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Abstract
We consider the problem of data integration in small area estimation, where a non-

probability sample (nps) and a relatively small probability sample (ps) are available from
each area. By definition, for the nps, there are no survey weights, but for the ps, there
are survey weights. A recent method, based on a pseudo-likelihood, is used to estimate
the survey weights in the nps, and thereafter assumed known. The key issue we address is
that the nps, although much larger than the ps, can lead to a biased estimator of a finite
population quantity of each area but with much smaller variance. We assume that there are
common covariates and responses for everyone in the two samples, no covariates available for
nonsampled units, and no overlaps of the two samples by area. In the data integration, we
use the nps to construct a prior for the ps, and partial discounting of the nps is incorporated
to avoid a dominance of the prior. Inverse probability weighting is used to assist Bayesian
predictive inference via surrogate sampling of the finite population means and percentiles.
The Gibbs sampler, with some collapsing to speed up convergence and to provide strong
mixing, is carefully executed to fit the joint posterior density. In our illustrative example on
body mass index, our data-integrated model is preferred over the ps only model and other
competitors. The data-integrated model provides small area estimates, roughly similar to
those of the ps only model, with larger precision.

Key words: Bayesian diagnostics; Finite population quantities; Gibbs sampler; Inverse
probability weighting; Power prior; Surrogate samples.

1. Introduction

We assume that there are data from a number of small areas, and from each area
we have a non-probability sample (nps,1) and a probability sample (ps, 2), the probability
sample being much smaller than the non-probability sample. The problem is how to improve

Corresponding Author: Balgobin Nandram
Email: balnan@wpi.edu & balgobin.nandram@usda.gov

http://www.ssca.org.in/journal.html


344 BALGOBIN NANDRAM AND J. N. K. RAO [Vol. 22, No. 1

inference for each area based on the ps, but supplemented by the nps, and we do not want
the nps to dominate the analysis. While the nps may be biased, the ps is considered unbiased
when the survey weights are incorporated. In a similar manner, because of its size the nps
will provide improved precision but it will provide biased estimates, which we do not want
to happen. Probability sampling is the gold standard among all data collection procedures,
but this is still problematic because nonresponse has become a serious concern. How can we
provide small area estimates with relatively small bias, possibly closed to the ps, with better
precision than only the ps can provide?

There are efforts to combine both probability and nonprobability samples to produce
a single inference that compensates for the limitations of each process. Typically the non-
probability sample is relatively large, as in big data, but one needs to be careful with the bias
it introduces into the final estimates. Meng (2018) argued that a small bias in big data can
be catastrophic; see also Nandram and Rao (2021, 2023) for a review and an interpretation
of Meng (2018) relevant to nonprobability sample. Perhaps if one uses only the covariates
in the big data, there may not be significant bias, but it is a different issue if one wants to
use the study variable from the big data as well.

Most of the work on nonprobability sampling has been in the non-Bayesian setting,
mostly randomization-based analysis. For example, Elliott and Haviland (2007) evaluated
a composite estimator to supplement a standard probability sample with a nonprobability
sample. They showed that the estimator, based on a linear combination of both sample pro-
cesses and a bias function, can produce estimates with a smaller mean squared error (MSE)
relative to a probability-only sample. See Elliott and Valliant (2017) for an informative
review of the design-based approach, where they discussed quasi-randomization.

Sakshaug et al. Blom (2019) and Wisnioski et al. (2020) introduced a Bayesian
approach in which survey weights are incorporated as a covariate and there is no need to
estimate the probabilities of the nps. The underlying idea is that probability and nonprob-
ability samples can be integrated in a way that exploits their advantages to compensate for
their weaknesses and improve estimation of model parameters. Salvatore et al. (2023) used
a similar idea for binary data via logistic regression. Nandram and Rao (2021, 2023) showed
how to combine a nps and a ps using a Bayesian model. They argued that the nps should
be used to construct a prior, together with a discounting factor, and to obtain a prior for
the hyper-parameters in the model, which begins with a weighted likelihood. As pointed
out by both Sakshaug et al. (2019) and Wisnioski et al. (2020), it will be better to use
a nonprobability sample to supplement a probability sample; see also Nandram and Rao
(2021, 2023). Salvatore et al. (2023) also supported our idea.

Chen, Li and Wu (2020) used a ps and a nps to obtain survey weights in the nps in the
design-based approach, where they made strong use of the Horvitz-Thompson and the Hajek
estimators. There was no study variable in the ps and so this is really a very limited data
integration problem. Actually their method cannot be extended to accommodate a study
variable in the ps. Also, their method uses logistic regression to construct the propensity
scores and then the survey (design) weights are obtained by taking reciprocals. This is
ignorable selection. A summary of the approach of Chen, Li and Wu (2020) for propensity
scores is given in Appendix A. For small area estimation, the computational procedure of
Chen, Li and Wu (2020) is unstable, so we had to do this procedure for the entire ensemble
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at once, not each area at a time.

As pointed out by a reviewer, we should present the reasons why we do not use non-
ignorable selection. We used ignorable selection because within the framework of Chen, Li
and Wu (2020), it is not possible to obtain the propensity scores unless you want to use a
mass imputation to ‘manufacture’ the values of the study variable for the probability sample.
This is not in the spirit of our paper because we have the study variable for both the non-
probability sample and the probability sample; yet we use the method of Chen, Li and Wu
(2020) to get the propensity scores. We realized that we could have used both samples to
get the propensity scores in the non-probability samples, but it does not fit directly into the
framework of Chen, Li and Wu (2020). Non-ignorable selection is defined as

f(I = k, y | x) = P (I = k | y, x)f(y | x), k = 0, 1,
where I is the participation variable, y the study variable and x the covariates. We have
ignorable selection if P (I | y, x) = P (I | x), which is simpler than non-ignorable selection.
Clearly, non-ignorable selection is preferred but it leads to computational instability. See
Nandram and Choi (2010) and Nandram (2022) for more discussions on non-ignorability.
One difficulty is that one needs y to be strongly related to x and at the same time, both
x and y are used as covariates in the participation model. New research is needed at least
within the Bayesian paradigm; see Marella (2023) for recent work on nonignorability, not
within the Bayesian paradigm though. Data integration can be discussed without mentioning
how the data are selected; see Salvatore et al. (2023) for binary data and others.

It is worth noting that all the above mentioned work do not consider data integration
for small areas. Beaumont (2020) argued that it is sensible to use a non-probability sample
to supplement a probability sample in small area estimation; see also Beaumont and Rao
(2021). For one thing, small sample sizes within small areas do not lead to adequate precision.
The small area model will include random effects as an attempt to discriminate the areas.
These works use the area-level Fay-Herriot model. However, there is virtually no work
using the unit level model like that of Battese, Harter and Fuller (1988) for integration of a
non-probability sample and a probability sample partly because it is a less practical to get
unit-level data in both the nps and the ps, but it is possible. Again see Nandram and Rao
(2021, 2023).

Rao (2020) stated that a non-probability sample can be used to construct covariates
for probability samples in small area estimation. The use of area level big data as additional
predictors in the area level model has the potential of providing good predictors for modeling.
He mentioned four applications that have used big data covariates in an area level model;
see Marchetti et al. (2015), Porter et al. (2014), Schmid et al. (2017) and Muhyi et al.
(2019) for the four applications. Rao (2020) also cited applications where unit level models
are used; see Chambers et al. (2019). Again, if one wants to use both the study variable
and the covariates from the big data, one might need the unknown selection probabilities.
However, one does not really need to estimate the selection probabilities because one can
use structural (measurement error) models; see discussions in the concluding remarks and
Berg et al. (2021). One drawback of structural models is that there will be non-identifiable
parameters which will create difficulties in model fitting, especially if Markov chain Monte
Carlo methods must be used.

In our paper, we actually used a power prior to discount the non-probability sample,
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which we treat as historical data to construct a prior distribution for the parameters of the
probability sample. The parameters in the two models are basically the same, and their
priors come from the non-probability sample. In general, if you start with a density, g(y | θ),
we can penalize it by using

f(y | θ, a) = {g(y | θ)}a�
{g(y | θ)}ady

, 0 ≤ a ≤ 1.

So we actually use f(y | θ, a) for the non-probability sample and g(y | θ) for the probability
sample. For example, if a = 1, there will be no discounting, and if a = 0, the non-probability
sample will not be used. Details of the power prior in data integration is reviewed in Nandram
and Rao (2021, 2022); see Ibrahim and Chen (2000) and Ibrahim et al. (2015) for a review
and many applications of the power prior in more general settings.

