(1 (Ttug)™*)" 1))\ B 7 —0
pa e—1 e—1 [+1
(41)

Solving (39), (40), and (41) simultaneosuly with respect to o, 5 and X gives the least
squares estimators. By using statistical softwares, we can find estimated values.
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5.5. Bayesian analysis

The joint posterior density function of («, 3, A) can be written as

( B A T)w(a, B, A)
oI5 [y Lo, B, MUY w(e, B, \)dadBdN’

where w(a, 5, \) is the joint prior density function of the parameters.

O(, B, AU) =

Then, the Bayes estimator under the squared error loss function is

; LU )w(8)do
I(U) = 2p = Epu(2(8)) = ff( )(g|(U’) >( Ed)ﬁ '

There is no easy closed form for this estimated value since it involves an integral ration.

Lindley (1980) proposed the procedure to approximate the ratio of the two integrals.
For a three-parameter distribution, Lindley’s approximation can be written as (see Ali and
Kanani (2021))

1
I(U) =v+ (11191 + 0292 + U393 + 94 + 95) + 5(31(’01011 + V9019 + ’U3013)>

1 1
+ §<32(U10’21 + V2092 + U3<723)) + §<33(U10’31 + V2032 + U3<733)>- (42)
where,
By = o1 M1 + 2012Mi91 + 2013 Mi31 + 2023 Magy + 029 Mooy + 033M33;
By = 011 Mi12 4 2019 M99 4 2013 M35 + 2093 Mogs + 099 Maog + 033 M330
Bs = 011 Mi13 4 2012 Mi93 + 2013 M35 + 2093 Mogs + 099 Mooz + 033 M333
Ou(0, 5,)) du(a, B,)) 9v(a, 5,))
n=—p, o »= i T
2v(a, B, \) *v(a, B, ) *v(a, B, N)
e I e e e
where M - the logarithm of the likelihood function. Then
oM oM oM
M, = 25 My = 28 M= 227
O’M o
MZ]ZW@T/ 1,] :172737 (TiaTj) :(Oé,ﬁ,)\)
PM
Mi' = a3 _ 4 _ 4 _ .7 '7]{; :172737 iy 19 = ) 7)\
jk aTiaTjaTk (Z .] ) (T T] Tk) (Oé 6 )
1
J sz
0; = p1oi + p20ia + p3oiz,  1=1,2,3.
1
04 = V12012 + V13013 + Vogoe3, 05 = 5(?111011 + V29099 + V33033).
dp 14 _Op

= log(w(a, B,A), p1= 9 2T 98’ P3 =5\
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The detailed derivations of equation (42) are given in the appendix.

When information is unavailable for the parameters we use non-informative prior, like
Uniform prior, where
w(f) o 1.

Since the parameter ranges from 0 to oo, we can choose the gamma distribution as the prior
distribution. Therefore,

’ZU(Q) o ar—lﬁp—lAt—le—(as-i-,Bq-i—)\v)

Then the Bayes estimators of the parameters become

1
ap :@+61+§(31011+32021+33031). (43)
A A 1
fp =B+ 0+ 5(31012 + Baogy + 33032>- (44)
2 A 1
)‘B = )\+93—|—§(31013—|—BQO'23—|—330'33). (45)

Metropolis-Hasting algorithm

The Metropolis-Hasting (MH) algorithm (see Tobias(2014)), a general Markov Chain
Monte Carlo (MCMC) technique, is used to generate samples from models that are com-
plicated. Metropolis et al. (1953) developed it initially, then Hastings (1970) developed it
afterwards. The MH algorithm, for sampling from a target distribution, let it be 7, and let
q(65162, ..., Ok, ) denotes a proposal density that generates a candidate 7.

Algorithm:

The MH algorithm is used to simulate a probability distribution p from another
probability distribution ¢, which is easier to simulate. Here p is called target distribution
and ¢ is the proposal. Let #® be the current draw from p(). The MH algorithm performs
as follows:

1. Draw 6* from q(6]6W).
2. Accept 0%+ = §* with the probability min(1,p*) where

. p(0)q(0M]6")
— p(0D)q(6%]0®)

Otherwise, set #¢+D = g®).

That is, accepting with the probability min(1, p*) means that we will be drawing u
according to a uniform distribution on (0,1), and if u < min(1, p*), then accept 6* is accepted;
otherwise, it’s not.

