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Abstract
Mixed models have widespread appeal in many areas of statistical modeling including

small area estimation. Here we review a variety of different approaches for linear mixed model
selection eventually arriving at the specific problem of selecting variables in small area models
ranging from parametric and non-parametric area and unit level models to subarea small
area models.
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1. Introduction

Many model search strategies involve trading off model fit with model complexity in a
penalized goodness of fit measure. Asymptotic properties for these types of procedures in set-
tings like linear regression and ARMA time series have been studied. Yet, these strategies do
not generalize naturally to more complex models, such as those for modeling correlated data
or those that involve adaptive estimation. In these cases, penalties and model complexity
may not be naturally defined.

Since the introduction of Akaike’s information criterion (AIC, Akaike 1973, 1974), a
number of similar criteria have been proposed, including the Bayesian information criterion
(BIC; Schwarz 1978), a criterion due to Hannan and Quinn (HQ; 1979), and the generalized
information criterion (GIC; Nishii 1984, Shibata 1984). These procedures essentially amount
to minimize a criterion function, which may be expressed as

D̂M + λn|M |, (1)

where M represents a candidate model, D̂M is a measure of lack of fit by M , and |M | denotes
the dimension of M , usually in terms of the number of estimated parameters under M . The
difference is made by λn, where n is the sample size. This is called a “penalizer”, although
some authors refer λn|M | as the penalizer. For example, λn = 2 for AIC; λn = log(n) for
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BIC; and λn = c log{log(n)} for HQ, where c is a constant greater than 2 (Bozdogan 1987,
pp. 359).

1.1. Contributions of C. R. Rao

It should be no surprise that Professor C.R. Rao has made important contributions to
model selection (in addition to the many other fundamental results he has given the field).
Two specific examples are found in Rao and Wu (1989) and Bai et al. (1999). In both
cases, the problem under study was that of linear model seletion. Specifically, the authors
considered the (possibly overfit) linear model,

y = Xβ + ϵ, (2)

where y is a n-vector of response observations, X is a known design matrix, β is a p-vector
of unknown regression parameters, and ϵ is a random error n-vector. Certain components of
β may or may not be zero. There are thus 2p total submodels, one of which is assumed to
be the true model generating the responses.

Rao and Wu (1989) developed a criterion in the family of (1) with a flexible penalty
function and proved strong consistency of model selection (that is, finding the true model).
Their method allowed a wider range of penalty functions thus leading to improved small
sample performance by adaptively choosing the best penalty function from the collection
of candidate ones. Specifically, they entertained λn = αnγ where γ < 1. They called a
combination (α, γ) of interest if all of the models in a collection of new perturbed models
built off the fitted full model are correctly selected. There may in fact be more than one
combination of (α, γ) that share this property and thus Rao and Wu (1989) suggested that
additional work is warranted in choosing among them. In Bai et al. (1999), they derived a
particular choice of λn based on observed data, which makes it random. They then proved
that the consistency property can still hold.

2. Mixed model selection

Consider the following mixed linear model:

y = Xβ + Zα+ ϵ , (3)

where y = (yi)1≤i≤N is a vector of observations; β = (βj)1≤j≤p is a vector of unknown
regression coefficients (the fixed effects); α = (αj)1≤j≤m is a vector of unobservable random
variables (the random effects); ϵ = (ϵi)1≤i≤N is a vector of errors; and X, Z are known
matrices. We assume that E(α) = 0, Var(α) = G; E(ϵ) = 0, Var(ϵ) = R, where G and
R may involve some unknown parameters such as variance components; and α and ϵ are
uncorrelated.

2.1. Random factors not subject to selection

In this section, we consider the model selection problem when the random part
of the model, i.e., Zα, is not subject to selection. Let ζ = Zα + ϵ. Then, the problem is
closely related to a regression model selection problem with correlated errors. Consider the
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following general linear model:

y = Xβ + ζ , (4)

where ζ is a vector of correlated errors, and everything else is as in (3). We assume that there
are a number of candidate vectors of covariates, X1, . . . , Xq, from which the columns of X
are to be selected. Let K = {1, . . . , q}. Then, the set of all possible models can be expressed
as B = {k : k ⊆ K}, and there are 2q possible models. Let A be a subset of B that is known
to contain the true model, so the selection will be within A. In an extreme case, A may be
B itself. For any matrix M , let L(M) be the linear space spanned by the columns of M ;
PM the projection onto L(M): PM = M(MTM)−MT ; and P⊥