Small area estimation (SAE) is an important problem facing many government agen-
cies. They want to do estimation for each area, but for most small areas the direct estimates
are unreliable. Then, pooling of the data over the entire ensemble is required to get reli-
able estimates for each area. While the SAE problem is difficult in its own right, there is
additional complexity to integrate the non-probability sample and the probability sample.

To focus our development, we study body mass index (BMI) as the variable of interest
with covariates, age, race and sex, from eight counties in California, based on a probability
sample. The covariates, responses (BMI) and survey weights are all known. We construct a
small-area example out of these data with two samples from each of the eight counties (about
80% for nps and 20% for the ps). To form a practical example, we discarded the weights
from the nps and they are assumed unknown. The population size of each county is roughly
the sum of the survey weights in the ps. Here, the covariates, responses and survey weights
in the nps are respectively (x1ij, y1ij, w1ij), i = 1, . . . , ℓ, j = 1, . . . , n1i, and the covariates,
responses and survey weights of the ps are (x2ij, y2ij, w2ij), i = 1, . . . , ℓ, j = 1, . . . , n2i; the
survey weights w1ij are unknown in the nps.

The small area model has the following features.

a. The two sets of covariates are commensurate (i.e., the same covariates are measured
in the non-probability sample and the probability sample; or at least only a common
set of covariates will be used).

b. Pooling will take place using a common set of regression coefficients and variance
components over all areas in the two samples. The nps is essentially used to construct
a prior for the hyperparameters and this prior is discounted using a power prior.

c. Within an area, the random effects are the same in the model that links the non-
probability sample and the probability sample.

d. It is possible to have some areas with only a probability sample, and some areas with
only a non-probability sample, but there must be a common set. This can be done
within our approach, but we will not pursue this issue further in this paper.

Finally, a reviewer asked why there is a need for super-population models. Clearly, it
will be better to do data integration without specifying the super-population model. Most
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Bayesian methods used the super-population model; Wang et al. (2018) is an exception and
it uses an approximate Bayesian method. In fact, they used the sampling distribution of a
summary statistic to derive the posterior distribution of the parameters of interest, but this
is not quite within the Bayesian paradigm. However, there is a need to robustify both models
for the study variable and the participation variable. We have indicated how to do so in the
concluding remarks, and this is an on-going activity. In our on-going research work, by using
a double mass imputation (Kim, et al. 2021, Chen, et al. 2022), we can avoid a participation
model but we do need a robust model for the study variable if we use a Bayesian method.
One of the authors gave a couple of talks on this topic already.

This paper has five sections, including this one, and it is an extension of Nandram
and Rao (2021, 2023) to cover Bayesian data integration for small areas. In Section 2, we
review the single area model of Nandram and Rao (2021, 2023). In Section 3, we discuss
small area estimation using a unit-level model, show how to operationalize the proposed
model to provide fast computation for a large number of areas, and describe how to estimate
finite population percentiles. In Section 4, we provide the analysis of the numerical example
as we described above. Section 5 provides some concluding remarks and extensions. The
appendices provide technical details on propensity scores, computation for the small area
model, Bayesian model diagnostics, and the ps only model.

2. Review of the single area model

In this paper, we extend the single area model of Nandram and Rao (2021, 2023) to
accommodate data integration for small areas. Therefore, it is pertinent for us to describe
the single area model to motivate the small area model.

We have two samples from a single area, which are the nps (1) and the ps (2). We have
(Wti, xti, yti), i = 1, . . . , nt, t = 1, 2, where W1i are unknown, but W2i are assumed known. We
plan to construct a prior for the regression coefficients and the variance parameters using a
discount factor (power prior) to help mitigate the nps from dominating the ps. (Throughout,
as covariates are assumed fixed, conditioning on them will be omitted.)

For the nps, propensity scores, assumed strictly positive, are estimated using logistic
regression (Chen, Li and Wu, 2020; see Appendix A of the current paper for a review), so for
the nps probability enters through quasi-randomization (e.g., Elliott and Valliant, 2017). The
method of CLW is used to estimate the propensity scores, π1i, and the weights of the nps are
W1i = N 1/πi∑n1

j=1 1/πj
, i = 1, . . . , n1, where N is the population size, and the Horvitz-Thompson

estimator of N is ∑n2
i=1 W2i. This assumes ignorability in which given the covariates, the

study variable and the participation variable are independent and it also assumes that the
propensity scores depend only on the covariates, which is not unreasonable; see Nandram
(2022) for a discussion about nonignorability. These estimated weights, W1i, are assumed
known throughout our work. In our models, associated with weighted likelihood, we use
normalized densities with adjusted weights to get a more appropriate measure of variability.
The adjusted weights are

wti = n̂tWti/
nt∑

j=1
Wtj, n̂t =

 nt∑
j=1

Wtj

2

/
nt∑

j=1
W 2

tj, i = 1, . . . , nt, t = 1, 2,
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where n̂t is the effective sample size; see Potthof et al. (1992).

The population model, which we assume holds, is

yi | β, σ2 ind∼ Normal(x′
iβ, σ

2), i = 1, . . . , N.

A finite population quantity (mean or percentile) can be estimated using surrogate sampling
(Nandram 2007). That is, the entire population is sampled given (β, σ2). However, the
question is how to get samples of (β, σ2), and this is where most of the work is needed. We
need to adjust the population model to accommodate the two samples, in which the nps is
penalized using a power prior; see Nandram and Rao (2021, 2023) for a quick review of the
power prior and how it is used in our work.

The model that combines the two samples, in which the nps is used to supplement
the ps is

yti | β, σ2 ind∼ Normal
(
x′

iβ,
σ2

atwti

)
,

π(β, σ2, a) ∝ 1/σ2, a2 = 1, 0 < a1 = a < 1, i = 1, . . . , nt, t = 1, 2,
where a is the discounting factor with a uniform prior and wti are adjusted weights. The
joint posterior density of (β, σ2, a) has been shown to be proper and it can be fit using a grid
sample (the posterior density of a is non-standard); see Nandram and Rao (2021, 2023) for
details.

Nandram and Rao (2021, 2023) obtained Bayesian predictive inference for the finite
population mean using

π(Ȳ | y1, y2) =
�
f(Ȳ | β, σ2)π(β, σ2 | y1, y2)dβdσ

2,

where y1 and y2 are the two samples. Note that f(Ȳ | β, σ2) does not depend on (y1, y2),
unlike standard Bayesian predictive inference, a feature of surrogate sampling; see Nandram
(2007). Note that

Ȳ | β, σ2 ∼ Normal
(
X̄

′
β,
σ2

N

)
,

where we use the Horvitz-Thompson estimator of the finite population mean vector covari-
ate, X̄, which is 1

N

∑n2
i=1 W2ix2i; this is actually the Hajek estimator because N is assumed

unknown.

Inference about a finite population percentile is a related, but different, problem. This
is discussed in Section 3. Inference about the finite population percentiles is also a problem
in our study on body mass index (e.g., the 85th percentile is a measure of overweight).

3. A small area model for data integration

We show how to extend the model of Nandram and Rao (2021) to accommodate a
number of areas. This uses an extended version of the unit-level model of Battese, Harter
and Fuller (BHF, 1988). See also Toto and Nandram (2011) and Molina, Nandram and Rao
(2014) for the Bayesian version of the BHF model.
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We assume there are ℓ areas and within the ith area, there are a non-probability
sample of size n1i and a probability sample of size n2i where “1” and “2” respectively refer to
the non-probability sample and the probability sample, maintaining the notation in the single
area example, and the population size is Ni. [Note that the nps and the ps of each area come
from the same distinct sub-population; so there is single subscript in Ni.] For i = 1, . . . , ℓ,
the covariates are (xsij, j = 1, . . . , nsij, s = 1, 2), but the covariates are unobserved for the
nonsampled units, and the responses are ysij, j = 1, . . . , nsi. There are also survey weights
for the probability sample, denoted by W2i (known). There are no survey weights for the
non-probability sample and these are estimated using the method of Chen, Li and Wu
(2020); again see Appendix A. The population size for the ith area is estimated by Ni =∑n2i

j=1 W2ij, i = 1, . . . , ℓ. Bayesian predictive inference is required for the finite population
area means,

Ȳi = 1
Ni

Ni∑
j=1

yij, i = 1, . . . , ℓ,

based on the non-probability samples and probability samples, where yij are the unknown
population values. Of course, the model permits the use of the non-probability sample, as
we have seen for the single sample model. That is, there is pooling across areas and within
areas from both the non-probability sample and the probability sample.