In the Bayesian context, the MH algorithm can be defined as follows: For that, the
posterior distribution will be the form

p(Bly) oc LF (y]0)w(0).

where LF is the likelihood function and w is the prior distribution. The MH algorithm can
be used to simulate p(f|y), by using t(|y) = LF(y|f) x w(#) and a proposal distribution
q(61102, 1), as follows.
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1. Draw 0* from f(0]0,y).
2. Accept 8%+ = * with the probability min(1,p*), where
«_ al0"ly)g(0V]0",y)
q(0D1y)g (67169, y)

Otherwise set ¢+ = 9.

6. Confidence interval

In this section, we propose the asymptotic confidence interval and the bootstrap
confidence interval, for the unknown parameters «, 3, and X of the PGDUS-IK distribution.
6.1. Asymptotic confidence interval

The asymptotic confidence intervals can be used when the MLEs are not in the closed
form. Let us consider the Fisher information matrix I as

—8%log LF  —0%logLF  —8%log LF

Oa? 00 OO
= E —0%log LF  —98%logLF —8%log LF
dadf 32 OBOX
—8%2log LF  —02%logLF —02logLF
HadN dBOX o2

The second partial derivative of log LF' is briefly given in the appendix.

The asymptotic distribution of MLEs 7 = («, 8, A) is normal, with mean zero and
variance-covariance matrix /=!. That is,

I(7 — 1) — N(0,I7Y).
Hence, the asymptotic 100(1 — 1)% confidence interval of «, 3, and A are

& £ 2,91/ Variance(&),
B+ Zp/2\/ Variance(3),

A+ 22\ Variance()\),

and

respectively.

6.2. Bootstrap confidence interval

The bootstrap method is a powerful statistical technique used for estimating the
sampling distribution of a statistic by resampling with a replacement from the observed
data. Let &, B and \ be the MLEs of parameters «, 8 and A. Here we discussed the bootstrap
percentile (Boot-p) confidence interval.

To do that, we need to generate a number (let B) of independent bootstrap samples
from wy,us,...,u;, and it is denoted as ujj,ul,...,uj;, for ¢ = 1,2 ..., B. Then, for each
bootstrap sample, we calculated the MLEs of «, 3, and A\, and the bootstrap MLEs are

denoted as &*, B*, and :\*, respectively.
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Boot-p method

Let Q1,Qs, and Q3 be the CDF of &*, 5*, \* respectively. Then (1 — 7)% percentile
confidence intervals are

(@' (n/2). Q7' (1 = n/2),
(Qs"(0/2). Q51— n/2),

and
(Q5'(n/2), Q5" (1 —n/2))

respectively.

7. Simulation study

In this section, the simulation study is used to examine the performance of estimators
of PGDUS-IK(a, 8, A) distribution parameters.

By using the quantile function, a random sample of the PGDUS-IK(a, 3, A) distribu-
tion can be simulated by using

U= <1— (1og(1+ji(e—1)))‘l*> -1, 0<j<l1

Q |~

where j from U(0,1).

Here, differnt values of the sample size, [ = 50, 100, 200, 300, and 400 are considered
and replicated 1000 times. The performance of MLE, MPS, and Bayes estimators of each
parameter is examined using their biases and MSE values(see Table 1). Bayes estimators
are obtained only by using informative prior gamma under the squared error loss function.
It is observed that, biases and MSE values decreases to zero as sample size [ increases.

8. Application

This section compares the PGDUS-IK distribution to DUS-IK distribution, IK dis-
tribution, and Weibull distribution. For that, we are using a vinyl chloride data obtained
from clean upgrading monitoring wells in mg/L by Bhaumik et al. (2009) (Table 2).

A number of factors, including the p-value, log-likelihood value, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogrov-Smirnov (K-S) statistic
can be applied to compare statistical models in order to evaluate which one has a better
relative goodness-of-fit with the data. Lower K-S statistic, AIC, and BIC values indicate
greater correspondence between the observed data and the model. Additionally, higher p-
values and log-likelihood values indicate a stronger fit between the model and the observed
data. If a single criterion consistently favors one model over another, that model is likely
the better choice.

Based on the table values (see Table 3), compared to the other distributions de-
scribed, PGDUS-TK(«, 3, A) possesses the lowest AIC, BIC and KS-statistic values moreover
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Table 1: Simulation study for MLE, MPS and Bayes estimation for the values
a=04,5=08X1=0.3

A~ = ~ 7

method 1  bias(&) bias(f) bias(\) MSE(&) MSE(S) MSE(\)
50  0.03124 0.26774 0.32454  0.01357  0.53269  4.10082

100 0.01458 0.16442 0.14788  0.00618  0.31273  0.67138

MLE 200 0.00782 0.06756 0.15049  0.00285  0.18506  0.43009
300 0.00497 0.04771 0.08236 0.00187  0.12485  0.14573

400 0.00307 0.03249 0.07471 0.00136  0.10573  0.13432

50  0.12090 1.08723 0.00376  0.03668  2.46970  0.47450

100 0.06039 0.73472 -0.02447 0.01127  1.16509  0.13256

MPS 200 0.03159 0.45171 -0.01279 0.00437  0.56686  0.07379
300 0.01998 0.36702 -0.01325 0.00256  0.39957  0.04617

400 0.01542 0.28923 -0.00465 0.00178  0.30120  0.03975

50  9.37736  2.68987  2.7458  0.00936  7.23541  7.53963

100 0.03769 2.20796 0.49767 0.007187 4.87509  0.24768

Bayesian 200 0.03386 1.03768 0.65245 0.00413  1.07678  0.42570
300 0.03319 09113  0.6275 0.002381 0.83049  0.39383

400 0.021983 0.2 -0.69736  0.00156  0.096756 0.48632

Table 2: Vinyl Chloride data

5.1 1.2 13 06 05 24
05 1.1 80 08 04 04
06 09 04 20 05 1.2
53 3.2 27 29 25 0.2
23 1.0 02 01 01 18
09 20 40 638

a high log-likelihood value and p-value by the MLE, MPS, and Bayesian methods. We can
therefore conclude that the PGDUS-IK distribution performs better than the given existing
distribution for modeling a parallel system.

In Table 4, the estimated parameter values (based on the ML method) along with
their 95% confidence interval, based on 1000 bootstrap samples for vinyl chloride data (see
Table 2), are given.

9. Stress-Strength reliability (SSR)
Single-component SSR

Let U indicate the strength of a component or system that is subjected to a random
stress, V. The system’s functioning is then defined by stress-strength reliability. If U and V
are distributed as PGDUS-IK(a, 8, A1) and PGDUS-IK(«, 3, \2), respectively, then stress-
strength reliability is defined as

R=P(V <U)= /000 qu(u)Qy (u)du

)\ & -1 —a —a
= (O%;IHQ/ (14 u)~ Y (1 —(1+ u)_o‘)ﬁ (- (1+u)7%)7 <e(1‘(1+“) Y 1)
€— 0

At+A2—1

du.
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Table 3: Data Analysis
Distribution Estimates | KS Statistic | Log(L) | p-value AIC BIC
2.0103
MLE 5.9354 0.0884 -55.4280 | 0.953 | 114.856 | 117.9088
0.3584
1.7439
PGDUS IK MPS 2.1148 0.1229 -56.1242 | 0.6834 | 116.2484 | 119.3011
0.9072
2.0004
Bayesian | 4.2964 0.08707 -55.5094 | 0.9588 | 115.0187 | 118.0715
0.5078
1.9467
MLE 1.8296 0.0892 -55.5702 | 0.9497 | 115.1403 | 118.193
1.7365
DUS-IK MPS 1.8928 0.1244 -56.5598 | 0.6692 | 117.1196 | 120.1723
2.2306
Bayesian 2.8658 0.1569 -57.1064 | 0.3725 | 118.2127 | 121.2654
1.7409
MLE 2.1059 0.0966 -55.7707 | 0.909 | 115.5414 | 118.5941
1.5286
IK MPS 2.1388 0.1136 -59.4084 | 0.7729 | 122.8169 | 125.8696
1.9060
Bayesian | 2.9559 0.1409 -57.00978 | 0.5095 | 118.0194 | 121.0721
1.0102
MLE 1.8879 0.0918 -55.4496 | 0.9366 | 114.8992 | 117.952
1.1075
Weibull MPS 2.2840 0.1735 -105.4977 | 0.2577 | 214.9953 | 218.0481
0.8033
Bayesian | 1.5418 0.16938 -56.9383 | 0.2835 | 117.8766 | 120.9294
A1+A2
Take a = <e(1_(1+u)_a)6 — 1> , hence the stress-strength reliability becomes
Jrp— A >0, A>0 (46)
- )\1 +)\27 1 ) 2 .

To evaluate the reliability value, we need to estimate the parameters first.