As we have stated, the discounting factors will only be included for the nps, which will
be used to construct the prior (the nps is viewed as historical data) and the ps will be used as
the actual data. For generality, these discounting factors depend on areas. That is, for s = 1
(nps), asi = ai, i = 1, . . . , ℓ (allowing discounting) and for s = 2 (ps), asi = 1, i = 1, . . . , ℓ
(no discounting).

3.1. Proposed small area model

Our model for the two samples over the areas is

ysij | νi, β
ind∼ Normal(xsijβ + νi,

σ2

asiwsij

), j = 1, . . . , nsi, s = 1, 2,

where wsij are the adjusted weights within areas. The weights for the nps are obtained using
the method of Chen, Li and Wu (2020) over the entire ensemble (assumed known henceforth),
and then the weights for both the nps and ps are used to provide the adjusted weights, as
was done in the single area example. The fact that we are assuming the estimated weights
are known is an important caveat of our work, and this is on-going research activity. A
priori, for the random effects, we assume that

νi | ρ, σ2 ind∼ Normal(0, ρ

1 − ρ
σ2), i = 1, . . . , ℓ,

and for the hyperparameters, we assume

π(β, σ2, ρ) ∝ 1
σ2 , 0 < ρ < 1.

Again note that these are two BHF models, one for the non-probability samples and the other
for the probability samples. But they are connected because they have the same parameters
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(except the nps has the discounting factors), and this is how we link the nps, ps and the
small areas.

For the discounting factors 0 ≤ ai ≤ 1, we will assume that for i = 1, . . . , ℓ,

ai | θ, γ ind∼ Beta
{
θ

1 − γ

γ
, (1 − θ)1 − γ

γ

}
, 0 < θ, γ < 1.

We need to specify the priors for θ and γ. We make a modest assumption that the distribution
of each ai is log-concave, and a sufficient condition for this to happen is that θ 1−γ

γ
> 1 and

(1 − θ)1−γ
γ

> 1. (A log-concave density has very nice properties, specifically its moment
generating function exists.) This means that 0 < γ < 1

3 ,
γ

1−γ
< θ < 1−2γ

1−γ
. Therefore, the

prior for (a, θ, γ, ρ) is

π(a, θ, γ, ρ) =


ℓ∏

i=1

a
θ 1−γ

γ
−1

i (1 − ai)(1−θ) 1−γ
γ

−1

B{θ 1−γ
γ
, (1 − θ)1−γ

γ
}

 , 0 < γ <
1
3 ,

γ

1 − γ
< θ <

1 − 2γ
1 − γ

, 0 < ρ < 1.

Note that this model holds for the entire population with wsij ≡ 1.

Using Bayes’ theorem, letting y (both nps and ps) denote the vector of all observa-
tions, the joint posterior density is

π(ν, a, β, σ2, ρ, θ, γ | y) ∝

1
σ2

ℓ∏
i=1


n1i∏

j=1

√
aiw1ij

2πσ2 e
−

aiw1ij

2σ2 (y1ij−x′
1ijβ−νi)2

n2i∏
j=1

√
w2ij

2πσ2 e
−

w2ij

2σ2 (y2ij−x′
2ijβ−νi)2



×
√

1 − ρ

2πρσ2 e
− 1−ρ

2ρσ2 ν2
i
a

θ 1−γ
γ

−1
i (1 − ai)(1−θ) 1−γ

γ
−1

B{θ 1−γ
γ
, (1 − θ)1−γ

γ
}

 . (1)

Letting Ω1 = (a, θ, γ, ρ) and Ω2 = (ν, β, σ2), to fit the posterior density in (1), we will
first integrate out Ω2 and sample the posterior density of Ω1 | y using the Gibbs sampler;
see Appendix B. Then, we can sample Ω2 | Ω1, y using the composition method via

π(Ω2 | Ω1, y) = π1(σ2 | Ω1, y)π2(β | σ2,Ω1, y)π3(ν | β, σ2,Ω1, y),

where π1(σ2 | Ω1, y), π2(β | σ2,Ω1, y) and π3(ν | β, σ2,Ω1, y) are all in standard forms,
inverse gamma, p-variate normal and independent normals respectively; see Appendix B.
This strategy provides a more efficient computational algorithm (better convergence and
mixing of the Gibbs sampler).

Bayesian predictive inference is required for Ȳi = 1
Ni

∑Ni
i=1 yij, where yij are the pop-

ulation values (unknown). As the sample values, ysij, are corrupted because of the survey
weights, we cannot use them. So we use surrogate sampling; in principle the entire population
is drawn, not the values for the individual units though. Therefore,

Ȳi | νi, β, σ
2 ind∼ Normal

(
X̄

′
iβ + νi,

σ2

Ni

)
, i = 1, . . . , ℓ,
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where X̄ i = 1
Ni

∑Ni
i=1 x2ij and Ni are assumed unknown. We use the Horvitz-Thompson

estimators x̄2i =
∑

j∈S2i
w2ijx2ij∑

j∈S2i
w2ij

and ∑
j∈S2i

w2ij to estimate X̄2i and Ni respectively (inverse
probability weighted estimators - IPW), where S2i is the set of units in the ith area of the
ps. Then,

Ȳi | νi, β, σ
2 ind∼ Normal

(
x̄′

2iβ + νi,
σ2∑

j∈S2i
w2ij

)
, i = 1, . . . , ℓ. (2)

Once we have drawn (ν, β, σ2) using the Gibbs sampler, we simply draw the Yi from (2).
According to the model, all the sampled data are used in the predictive inference.

Observe that E(Ȳi | νi, β, σ
2, ρ) = x̄′

2iβ + λi(¯̄yi − ¯̄xi
′
β), where

λi =
ρ
∑2

s=1
∑nsi

j=1 asiwsij

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)
, ϕsij = asiwsij∑2

s=1
∑nsi

j=1 asiwsij

,

¯̄yi =
2∑

s=1

nsi∑
j=1

ϕsijysij, ¯̄xi =
2∑

s=1

nsi∑
j=1

ϕsijxsij;

see Appendix B for definitions. Then,

E(Ȳi | β, σ2, ρ, y) = λi
¯̄yi + (1 − λi) ¯̄xi

′
β + (x̄2i − ¯̄xi)′β

and

Var(Ȳi | β, σ2, ρ, y) =
{

1∑n2i
j=1 w2ij

+ ρ

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)

}
σ2.

These can be used to form Rao-Blackwellized density estimators for Ȳi.

More importantly, we can study the behavior of E(Ȳi | β, σ2, ρ, y) and Var(Ȳi |
β, σ2, ρ, y) to see the importance of ρ. As ρ → 0, λi → 0,

E(Ȳi | β, σ2, ρ, y) → x′
2iβ

and

Var(Ȳi | β, σ2, ρ, y) → σ2∑n2i
j=1 w2ij

.

That is, the non-probability sample does not play a major role. As ρ → 1, λi → 1,

E(Ȳi | β, σ2, ρ, y) → x′
2iβ + (¯̄yi − ¯̄x′β)

and

Var(Ȳi | β, σ2, ρ, y) →
{

1
a
∑n1i

j=1 w1ij +∑n2i
j=1 w2ij

+ 1∑n2i
j=1 w2ij

}
σ2.

Both samples are important.
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3.2. Operationalizing the small area model

Apart from the exchangeable assumption on the ai, the current small area model is
essentially robust with respect to the ai. But with a large number of areas, it will be too
slow to sample all the ai using the grid method. One possibility is to smooth out the ai in
an attempt to operationalize the algorithm.

We can assume that the ai are “proportional” to the sample sizes or better yet to
their logarithms. This will also eliminate the exchangeability assumption. Therefore, one
possibility is to take

ai = eγ0+γ1 log(ni)

1 + eγ0+γ1 log(ni)
, i = 1, . . . , ℓ,

where for the ith area, ni is the sample size of the nonprobability sample or the total sample
size. We are assuming here that −∞ < γ0 < ∞, 0 < γ1 < ∞.

Then, clearly
ai = α0n

γ1
i

1 + α0n
γ1
i

, α0 = eγ0 , i = 1, . . . , ℓ.