Multi-component SSR

Let’s consider a system comprising identical d components, which operates success-
fully if at least ¢ (1 < ¢ < d) of these components survive a shared random stress. This

Table 4: Estimate value and 95 % bootstrap CI of Vinyl Chloride data

Method « 15} A
MLE | Estimate 2.0103428 5.9354142 0.3584253
CI (1.623967,2.791699) | (1.981512,23.06395) | (0.12504,1.286034)
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situation is called multi-component systems. Bhattacharya and Johnson (1974) first stud-
ied the multi-component stress-strength reliability system and defined the reliability of a
multi-component stress-strength model as

R.q = Pr{at least ¢ of the (Uy,Us,...,Us) exceed V}. (47)

Let U = (Uy, Us, ..., Uy) be random strength variables from PGDUS-IK(«, 5, A1) with
CDF H(u), and V be the random stress variable from PGDUS-IK(«, 3, A2) with CDF Q(v).
Then the reliability of a multi-component stress-strength model defined by Bhattacharya
and Johnson (1974) is given as

ra= 3 (1) [0 )y o-aow

[e.e]

d < afA (a —a\B L (1 (14w -8
O ety

Ao—1 (17(1+u)_°‘)ﬁ . A1\ d—i (17(1+u)_0‘)ﬁ . A1\ @
e-(+0)™)7 _ c ! 1- (€ ! du
e—1 e—1

d
d af B-1 _
—(a+1) . —a (1—=(14u)~®)#

-2 () [ @ -y

A1 (d—i)+Aa—1 , an\
e=(L4u)=*)% 1> ((e _ 1))\1 _ (6(1—(1+u)*“) _ 1) ) du
d i . (—1)Pa B
ZZ( > <p> (6 _ 1)/\1(d+p—i)+>\2

i1=c p=0

1=

/ T(1 4 ) e (1 (1)) ety <e<l<1+“>““>‘* —1 du
0

:éﬂ;< ) ( ) A (dip)—p)z\i—k)\g

That is,

> A1 (d+p7’i)+)\2 —1

w—ZZ()() (dip)—]))z\§+)\2 A >0, Ay >0 (48)

i=c p=0

Suppose U = (Uy, Uy, ..., Uy) are parallelly connected, then ¢ = 1 and R, 4 will become

Rld—ZZ<><>M( D" A >0, X > 0.

i=1p=0 d+p—1i)+ A’

Similarly, when U = (Uy, Us, ..., Uy) are connected in series, so ¢ = d and

d
A
Z()h )\1>0, )\2>0.

)\1]) + )\2



2024] PGDUS-IK DISTRIBUTION 343

9.1. Estimation of reliability

To obtain the estimates of both single-component SSR and multi-component SSR, we
need to get the respective parameter estimates. Hence, here we are using the ML method.
Let U=(U; < Uy < ...<U)and V = (V} <V, < ... <V,) be the random samples from
PGDUS-IK(«, 8, A1) and PGDUS-IK(«, 5, A2), respectively.

9.1.1. Estimation of R

The likelihood function for the observed samples for § = («a, 3, A1, A2) can be written
as follows:

LF(u,v,0)

l aBX 1 1 (1 -8 (1—(1 —)B A—1
= I g (i) P ()00 g
e_

z )\ - 3
H < B _1_1;]) (a+1)(1 _ (1 +Uj)—a)ﬁ—1e(1—(1+vj) )6(6(1—(1+vj) CE 1),\2_1>
U
(e —a\B=1,(1=(14u;) )" —(14u;)~®)B _
< c_1 /\1> H 14 ;)@ (1 — (1 4 ) 7))l (Hu) ™7 (p(=(tu) )% _ =t

< = ) ﬁ 1+ ;)7L — (1 4 ;) 7)) 77 (=40 ™7 q)le=t,

log LF = (I + z)(loga + log ﬁ) + llog A1 + zlog Aa — (I\1 + zA2) log(e — 1)

—(a+1) (Zlog(l + u;) + zz:log(l + Uj)) + (B — 1)<Zlog(1 —(1+wu)™)

i=1 j=1 i=1

+ ilog(l —(1+ vj)—“)> + 2(1 — (14 u)™ )" + XZ:(1 — (1 +v,)™™)P?

j=1 j=1
+ (A — 1) Zlog ( ~(u) ™7 _ 1) + (A —1)> log (e(l_(1+”j)7a)6 — 1).
j=1

Compute the partial derivatives of the logLF with respect to the parameters «, 5, A1, and
g, respectively. That is,

dlog LF l+z
da «

Zlog 1+ u;) +Zlog 1+v]>

=1 j=1

: (1 +u;)"*log(1 —l—ul = (1 +v;) " log(1 + vy)
‘I’(ﬁ_l)(; (1—(1+u1) +j2::1 1—(1—1—%) ) >

!
(Z 14 ) (1 — (1 +uy) ") log(1 + uy)
=1
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+3 (X +v) (1 — (1 +v;)"*)" og(1 + v;)
=1
Lo+ )1 — (14 u) )P log(1 + u;)et~(Hu)™)”
=12, (—(Fu) =) _ 1

i=1
2 (14 v) (1 = (14 v;)7)P  log(1 + v, )el—0Fe) ™"
e =12 e0—(o) )7 _ ] ’

Jj=1

aloagﬁLF—l;z+<;log 1— (14 u)” —i—;log 1—(14+wv,)” 0‘))
) “)?log(1 — (1 +u;)™) + X5 (1 — (1 +v;) ") log(1 — (1 +v;)7%)

! (1+u;)™) Be(—(14ui)~*)? log(1 — (1 + ui)_a)>

—(1

_l’_

>\1 N 1 e(1=(14u;)=)8 _q

I
-

7

Ay —1) - (14 v;))Pet=0+0) " 16g(1 — (1 +v;)~*)
27 ]2 (=) ~)7 _ ’
Olog LF 1 (ug)-)?
o A—l—lloge—l +Zlog( —1),
(9 log LF z 1 (1+,Uj)7a)ﬁ
W )\—Z—zloge—l —|—Zlog( —1).

Then, the MLEs of o, 3, A1, and Ay can be determined by solving the following equations::

Olog LF _0 dlog LF dlog LFF OdlogLF
o - aﬁ - 8)\1 - 8)\2 N

Substituting the estimated values for a and 3, we get the MLE of A\; and A, as

. l

>\1 = I _ N—a\B 5
llog(e — 1) — ¢:1(10g(e(1 (IFus) ™) )—1)

. z

Ay = _ .
zlog(e — 1) — X°%_, (log(e(—(4vs)~ )ﬁ) -1)

Hence, the MLE of R will be

. X
R=—="1—) M>0 X >0. (50)
X+ X

9.1.2. Estimation of R,

To compute the MLE of multi-component reliability, R, 4, assume that U;, Uja, ..., Uig
and V;, i = 1,2,...,1 denote the observed data obtained using PGDUS-IK(a, 8, A1) with pdf
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h(u) and PGDUS-IK(a, 8, Ag) with pdf g(v), respectively. The likelihood function can be
defined as:

LF, 4(u,v,0) = H(Hhu”)

=1 :

( ) (d+1) )\ld)\l d (atD) 51 (1 a a8
o+ +uij)
e z<dM>H<H Lt )DL = (1)) f

(6(1*(14*1“‘]') *) ) v 1> 1+ ;) @D (1 — (1 4 v;)~)F L) ™)
(=00 _ 1)*

The logarithm likelihood function will be

log LF 4
=1(d+1)(loga +log 8) + Idlog Ay + Ilog Xy — I(dAs + o) log(e — 1)

—(a+1) (ZZlog 1+ w;;) —l—Zlog 1+vz)> —l—(ﬂ—l)(ZZlog(l— (1 + ui)™)

i=1j= =1 i=1 j=1
I d d
—i—Zlogl—(l—l—vl a>+221— 1T+u;) )+ (1= (1+v;)" %)’
=1 i=1j=1 i=1

+ (A —1) zl:ilog((l (I4ug)=*)" —1) + (A —1) Zlog( ~(14vi) Q)B—l).

i=1j=1

Consider the partial derivative of the logLF 4 with respect to the parameters and solving
them by equating to zero, we can obtain the MLEs of the unknown parameters a, 3, A\; and
g, respectively. That is,

dlogLF.q  OlogLF.q 0 dlog LF.q  OlogLF,4

Oa o o A )Y =0
where
Olog LF., l(d+1) lL d
d _ — <ZZIog(1—|—u” —l—Zlog 1+Uz)>
O @ 1=1j=1 i=1

L (1 + uy)” O‘log(l—i—u L(1 4 v;) " log(1 + v;)

+ 5-1)( i i) | i )

( z:ljzzzl (1 - (1 + ul]) ; 1 — (1 —+ Uz) )

l d
+ 5(2 (L F i) (1= (L4 ) ™) og(1 + uyy)