Now, letting α0 = ϕ0
1−ϕ0

and α1 = ϕ1
1−ϕ1

, we have

ai = ϕ0n
ϕ1

1−ϕ1
i

1 − ϕ0 + ϕ0n
ϕ1

1−ϕ1
i

, i = 1, . . . , ℓ, (3)

where 0 < ϕ0, ϕ1 < 1. Note that if ϕ1 = 0, then ai = ϕ0 and there will be no dependence on
the ni. Now, simply substitute the ai in (3) into the SAE model and use the prior

ϕ0, ϕ1
ind∼ Uniform(0, 1).

This reduces the number of parameters for this part of the model from ℓ+ 2 to just two and
actually the two parameters, θ and γ, are now eliminated or replaced by ϕ0 and ϕ1. So if ℓ is
large, not just 8, there will be large gains in computational time. This is how the procedure
is operationalized.

3.3. Percentiles

As we consider each area individually, we can drop the subscript, i, to get the popu-
lation model

yj | β, ν, σ2 ind∼ Normal(x′
jβ + ν, σ2), j = 1, . . . , N.

We recall that the nonsampled covariates are unknown. In principle, if we can get the
nonsampled covariates, then, given β, ν, σ2, we can sample yj, j = 1, . . . , N . Then, for
0 < γ < 1, the [γN ] percentile is Y[γN ], an order statistic. But this procedure is prohibitively
expensive because the nonsampled covariates are unknown and N is large.

However, it is possible to obtain finite population percentiles (needed for BMI data)
without the nonsampled covariates. For BMI, the 85th and 95th percentiles respectively
measure overweight and obsesity. First, note that

P (Yj < tj | ν, β, σ2) = Φ
{
tj − x′

jβ − ν

σ

}
,
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where Φ(·) is the standard normal cdf. Therefore, with 0 < γ < 1, the 100(1−γ)th percentile
of Yj is tj = x′

jβ + ν + σΦ−1(γ), Then, for the hth iterate from the Gibbs sampler, the
100(1 − γ)th percentile of Yj is

t
(h)
j = x′

jβ
(h) + ν(h) + σ(h)Φ−1(γ),

and the 100(1 − γ)th finite population percentile is
∑n2

j=1 W2jt
(h)
j∑n2

j=1 W2j
. Some improvements can be

made; actually such improvements are not necessary because N is very large, and like the
finite population mean, the variance is approximately zero.

Walker (1968) showed that the sample γ-quantile, Y([Nγ]) ∼ aN{ϵγ,
γ(1−γ)
Nf2(ϵγ)}, where ϵγ

is the γth quantile of the population, f(·), which is assumed to be continuous with f(ϵγ) > 0

and F (ϵγ) = γ uniquely. Here, we simply take ϵγ =
∑n2i

j=1 W2ijt
(h)
ij∑n2i

j=1 W2ij
and because the variance is

o( 1
N

) and N is very large, essentially Y([Nγ]) is a point mass at ϵγ. A similar result holds for
Ȳi.

One question is how to define f(y). We write yj | β, ν, σ2 ind∼ Normal(x′
jβ+ ν, σ2), j =

1, . . . , N . Then, we replace xj, j = 1, . . . , N , by the weighted average, d =
∑n2

j=1 W2jxj∑n2
j=1 W2j

, to get

yj | β, σ2 ind∼ Normal(d′β + ν, σ2), j = 1, . . . , N . Finally, f(ϵγ) = 1
σ
ϕ( ϵγ−d′β−ν

σ
), where ϕ(·) is

the standard normal density.

4. Numerical example on small area estimation

We use the BMI data from the eight counties of California to construct a practical
example; see Nandram and Choi (2010) for design issues in the National Health and Nutrition
Examination Survey (NHANES III). We use Bayesian model diagnostics to compare all the
models. Then, we compare our selected model with data integration and the ps only model
via Bayesian predictive inference of the finite population mean and the 85th finite population
percentile.

But, first we discuss the performance of the Gibbs sampler for the model with dis-
counting (the other models are similar). The entire computation consists of three parts (a)
constructing the unknown survey weights for the nps, (b) fitting the individual area model,
and (c) fitting of the small area model. The entire computation took nearly 40 minutes with
(c) taking almost all the time. We started the Gibbs sampler arbitrarily by taking the ai

to be the corresponding posterior means from the individual area model, set ρ = .5, its mid
range, and as the mid point of the interval ( γ

1−γ
, 1−2γ

1−γ
) is .5, set θ = .5 and and γ = 1/6,

its mid range. We ran 21, 000 iterates, used 1000 as a “burn in” and systematically selected
every twentieth to get a ‘random’ sample of M = 1, 000. We also performed the diagnostic
procedures for the Gibbs sampler. The auto-correlations are not significant, the trace plots
show no trend, Geweke tests of stationarity are all passed and the effective sample size are
all satisfactory, mostly near to 1000. Table 1 has the p-values and the effective sample sizes.
The fact that the effective sample size (ESS) is about 550, not 1000, for θ and γ is not a
problem because θ and γ are hyperparameters of the ai, which perform well.
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In Table 2 we present diagnostic measures to compare the small area models. These
are the negative log pseudo marginal likelihood (LPML), the deviance information criterion
(DIC), the Bayesian predictive p-value (BPP), a divergence measure (DM) and the posterior
root mean square error (PRMSE); see Appendix C for a review of the definitions of these
measures. Smaller values of all quantities, except BPP, show better fit; values of BPP in
(.05, .95) show good fitting models.

All measures show that the model without discounting is not competitive, and DM
and PRMSE show that the PS only model is not competitive, leaving us with two models,
discounting and logit. In terms of PRMSE, the model with discounting is approximately
10% better than the logit model, which is not robust because it assumes linearity between
the discounting factors and log sample sizes, thereby making the model with discounting the
best. Also, the posterior standard deviations of the finite population means of the different
areas under the model with discounting are at least as similar to those from the other models,
better than the ps only model.

Table 1: Gibbs sampler diagnostics for the model with discounting using the
BMI data of the eight counties

Parameter n1 n2 Pval ESS

a1 140 24 0.804 1000
a2 138 38 0.750 1000
a3 667 128 0.395 1000
a4 133 29 0.709 1000
a5 96 29 0.813 1000
a6 119 22 0.144 1000
a7 100 28 0.332 884
a8 137 39 0.447 1000
ρ - - 0.465 1000
θ - - 0.886 541
γ - - 0.473 545

NOTE: Pval is the p-value of the Geweke test and ESS is the effective sample size of the Gibbs
sampler
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Table 2: Comparison of five models using BMI data of eight counties

Model LPML DIC BPP DM PRMSE

Discounting 977.491 1946.369 0.553 2.626 1.606
(0.8) (1.3) (-) (-2.0) (-52.4)

Logit 975.866 1943.152 0.528 2.623 1.783
(0.7) (1.1) (-) (-2.2) (-47.1)

No discounting 1235.930 2472.066 1.000 2.616 1.718
(27.5) (28.6) (-) (-2.5) (-49.1)

No nps weights 978.573 1948.031 .541 2.597 1.521
(0.9) (1.3) (-) (-3.1) (-54.9)

PS only 969.371 1922.219 0.493 2.682 3.373

NOTE: For PRMSE, the true value is taken to be the weighted average of all BMI values. The
model with discounting is the one described, the logit model regresses the ai on the logarithm of
sample sizes, and the model without discounting has all ai set to unity. The measures are calculated
for PS data only. Gibbs sampling is needed for the models with discounting. Wang et al. (2011) has
the divergence measure (DM). The parenthesis (·) shows the percent each measure is larger than
the one for the ps. The model with discounting has PRMSE 9.9% smaller than the logit model.

Table 3 has posterior inference about the discounting factors. There are some dis-
crimination among the small areas as the ai range from .066 to .141. The posterior standard
deviations are small making the CVs standing between .102 and .160 and so the inference
is very precise and reliable. Consequently, the 95% HPDIs are reasonably tight. Therefore,
as there is much discounting, the ai are playing a consequential role in this application.
Nandram and Rao (2021, 2023) gave interpretations of the discounting factor for a single
area.

For comparisons, we use the following idea in Tables 4 & 5. For two standard de-
viations, a, b, assuming independence, max(a, b) ≤

√
(a2 + b2) ≤ a + b. That is, assuming

independence of two sources, the standard deviation of the difference is at least the larger
one.