+ ' (T4+v) (1= (1 +wv)" O‘)ﬁ_l log(1 + v;)
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L (1 ui) (1= (14 ) =) log (1 + uyy)el! (M) ™)
+ ()\1 - 1) Z Z ’ e(l—](l—i-uij)*a)ﬁ -1 ’
i=1j5=1
Ao —1 (L4 o) (L= (14 0,)™) 7 log(1 4 v;)et-Ce) ™)
+ (2 —1) — e(1—(14v:) =) _ 1 '
dlog LF.q 1 d l
Og@ﬁ d (d+ <ZZlog (1 — (1 + uyy) a)+Zlog(1—(1+vi)_Q)>
=1 j=1 =1

+> Z(l — (14 ugy) ) log(1 = (1 + ug)™*)

i=1j=1

+ Z(l — (14 v;)"*) log(1 — (1 +v;)™)

(1= (14 ug)~®)Pel=04u) " Jog(1 — (1 4 uy) ™)
+ <)\1 - 1)(2 Z 6(1_(1+u11) ) _ 1 >
=1 j5=1
Lo(1 = (14 ;)" )Pel=040" 1og(1 — (1 + v;) ™)
+ (%2 — 1) (; e(l=(1+v) =) _ 1 )
log LF, Ld o
Olog Llea _ 1 10100 1) £33 log (O™ 7).
O\ A1 P
Olog LF.; 1 : (1 (140;)=a)8
o = A—Q—lloge—l +;10g(e —1).

By substituting the MLEs of o and (3, the MLEs of A\; and Ay will be in the form

N ld
>\1 = )

ldlog(e — 1) + 3!, Z;l:l log (6(1—(1+uij)_d)ﬁ—l)

and

- l

9 =

llog(e — 1) + X!, log (e(l_(lwi)d)ﬁ_l)

Hence, the MLE of stress-strength reliability of the multi-component system will be

m-ZZ()()A(( gt A >0, Ao >0

i=c p=0 d+p_2)+)\2

9.2. Asymptotic distribution

This section discusses the asymptotic distribution of R and R, 4 by using their MLEs.
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9.2.1. Asymptotic distribution of R

The asymptotic distribution of MLE of R is normal with mean zero and variance-
covariance matrix /~1(0). That is,

VIi+o(R—R) = N(0,GTI'(9)G) (52)

T OR OR OR OR
WhereG - <87a787ﬁ’87)\1787)\2)

I71(0) - inverse of Fisher information matrix for unknown parameters

—02logLF  —8%logLF —8%logLF —9%log LF
Oa? 003 OO O0adAo
—0%logLF  —0%logLF —0%logLF —9%logLF

_ Qa0 LR 98OI OBOA2
I(Q) =F —93%log LF  —92%log LF  — 2‘Blog LF =& 2Blog; LF

OO\ OB 8)\% ON10Aa
—8%logLF  —982%log LF  —0%logLFF  —8%log LF
OadAa 0BOA2 OA10A2 )Y

Second order partial derivative of the log-likelihood function with respect to each parameters
a, B, A1,and Ay are briefly derived and given in the appendix. Due to the complexity of the
expectations, an approximate estimation of the variance-covariance matrix of («, 3, A\, Ag)

is I71(a, B, ):1, ):2), where &, B, ):1, and X, are the estimates of the respective parameters.
From Eq.(45), we can obtain the approximate estimate of the variance of R as

Variance(R) ~ GTI7'G.

Thus, A
(R —R)

Variance(R)
This yields the asymptotic 100(1 — )% confidence interval for R as

~ N(0,1).

R+ Z,2\/Variance(R)

where R is the MLE of R and Zys2 is the upper (n/2)™ quantile of the standard Normal
distribution.

9.2.2. Asymptotic distribution of R4

Similarly, for large sample size, the asymptotic distribution of MLE of R. 4 is given
by
VI+1d(Reg— R.q) — N(0,GTT7'G)

T 8Rc,d aRc,d 8Rc,d 6Rc,d
where G - ( da ’ 98 ' On ' Do
and 7! - variance-covariance matrix or inverse of the Fisher information matrix

and is given by

—92log LF. 4 —82log LF. q —02log LF. 4 —0%log LF, 4

da? 0adB Oad\1 Oada
—02log LF. 4 —9?log LF, q —02log LF, 4 —0%log LF, 4
-1 _ dadf 0B 9BON 0BOA2
I =k —92log LF, 4 —92log LF, q —02log LF, 4 —0?log LF, 4
dady 9BON (9)\% OA10A2