In Table 4, we compare inference about the finite population means using integrated
data and the probability sample only (ps only model). Note that the data from the nps are
not used in the ps model only; see Appendix D for a discussion of the ps only model. As
expected, there are large gains in precision over the ps only model when the model with
discounting is used. Three of the PMs under the model with discounting are smaller than
the corresponding ones under ps only model. Therefore, there is possibly some selection bias
in the model with discounting. The 95% HPDIs for the nps have considerable overlaps on
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Table 3: Posterior summaries of the discounting factors for BMI data of eight
counties

County n1 n2 PM PSD NSE CV 95% HPDI

1 140 24 0.130 0.019 0.001 0.147 (0.097, 0.171)
2 138 38 0.066 0.010 0.000 0.160 (0.043, 0.085)
3 667 128 0.111 0.011 0.000 0.102 (0.091, 0.132)
4 133 29 0.112 0.017 0.001 0.149 (0.081, 0.146)
5 96 29 0.095 0.015 0.001 0.158 (0.069, 0.130)
6 119 22 0.141 0.022 0.001 0.155 (0.101, 0.184)
7 100 28 0.101 0.016 0.001 0.160 (0.071, 0.131)
8 137 39 0.099 0.015 0.000 0.148 (0.071, 0.126)

NOTE: The discounting factors, ai, are small.

the right to those of the ps. Therefore, there is not much difference between the two models
in terms of PMs.

In Table 5, we compare inference about the 85th percentile of the finite population
using the model with discounting and the probability sample only. Again, as expected, there
are large gains in precision when the model with discounting is used. Three of the PMs
under the model with discounting are smaller than the corresponding ones under ps model
only. For each area, the intervals under the nps overlap considerably on the right of those for
the ps. Therefore, again there is possibly some selection bias in the model with discounting.
There are similar results for the 90th and 95th percentiles (not shown) with much larger
variability, of course.

In Figures 1 & 2 we show plots of the posterior densities of the finite population
means by county. For all counties, the model with discounting gives more precise estimates
than the ps only model, and the plots overlap with various degrees, with the plot of the nps
to the right of the ps, indicating some degree of selection bias remaining; five counties (2, 3,
4, 5, 7), appear similar. There appears to be no differences in sample size except for county
3 with very large county size (667, 128).
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Table 4: Comparison of the nps model (with discounting) and the ps only model
via posterior summaries of the finite population mean of the eight counties using
the BMI data

County n1 n2 Model PM PSD NSE CV 95% HPDI

1 140 24 nps 26.193∗ 0.293 0.009 0.011 (25.559, 26.704)
1 140 24 ps 25.229 0.450 0.014 0.018 (24.437 26.199)

2 138 38 nps 27.483∗ 0.299 0.010 0.011 (26.908, 28.052)
2 138 38 ps 27.100 0.363 0.010 0.013 (26.393 27.740)

3 667 128 nps 26.931∗ 0.149 0.006 0.005 (26.642, 27.219)
3 667 128 ps 26.769 0.222 0.006 0.008 (26.346 27.204)

4 133 29 nps 26.299 0.364 0.010 0.014 (25.593, 26.951)
4 133 29 ps 26.481 0.878 0.026 0.033 (24.535 28.090)

5 96 29 nps 27.017 0.355 0.011 0.013 (26.290, 27.652)
5 96 29 ps 27.416 0.521 0.017 0.019 (26.356 28.339)

6 119 22 nps 26.352∗ 0.299 0.008 0.011 (25.841, 26.954)
6 119 22 ps 25.102 0.469 0.013 0.019 (24.100 25.939)

7 100 28 nps 26.845∗ 0.305 0.010 0.011 (26.253, 27.389)
7 100 28 ps 26.467 0.416 0.014 0.016 (25.720 27.297)

8 137 39 nps 27.350 0.295 0.012 0.011 (26.789, 27.930)
8 137 39 ps 28.406 0.457 0.013 0.016 (27.530 29.276)

NOTE: Posterior inference is based on 1000 iterates that provide posterior mean, PM, posterior
standard deviation, PSD, numerical standard error, NSE, coefficient of variation, CV, and 95%
highest posterior density interval, HPDI. The PMs of the model with data discounting are larger
than those under the PS only model by 3.8, 1.4, .6, −.7, −1.5, 5.0, 1.4, −3.7 percent. PMs are larger
for counties marked (∗).
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Table 5: Comparison of the nps model (with discounting) and the ps only model
via posterior summaries of the finite population 85th percentile of the eight coun-
ties using the BMI data

County n1 n2 Model PM PSD NSE CV 95% HPDI

1 140 24 nps 27.762∗ 0.311 0.011 0.011 (27.126, 28.309)
1 140 24 ps 26.724 0.455 0.015 0.017 (25.856, 27.649)

2 138 38 nps 29.036∗ 0.318 0.010 0.011 (28.392, 29.625)
2 138 38 ps 28.574 0.376 0.012 0.013 (27.846, 29.290)

3 667 128 nps 28.490∗ 0.169 0.006 0.006 (28.128, 28.790)
3 667 128 ps 28.255 0.235 0.006 0.008 (27.836, 28.774)

4 133 29 nps 27.859 0.378 0.011 0.014 (27.105, 28.553)
4 133 29 ps 27.955 0.827 0.022 0.030 (26.149, 29.415)

5 96 29 nps 28.580 0.351 0.012 0.012 (27.924, 29.302)
5 96 29 ps 28.908 0.505 0.018 0.017 (27.867, 29.300)

6 119 22 nps 27.932∗ 0.332 0.011 0.011 (27.268, 28.553)
6 119 22 ps 26.600 0.475 0.014 0.018 (25.700, 27.540)

7 100 28 nps 28.409∗ 0.323 0.012 0.011 (27.786, 29.013)
7 100 28 ps 27.934 0.429 0.011 0.015 (27.089, 28.756)

8 137 39 nps 28.905 0.297 0.009 0.010 (28.352, 29.494)
8 137 39 ps 29.913 0.422 0.015 0.014 (29.091, 30.726)

NOTE: Posterior inference is based on 1000 iterates that provide PM, posterior mean, PSD,
posterior standard deviation, W , width of the 95% HPD interval and CV, coefficient of variation.
PMs are larger for counties marked (∗).
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Figure 1: Comparison for the posterior distributions of the finite population
mean for nps and ps models by county (dashed: discounting model; solid: ps
only model)
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Figure 2: Comparison for the posterior distributions of the finite population
mean for nps and ps models by county (dashed: discounting model; solid: ps
only model)
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5. Concluding remarks

This section has two subsections. The first subsection is a summary of the paper
with general comments and the second subsection is on robustification of the models for the
study variable and the participation variable.

5.1. Summary and comments

In our illustrative example on body mass index, our data-integrated model with dis-
counting is preferred over the ps only model and other competitors. The logit data-integrated
model is a strong competitor. The data-integrated model provides small area estimates,
roughly similar to those of the ps only model, with larger precision. It is difficult to remove
all biases completely. We outline some important problems we are currently working on,
particularly how the assumptions on the participation variable and the study variable can
be relaxed.

We have shown how to extend our approach to cover small area estimation. We have
done so for the unit-level small area model (a bit less practical); this is an extension of
Nandram and Rao (2021, 2023) to cover small areas. We have extended Toto and Nandram
(2010) or Molina, Nandram and Rao (2014), who provided a Bayesian approach, to solve
the problem without combining a nps and a ps. However, our work here was motivated by
Beaumont (2020), Rao (2020) and Beaumont and Rao (2020) but these authors provided
limited discussion of unit-level models; Beaumont and Rao (2020) showed how to use the
area-level Fay-Herriot model to improve inference for the small areas in the ps, covariates
being drawn from the nps (Big Data).

The assumption of normality on the BMI data is perhaps not a very good one because
the BMI data are skewed (true for most continuous survey data) and discrete; see Yin
and Nandram (2020 a,b) on how the Dirichlet process is used for BMI data without data
integration. Also, more robust methods on propensity scores are needed. Stick-breaking
priors can be used to provide more robust models, but these models are difficult to fit
when all uncertainty is taken into account and this is on-going work; see Ishwaran and
James (2001). It is also possible to use BART in data integration (e.g., Rafei, et al. 2021).
But BART is not a fully Bayesian procedure because it double-uses the data, it suffers from
overshrinkage, and there is no underlying theory of BART (just a machine learning algorithm
like random forest); see Hill, Linero and Murray (2020) for more detailed discussions and
criticisms about BART. Yet, one does not need to express a relation between study variable
and covariates; see Lockwood (2023, PhD Dissertation) for an important advance.