—0?log LF, q —82log LF, 4 —02log LF, 4 —0?log LF, 4
Odada PO ON10A2 8)\%
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The second order partial derivative of log-likelihood function with respect to the parameters
a, B, A1, and Ay are derived and given in the appendix. An approximate estimation of the
variance-covariance matrix, I (4, B , ):1, ):2), of the parameters can be obtained by replacing
the values with the estimate values of o, 5, A; and Ay, respectively. Hence we may estimate
the variance of R.4 as

Variance(R,q) ~ GTI7'G

. < aFic,d 2 . % a]—_{c,d 2 aRc,d aP'«c,d —
:Vamcmce()\l)< o, ) —i—Vamance()\g)( 8)\2> +2 DN O I (53)
where
- 2log LE.4\\
Variance(A) = (E( — W))
O\
- 2log LE.4\\
Variance(Ag) = (E( - W))
OAg
and

2 —1
I = (E( _ log Ll LFd)) .
OX10%

(Rc,d - Rc,d)
\/Vamfance(}?c’d)
and the asymptotic 100(1 — )% confidence interval for R, is given by

for large sample size,

~ N(0,1)

A ~

Rea £ Zy)o \/Var{ance(Rcvd)

where ]%c,d is the MLE of R, 4 and Z,, is the upper (n/ 2)t" quantile of the standard Normal
distribution.

9.3. Simulation study

Here, a simulation study is carried out to compare the performance of MLEs of R and
R, 4 in terms of their biases and MSEs. Here we use the parameter values (a, 5, A, \2) =
(2.5,0.5,6,5), then the theoretical value of R is 0.5454545.Additionally, we calculate the
confidence intervals using the ML method.The simulation results of R are given in Table
5. For R4, take the values (c,d) = {(2,4),(3,6),(1,3)} in each sample size (1,z). The
simulation results of R, 4 are reported in Table 6.

From the simulation results of both R and R. 4, it is noted that as the sample size
(1, z) increases, the biases and MSE values decrease. For the single-component stress-strength
model, we considered (I, z) = {(10, 10), (30, 30), (50, 50), (100, 100) }. In the case R.q, we are
considering another combination of sample size ([, z) as given in Table 6. The theoretical
values of R, for different values of (c,d) = {(2,4),(3,6),(1,3)} are 0.6476762, 0.6228523,
and 0.7826087, respectively.
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Table 5: Simulation study for Stress-Strength reliability for parameter values
a=258=05 A =6, =5, R=0.5454545

7oy

(1,2) R Bias | MSE 95% ACI
(10,10) | 0.5477 | 0.0022 | 0.0144 | (0.54750, 0.54793)
(30,30) | 0.5467 | 0.0012 | 0.0041 | (0.54564, 0.54772)
(50,50) | 0.5451 | -0.0004 | 0.0026 | (0.52439, 0.56579)

(100,100) | 0.5453 | -0.0002 | 0.0013 | (0.48744, 0.60314)

Table 6: Simulation study for Multi-component Stress-Strength reliability for
parameter values a =25, =051\ =6, =5

Ry = 0.6476762, Rs s = 0.6228523, R 5 = 0.7826087

Y 1| Ruy Bias MSE 95% ACI
(2,4) [ 10 [0.6824 [ 0.0347 | 0.0012 | (0.68195, 0.68270)
30 | 0.6767 | 0.0289 | 0.0008 | (0.66641,0.68694)
40 | 0.6542 | 0.0065 | 4.1882e-05 | (0.65342,0.65488)
80 | 0.6296 | -0.0179 | 0.0003 | (0.62722,0.63228)
500 | 0.6447 | -0.0029 | 8.9723e-06 | (0.61204,0.6773)
(3,6) | 10 [0.5876 | 0.0353 | 0.0013 | (0.57622, 0.59892)
20 | 0.6552 | 0.03231 | 0.0010 | (0.58033,0.72999)
50 | 0.6413 | 0.0184 | 0.0003 | (0.63725,0.64531)
100 | 0.6366 | 0.0138 | 0.0002 | (0.53606,0.73716)
( )
( )