It is possible to avoid estimation of the survey weights of the non-probability sample
by using a structural (measurement error) model; see Berg et al. (2021) for a start. We have
been doing similar work at National Agriculural Statistics Service, USDA. For the nps (1),
we consider

y1ij
ind∼ Normal

{
γ0 + γ1(x′

1ijβ + νi),
σ2

ai

}
, j = 1, . . . , n1i, i = 1, . . . , ℓ,
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and for the ps (2),

y2ij
ind∼ Normal

{
x′

2ijβ + νi,
σ2

w2ij

}
, j = 1, . . . , n2i, i = 1, . . . , ℓ.

Here, γ0 and γ1 are weakly identified and can lead to poor performance of a Gibbs sampler.
One can define the true values of y2ij as θij = x′

2ijβ + νi. We do not need to estimate nps
weights. Note again that n1i is much larger than n2i, and a discount factor is used to increase
variability and help avoiding the nps to dominate the ps. Note that the parameters, β, σ2

and νi are the same in both the nps and the ps. Finally, a standard assumption on the area
random effects is

νi | ρ, σ2 ind∼ Normal
{

0, ρ

1 − ρ
σ2
}
, i = 1, . . . , ℓ.

Of course, this can be overcome using the Pitman-Yor stick breaking procedure. Because of
non-identifiability issues, we will assume that γ0 and γ1 are independent with

γ0 ∼ Uniform(c1, c2), γ1 ∼ Uniform(d1, d2),

where (c1, c2) and (d1, d2) are to be specified using exploratory data analysis. This can be
done by fitting ȳ1i = γ0 + γ1ȳ2i + ei, i = 1, . . . , ℓ, and using the bootstrap distributions of
the least squares estimators of γ0 and γ1 to get their ranges. For the ai, we will assume the
same prior as before, and we also assume that

π(β, σ2, ρ) ∝ 1
σ2 .

Also, as before prediction is done by using

yij | νi, β, σ
2 ind∼ Normal(x′

ijβ + νi, σ
2), j = 1, . . . , Ni, i = 1, . . . , ℓ,

and the prediction procedure is similar to the one done earlier. For

Ȳi | νi, β, σ
2 ind∼ Normal(X̄ ′

iβ + νi,
σ2

Ni

), i = 1, . . . , ℓ,

where X̄ i =
∑Ni

j=1 xij

Ni
is unknown and Ni may also be unknown. Design-based estimators

of Ni and X̄ i are respectively Ni = ∑n2i
i=1 W2ij and X̄ i =

∑n2i
j=1 W2ijx2ij

Ni
(Hajek or Horvitz-

Thompson). Inference for finite population percentiles is also possible.

5.2. Robustification

Looking towards double robustness as in non-Bayesian methods, we can use a mixture
model for the study variable and a t-link for the participation variable of any number of areas
within the Bayesian paradigm.
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5.2.1. Robustification of the model of the study variable

For the study variable, we use a three-component mixture model. For the non-
probability sample,

f(y1ij | νi, β, p, q, ρ, γ) = (1 − p− q)Normaly1ij
(x′

1ijβ + νi,
ργσ2

aw1ij

)

+pNormaly1ij
(x′

1ijβ + νi,
γσ2

aw1ij

) + qNormaly1ij
(x′

1ijβ + νi,
σ2

aw1ij

), i = 1, . . . , n1i.

and, for the probability sample, we have

f(y2ij | νi, β, p, q, ρ, γ) = (1 − p− q)Normaly2ij
(x′

2ijβ + νi,
ργσ2

w2i

)

+pNormaly2ij
(x′

2ijβ + νi,
γσ2

w2ij

) + qNormaly2ij
(x′

2ijβ + νi,
σ2

w2ij

), i = 1, . . . , n2i, i = 1, . . . , ℓ.

Finally,
νi | ψ, σ2 ind∼ Normal(0, ψ

1 − ψ
σ2), i = 1, . . . , ℓ.

It is also sensible to use the constraint p > q and 0 < p, q, p+q, ρ, γ < 1. In each case,
the first component corresponds to ordinary observations, the second component corresponds
to mild outliers and the third component to severe outliers. See Chakraborty, Datta, and
Mandal (2019) for the much simpler two-component mixture model. There is on-going work
on this topic.

5.2.2. Robustification of the model of the participation variable

We consider the following mixture model for the selection indicators, ri, i = 1, . . . , N ,
and we consider one large area (all areas combined). We make the robust assumption,

ri | T = g, θ
ind∼ Bernoulli{Tag(z′

iθ)}, i = 1, . . . , N,

P (T = g | λg) = λg, g = 1, . . . , G,
where (ag, λg), g = 1, . . . , G, and G are to be specified. We define the propensity scores as

πi =
G∑

g=1
λgTag(z′

iθ), i = 1, . . . , N.

We can now develop a pseudo-density for each g and average all the pseudo-densities
over g. Specifically, we have the mixture pseudo-density,

P (r | z, θ) =
G∑

g=1
λg

n1∏
i=1

{
Tag(z′

1iθ)
1 − Tag(z′

1iθ)

}
n2∏
i=1

{
1 − Tag(z′

2iθ)
}W2i

, (4)
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where Tag , g = 1, . . . , G, is the Student’s t cdf on ag degrees of freedom. The estimated
propensity scores we need are then

π̂i =
G∑

g=1
λgTag(z′

1iθ̂), i = 1, . . . , n1,

where θ̂ = E(θ | r); it is possible to use other summaries as well (e.g., the posterior median
or the posterior mode).

This is a generalization of the logistic regression model, and it covers many cases
(Cauchy, logistic and normal). It is well-known that when the Student’s t density and/or
the logistic distribution are appropriately rescaled, a plot of the quantiles of the Student’s
t density on roughly 8 degrees of freedom versus the quantiles of the logistic distribu-
tion is almost a 45o straight line through the origin. Here λg, g = 1, . . . , G, are specified
weights at degrees of freedom ag, g = 1, . . . , G, and to look at variation around the lo-
gistic distribution, we can place more probability at ag = 8. For example, we have used
ag = 1, 4, 8, 13, 20, 30, 40, 50 for G = 8, ag = 40, 50 will be close to a standard normal
density, and λg = .125, .125, .25, .125, .125, .125, .080, .045. There is on-going work on this
topic.
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APPENDIX A: Propensity scores

Let xi, i = 1, . . . , N , denote the covariates; these are observed in the ps and the
nps, but they are not observed for the rest of the population. Again, for the nps, we have
x1i, i = 1, . . . , n1, and for the ps, we have x2i, i = 1, . . . , n2. Chen, Li and Wu (2020) has
a method to get the propensity scores for the nps, and therefore the survey weights, which
they defined as the reciprocals of the propensity scores. They assume that the propensity
scores can be modeled parametrically using

πi = P (ri = 1 | xi) = π(xi; θ),

with independence over i, where θ are to be estimated. Here ri = 1 for the ps or nps; ri = 0
for the nonsamples. Then, the likelihood function is

ℓ(θ) =
N∏

i=1
{π(xi; θ)}ri{1 − π(xi; θ)}1−ri .

The propensity scores are obtained in two steps.
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First, they wrote the log-likelihood as

ℓ∗(θ) =
n1∑
i=1

log
{

π(x1i; θ)
1 − π(x1i; θ)

}
+

N∑
i=1

log{1 − π(xi; θ)}.

Second, they used the pseudo-log-likelihood by replacing the second term by the
Horvitz-Thompson estimator since the nonsample xi are unknown, as

ℓ∗(θ) =
n1∑
i=1

log
{

π(x1i; θ)
1 − π(x1i; θ)

}
+

n2∑
i=1

W2i log{1 − π(x2i; θ)},

which can now be maximized for θ̂. The propensity scores for the nps are then π(x1i; θ̂), i =
1, . . . , n1. Henceforth, they specialize to logistic regression.

One caveat is that the propensity scores are not really selection probabilities (i.e.,
quasi-randomization). This is true because the propensity scores must be obtained for the
entire population (i.e., all N units) and then calibrated to the nps sample size. Only in this
case, quasi-randomization makes any sense at all. This is still an open problem. Also, they
assumed ignorability (given the covariates, the participation variable is independent of the
study variable), but see Nandram (2022) for nonignorability. Chen, Li and Wu (2020) did
not assume non-ignorability because they assumed that the study variable is missing in the
probability sample; they need to mass impute the the missing values, but this is not in the
spirit of their work.