500 | 0.6337 | 0.0108 0.0001 0.62503,0.64230
(1,3) | 10 | 0.8313 | 0.0487 0.0024 0.27759,1.38508
40 | 0.7972 | 0.01457 0.0002 (0.72687, 0.86749)
80 | 0.7860 | 0.00342 | 1.1702e-05 | (0.78464,0.78856)
100 | 0.7729 | 0.0022 | 4.6651e-06 | (0.75395,0.79199)
500 | 0.7846 | 0.00191 | 3.7655e-06 | (0.75172,0.81736)

9.4. Data analysis

In this section, we analyze two real datasets introduced by Badar and Priest (1982)
to illustrate the use of our proposed estimation method. The first data set (denoted by U) is
strength measured in GPA for single carbon fibers tested under tension at a gauge length of
20mm. The second one (denoted by V) is the strength measured in GPA for single carbon
fiber tested under tension at a gauge of 10 mm.

The PGDUS-IK(«, 5, A) model fits both data sets. The estimated values of the pa-
rameters are obtained. Log-likelihood values, KS values with corresponding p-values, CVM
values with corresponding p-values, AIC, and BIC values for both datasets are given in the
table. The estimated value for reliability is obtained as 0.2127864.

In the case of the multi-component stress-strength model, the same data set fits with
the model for each value of (¢, d) = {(1,3), (2,4), (3,6)}. The parameter estimators,reliability
estimate value, K-S values with p-value, and CVM values with p-value are given in Table 8.
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Table 7: Stress-Strength Data analysis
Estimates K-S(p-value) | CVM(p-value) | Log-Likelihood AIC BIC
& =747 0.13565 0.36097 -47.36073 98.72146 | 103.0077
£ =2476.96 (0.1966) (0.09158)
A1=1.36468 0.087442 0.07484 -135.015 274.03 | 278.3136
X=5.04871 (0.7211) (0.724)
Table 8: Data Analysis of Multi-Component SSR Model
(c.d) Estimates U \Y%
" | Rea K-S (p) | CVM (p) | K-S (p) | CVM (p)
7.3788
(1,3) | 0.45163 | 2124.06 0.13587 | 0.35368 | 0.08338 | 0.07191
1.4377 (0.1952) | (0.09586) | (0.7735) | (0.7417)
5.2369
7.3625
(2,4) | 0.23708 | 2072.29 0.13651 | 0.35254 | 0.08263 | 0.07148
1.4474 (0.1909) | (0.09655) | (0.7829) | (0.7443)
5.2571
7.3441
(3,6) | 0.18989 | 2017.05 0.13725 | 0.35133 | 0.08178 | 0.07104
1.4574 (0.1862) | (0.09729) | (0.7935) | (0.747)
5.2762
10. Summary

The present paper proposes a new lifetime distribution, called the PGDUS-IK dis-
tribution, with parameters «, 8, and A, respectively, by using the PGDUS transformation
on the IK (a, 8) distribution for modeling a parallel system. The statistical properties, in-
cluding moments, moment generating function, characteristic function, cumulant generating
function, quantile function, order statistics, and entropy, are derived. Also, the expected
additional lifetime given that the system has survived until a time ¢ is defined in terms of
its mean residual life function. Then we move on to the topic estimation of unknown pa-
rameters «, 3, and A\ of the proposed distribution. In this paper, we consider different types
of estimation methods, such as the MLE method, the method of maximum product spacing
estimation, the method of moment estimation, the method of least squares estimation, and
bayesian analysis, respectively. The confidence interval is a range of values that describes the
uncertainty around an estimate. For PGDUS-IK(«, 3, A), asymptotic confidence interval and
bootstrap confidence interval are obtained. Simulation of data from the proposed distribution
is obtained by three different methods: MLE, MPS, and Bayesian. Table 1 shows that, biases
and MSEs for the parameters «, 3, and A decrease with increasing sample size. A dataset of
vinyl chloride data obtained from clean upgrading and monitoring wells is used for the data
analysis. It can be concluded that the proposed PGDUS-IK is effective in providing a better
fit of data when compared with other competing distributions, such as the DUS-IK, 1K, and
Weibull distributions. Stress-strength reliability for single-component and multi-component
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models is discussed. Reliability estimates in both models are obtained from the parameter
estimate values. The asymptotic distributions of single-component stress-strength reliability
and multi-component stress-strength reliability are derived. As the sample size increases,
the biases and MSEs of the simulated estimator of reliability in both models decrease. Both
the single-component SSR model and the multi-component SSR model are applied to real
data obtained from Badar and Priest (1982) and show that both models fit the data.
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In the case of multi-component stress-strength reliability, the log-likelihood function is given
as
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