APPENDIX B: Computation for the small area model

We discuss how to fit the proposed model. Recall Ω1 = (a, θ, γ, ρ) and Ω2 = (ν, β, σ2).
Our strategy is to integrate out Ω2 from π(Ω1,Ω2 | y) to get π(Ω1 | y) and then sample
π(Ω1 | y) using the Griddy-Gibbs sampler (Ritter and Tanner, 1992).

For convenience, we will keep asi, s = 1, 2, i = 1, . . . , ℓ, free in (0, 1) and sometimes
a1i = ai and a2i = 1, i = 1, . . . , ℓ. Then, letting n = ∑2

s=1
∑ℓ

i=1 nsi, the total number of
observations,

π(Ω1,Ω2 | y) ∝ π(Ω1)
(

ℓ∏
i=1

√
ai

)
×

( 1
σ2

)n+ℓ
2 +1 (1 − ρ

ρ

)ℓ/2 ℓ∏
i=1

[
e

− 1
2ρσ2

{
ρ
∑2

s=1

∑nsi
j=1 asiwsij(ysij−x′

sijβ−νi)2+(1−ρ)ν2
i

}]
. (B.1)

We will integrate out Ω2. Momentarily, we will drop π(Ω1), but we will retain ∏ℓ
i=1

√
ai.

Define the following quantities,

λi =
ρ
∑2

s=1
∑nsi

j=1 asiwsij

ρ
∑2

s=1
∑nsi

j=1 asiwsij + (1 − ρ)
, ϕsij = asiwsij∑2

s=1
∑nsi

j=1 asiwsij

,

¯̄yi =
2∑

s=1

nsi∑
j=1

ϕsijysij, ¯̄xi =
2∑

s=1

nsi∑
j=1

ϕsijxsij,
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ỹsij = ysij − ¯̄yi, x̃sij = xsij − ¯̄xi.

Note that while the λi are functions of ρ, but the ϕsij, ¯̄yi and ¯̄xi are not functions of ρ.

We can now rewrite the exponent in (B.1),

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ysij − x′
sijβ − νi)2 + 1 − ρ

ρ
ν2

i


 ,

as

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ỹsij − x̃′
sijβ)2 + 1 − ρ

ρ
(

2∑
s=1

nsi∑
j=1

asiwsij)(¯̄yi − ¯̄x′β − νi)2


 .

Then, it is easy to show that

νi | β, σ2, ρ, y
ind∼ Normal{ν̂i,

ρ

1 − ρ
σ2(1 − λi)}, i = 1, . . . , ℓ,

where ν̂i = λi(¯̄yi − ¯̄x′
iβ). This is a standard form in small area estimation and it combines

both the probability sample and the non-probability sample over all areas; note the common
β and σ2.

Then, integrating out the νi from (B.1), we have

π(β, σ2, ρ | y) ∝
( 1
σ2

)n
2 +1 ℓ∏

i=1

√
ai(1 − λi)

×
ℓ∏

i=1

exp

− 1
2σ2


2∑

s=1

nsi∑
j=1

asiwsij(ỹsij − x̃′
sijβ)2 + Pi(¯̄yi − ¯̄x′

iβ)2



 , (B.2)

where

Pi =
 2∑

s=1

nsi∑
j=1

asiwsij

 (1 − λi)2 + 1 − ρ

ρ
λ2

i , i = 1, . . . , ℓ.

Then,
β | σ2, ρ, y ∼ Normal{β̂, σ2∆},

where

∆ =


ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sijx̃
′
sij +

ℓ∑
i=1

Pi
¯̄xi

¯̄x′
i


−1

and

β̂ =


ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sijx̃
′
sij +

ℓ∑
i=1

Pi
¯̄xi

¯̄x′
i


−1

ℓ∑
i=1

2∑
s=1

nsi∑
j=1

asiwsijx̃sij ỹsij +
ℓ∑

i=1
Pi

¯̄xi
¯̄yi

 .
Then integrating β from (B.2), we have

π(σ2, ρ | y) ∝
( 1
σ2

)n−p
2 +1

| ∆ |1/2
ℓ∏

i=1

√
ai(1 − λi)
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×e
− 1

2σ2

{∑ℓ

i=1

∑2
s=1

∑nsi
j=1 asiwsij{ỹsij−x̃′

sij β̂}2+
∑ℓ

i=1 Pi(¯̄yi−¯̄x′
iβ̂)2

}
. (B.3)

Therefore,
σ2 | ρ, y ∼ InvGam

{
n− p

2 ,
Q

2

}
, (B.4)

where

Q =
ℓ∑

i=1

2∑
s=1

nsi∑
j=1

asiwsij{ỹsij − x̃′
sijβ̂}2 +

ℓ∑
i=1

Pi(¯̄yi − ¯̄x′
iβ̂)2.

Integrating out σ2 from (B.3), we have

π(ρ | y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2 , 0 ≤ ρ ≤ 1. (B.5)

Actually π(ρ | Ω1, y) is defined for all values of ρ in [0, 1] because the Pi and λi are well
defined for all values of ρ in [0, 1]. Note that the ai are constants (given) above, specifically
they are constants in (B.5).

Bringing back π(Ω1) into the picture, we have

π(Ω1 | y) ∝ π(Ω1)π(ρ | y),

and therefore,

π(Ω1 | y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2


ℓ∏

i=1

a
θ( 1−γ

γ
)−1

i (1 − ai)(1−θ)( 1−γ
γ

)−1

B{θ(1−γ
γ

), (1 − θ)(1−γ
γ

)}

 , (B.6)

γ
1−γ

≤ θ ≤ 1−2γ
1−γ

, 0 < γ < 1/3, 0 ≤ ρ ≤ 1. It is worth noting that the ai are not independent;
∆ and Q contain all the ai, which is contained by λi also.

In (B.6), π(Ω1 | y) is well defined for all values of a, θ, γ, ρ because 0 < ai < 1, i =
1, . . . , ℓ, 0 < ρ < 1, 0 < γ < 1

3 , γ
1−γ

≤ θ ≤ 1−2γ
1−γ

. Therefore, it follows that the joint posterior
density π(Ω1,Ω2 | y) is proper. Next, we present the rather obvious conditional posterior
densities (CPDs) necessary to run the Gibbs sampler.

First, we consider the CPD of the ai, i = 1, . . . , ℓ. Letting a(i) = (a1, . . . , ai−1, ai+1, . . . ,
aℓ)′, i = 1, . . . , ℓ (ai is eliminated), then for 0 < ai < 1,

π(ai | a(i), ρ, θ, γ, y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
ai(1 − λi)

Q(n−p)/2

{
ℓ∏

i=1
a

θ( 1−γ
γ

)−1
i (1 − ai)(1−θ)( 1−γ

γ
)−1
}
. (B.7)

Second, the CPD of ρ is

π(ρ | a, θ, γ, y) ∝
| ∆ |1/2 ∏ℓ

i=1

√
(1 − λi)

Q(n−p)/2 , 0 < ρ < 1. (B.8)
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Third, the joint CPD of (θ, γ) is

π(θ, γ | a, ρ, y) ∝


ℓ∏

i=1

a
θ( 1−γ

γ
)−1

i (1 − ai)(1−θ)( 1−γ
γ

)−1

B{θ(1−γ
γ

), (1 − θ)(1−γ
γ

)}

 , γ

1 − γ
≤ θ ≤ 1 − 2γ

1 − γ
, 0 < γ < 1/3.

(B.9)
γ

1−γ
≤ θ ≤ 1−2γ

1−γ
, 0 < γ < 1/3. The CPD of θ or γ is easy to write down.

We note that all the CPDs are nonstandard, but all the parameters lie in (0, 1), so
we have used a grid method, with 100 grid points, to sample each of the CPDs. The number
grid points can be reduced for the ai perhaps to 50 or so, but we need the number grid
points to be around 100 for (ρ, θ, γ); hyperparameters are more difficult to sample. We have
done this, and we have reduced the entire computation time from roughly 40 minutes to 20
minutes with little change in the results.

APPENDIX C: Bayesian model diagnostics and measures

We test concordance of the ps (2) part of the model,

y2ij | νi, β, σ
2 ind∼ Normal(x′

2ijβ + νi,
σ2

W2ij

), j = 1, . . . , n2i, i = 1, . . . , ℓ,

with the observed data of the ps (2). It is not sensible to study concordance with the
observed data of the nps (1) because they are biased. The posterior density of (ν, β, σ2)
comes from their respective models. We describe five Bayesian measures, which are the
negative log-pseudo marginal likelihood (LPML), the deviance information criterion (DIC),
the Bayesian predictive p-value (BPP), the divergence measure (DM) and the posterior root
mean squared error (PRMSE); LPML and DM are based on Bayesian cross-validation.

First, the conditional posterior ordinate is CPOij = f(y2ij | y(2ij)), where y(2ij) is the
vector of all values excluding y(2ij). Let Ω = (ν ′, β′, σ2)′ and Ω(h) denote the hth iterate from
the Gibbs sampler of the appropriate parameters. Then, CPOij is usually estimated by

ĈPOij =
[

1
M

M∑
h=1

1
f(y2ij | Ω(h))

]−1

,

the harmonic mean, and LPML = ∑ℓ
i=1

∑n2i
j=1 log(ĈPOij).

Second, letting Ω̂ denote the posterior mean of Ω, the DIC is

DIC = 2D̂(y) −D(y | Ω̂),

where D(y | Ω) = −2 log{f(y | Ω)} and D̂(y) = 1
M

∑M
h=1 D(y | Ω(h)).

Third, letting T2 denote a test (discrepancy) function, the BPP is

P (T rep
2 > T obs

2 | yobs),
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where we have used
T2 =

ℓ∑
i=1

n2i∑
j=1

W2ij

(y2ij − x′
2ijβ − νi)2

σ2 .

Fourth, the divergence measure is

DM = 1∑ℓ
i=1 n2i

ℓ∑
i=1

ni∑
j=1

|y2ij − E(y2ij|y(2ij))|;

see Wang et al. (2012).

Fifth, letting T = ∑2
s=1

∑ℓ
i=1

∑nsi
j=1 Wsijysij/

∑2
s=1

∑ℓ
i=1

∑nsi
j=1 Wsij,

PRMSE =

√√√√ ℓ∑
i=1

{(PM2i − T )2 + PSD2
2i},

where PM2i = E(Ȳ2i|y1, y2) and PSD2
2i = Var(Ȳ2i|y1, y2).

APPENDIX D: Adding survey weights into the bayesian BHF model

We describe how to fit the ps only model. This is essentially adding survey weights
to the BHF model.

The population model is

yij | νi, β, ρ
ind∼ Normal{x′

ijβ + νi, (1 − ρ)σ2}, j = 1, . . . , Ni,

where xij has p components, including an intercept, and

νi | σ2, ρ
ind∼ Normal(0, ρσ2), i = 1, . . . , ℓ.

The reparameterization with respect to ρ is similar, but slightly different, to the one we have
used before. The correlation of the values within an area is ρ, and the model is defined for
all values of ρ in [0, 1]. Let Ȳi = 1

Ni

∑Ni
j=1 yij, the finite population mean of the ith area, and

let X̄ i denote the finite population mean covariate vector.

Therefore,
Ȳi | νi, β, ρ

ind∼ Normal{X̄ ′
iβ + νi,

(1 − ρ)σ2

Ni

}.

Then, integrating out the νi, we have

Ȳi | β, σ2, ρ
ind∼ Normal{X̄ ′

iβ, ρσ
2 + (1 − ρ)σ2

Ni

}.

So that σ2 has a direct impact in prediction even when the Ni are very large, and ρ plays an
important role here. This is different from the case when there is just a single sample (i.e.,
no random effects), where for large Ni, the variance is approximately 0.
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The sample model is

yij | νi, β, ρ
ind∼ Normal{x′

ijβ + νi,
(1 − ρ)σ2

wij

}, j = 1, . . . , ni,

νi | σ2, ρ
ind∼ Normal(0, ρσ2), i = 1, . . . , ℓ,

π(β, σ2, ρ) ∝ 1
σ2 .

Letting n = ∑ℓ
i=1 ni, the total number of observations over the ℓ small areas, the joint

posterior density is

π(ν, β, σ2, ρ | y) ∝ 1
(σ2)(n+ℓ)/2+1

1
(ρ)ℓ/2

1
(1 − ρ)n/2

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ni∑

j=1
wij(yij − x′

ijβ − νi)2 + (1 − ρ)ν2
i


 . (D.1)

We will decompose π(ν, β, σ2, ρ | y) as

π(ν, β, σ2, ρ | y) = π1(ν | β, σ2, ρ, y)π2(β | σ2, ρ, y)π3(σ2 | ρ, y)π4(ρ | y),

where π1(ν | β, σ2, ρ, y), π2(β | σ2, ρ, y), π3(σ2 | ρ, y), except π4(ρ | y), are all in standard
forms. Next, we will demonstrate this decomposition, and at the same time, we will prove
propriety of the joint posterior density.

For i = 1, . . . , ℓ, let x̄i =
∑ni

j=1 wijxij∑ni
j=1 wij

, ȳi =
∑ni

j=1 wijyij∑ni
j=1 wij

, and λi = ρ
∑ni

j=1 wij

ρ
∑ni

j=1 wij+1−ρ
. Note

that the λi are not functions of σ2. Then, it is easy to show that

νi | β, σ2, ρ, y
ind∼ Normal{ν̂i, (1 − λi)ρσ2}, i = 1, . . . , ℓ,

where ν̂i = λi(ȳi − x̄′
iβ).

Let tij = yij − λiȳi and dij = xij − λix̄i, i = 1, . . . , ℓ. Then, integrating νi from (D.1),
we have

π(β, σ2, ρ | y) ∝ 1
(σ2)n/2+1

1
(1 − ρ)n/2

ℓ∏
i=1

√
1 − λi

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ℓ∑

i=1

ni∑
j=1

wij(tij − d′
ijβ)2 + (1 − ρ)

ℓ∑
i=1

λ2
i (ȳi − x̄′

iβ)2


 . (D.2)

Now, let

β̂ = ∆

ρ
ℓ∑

i=1

ni∑
j=1

wijdijtij + (1 − ρ)
ℓ∑

i=1
λ2

i x̄iyi

 ,
where

∆−1 = ρ
ℓ∑

i=1

ni∑
j=1

wijdijd
′
ij + (1 − ρ)

ℓ∑
i=1

λ2
i x̄ix̄

′
i.
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Note that β̂ does not depend on σ2. Then, it is easy to show that

β | σ2, ρ, y ∼ Normal(β̂, ρ(1 − ρ)σ2∆).

Now, integrating β from (D.2), we have

π(σ2, ρ | y) ∝ 1
(σ2)(n−p)/2+1

|∆|
(1 − ρ)(n−p)/2ρ

p/2
ℓ∏

i=1

√
1 − λi

× exp
− 1

2ρ(1 − ρ)σ2

ρ
ℓ∑

i=1

ni∑
j=1

wij(tij − d′
ijβ̂)2 + (1 − ρ)

ℓ∑
i=1

λ2
i (ȳi − x̄′

iβ̂)2


 . (D.3)

Finally, it follows easily that

σ2 | ρ, y ∼ InvGam

n− p

2 ,
ρ
∑ℓ

i=1
∑ni

j=1 wij(tij − d′
ijβ̂)2 + (1 − ρ)∑ℓ

i=1 λ
2
i (ȳi − x̄′

iβ̂)2

2ρ(1 − ρ)


and integrating σ2 from (D.3), we have

π(ρ | y) ∝
ℓ∏

i=1

1
(ρ∑ni

j=1 wij + 1 − ρ)1/2

× ρn/2(1 − ρ)ℓ/2|∆|1/2

{ρ∑ℓ
i=1

∑ni
j=1 wij(tij − d′

ijβ̂)2 + (1 − ρ)∑ℓ
i=1 λ

2
i (ȳi − x̄′

iβ̂)2}(n−p)/2
, 0 < ρ < 1. (D.4)

Note that π(ρ | y) is defined for all values of ρ ∈ [0, 1]; we only need ∆ to be well
defined, and this is true because ∑ℓ

i=1
∑ni

j=1 dijd
′
ij is full rank for all values of ρ (i.e., the

matrix (x′
ij) is full rank provided that it has at least p linearly independent rows). Of course,

n > p as in standard regression problems. Therefore, the joint posterior density is proper.
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