M the orthogonal projection:
P⊥

M = I−PM . For any k ∈ B, let X(k) be the matrix whose columns are Xj, j ∈ k, if k ̸= ∅;
and X(k) = 0 if k = ∅. We consider the following criterion for model selection:

CN(k) = |y −X(k)β̂(k)|2 + λN |k| = |P⊥
X(k)y|2 + λN |k| , (5)

k ∈ A, where |k| represents the cardinality of k; β̂(k) is the ordinary least squares (OLS)
estimator of β(k) for the model y = X(k)β(k) + ζ, i.e.,

β̂(k) = [X(k)TX(k)]−X(k)Ty

and λN is a positive number satisfying certain conditions specified below. Note that PX(k) is
understood as 0 if k = ∅. Denote the true model by k0. If k0 ̸= ∅, we denote the corresponding
X and β by X and β = (βj)1≤j≤p (p = |k0|), and assume that βj ̸= 0, 1 ≤ j ≤ p. This
is, of course, reasonable because otherwise the model can be further simplified. If k0 = ∅,
X, β, and p are understood as 0. For 1 ≤ j ≤ q, Let {j}c represent the set K \ {j}.
We define the following sequences: ωN = min1≤j≤q |P⊥

X({j}c)Xj|2, νN = max1≤j≤q |Xj|2, and
ρN = λmax(ZGZT ) + λmax(R), where λmax means largest eigenvalue. Let k̂ be the minimizer
of (5) over k ∈ A, which will be our selection of the model. The following theorem gives
sufficient conditions under which the selection is consistent in the sense that

P (k̂ ̸= k0) −→ 0 . (6)

Theorem 1. (Jiang and Rao 2003) Suppose that νN > 0 for large N ,

ρN/νN −→ 0 , while lim inf(ωN/νN) > 0 . (7)

Then, (4) holds for any λN such that

λN/νN −→ 0 and ρN/λN −→ 0 . (8)

The above procedure requires selecting k̂ from all subset of A. Note that A may
contain as many as 2q subsets. When q is relatively large, alternative procedures have been
proposed, in the (fixed effects) linear model context, which require less computation [e.g.,
Zheng and Loh (1995)]. In the following, we consider an approach which is similar, in spirit,
to Rao and Wu (1989). First, note that one can always express Xβ in (4) as

Xβ =
q∑

j=1
βjXj (9)
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with the understanding that some of the coefficients βj may be zero. It follows that k0 =
{1 ≤ j ≤ q : βj ̸= 0}. Let X−j = (Xu)1≤u≤q,u̸=j, 1 ≤ j ≤ q, ηN = min1≤j≤q |P⊥

X−j
Xj|2, and

δN be a sequence of positive numbers satisfying conditions specified below. Let k̂ be the
subset of K such that

(|P⊥
X−j

y|2 − |P⊥
X y|2)/(|P⊥

X−j
Xj|2δN) > 1 . (10)

The following theorem states that, under suitable conditions, k̂ is a consistent selection.
Recall that ρN is defined above Theorem 1.

Theorem 2. (Jiang and Rao 2003) Suppose that ηN > 0 for large N , and

ρN/ηN −→ 0 . (11)

Then, (6) holds for any δN such that

δN −→ 0 and ρN/(ηNδN) −→ 0 . (12)

2.2. Selection of random factors

We now assume that Zα in (3) can be expressed as

Zα =
s∑

j=1
Zjαj , (13)

where Z1, . . . , Zs are known matrices; each αj is a vector of independent random effects with
mean 0 and variance σ2

j , which is unknown, 1 ≤ j ≤ s. Furthermore, we assume that ϵ
in (3) is a vector of independent errors with mean 0 and variance τ 2 > 0, and α1, . . . , αs, ϵ
are independent. Such assumptions are customary in the mixed model context (e.g., Searle,
Casella, and McCulloch (1992), pp 233-234), therefore (13) represents a fairly general class
of mixed linear models. If σ2

j > 0, we say that αj is in the model; otherwise, it is not.
Therefore, the selection of random factors is equivalent to simultaneously determining which
of the variance components σ2

1, . . . , σ
2
s are positive, and which of them are zero. The true

model can be expressed as

y = Xβ +
∑
j∈l0

Zjαj + ϵ , (14)

where X = (Xj)j∈k0 and k0 ⊆ K (see section 2); l0 ⊆ L = {1, . . . , s} such that σ2
j > 0,

j ∈ l0, and σ2
j = 0, j ∈ L \ l0.

There are some important differences between selecting the fixed covariates Xj and
selecting the random factors. One difference is that, in selecting the random factors, we
are going to determine whether the vector αj, not a given component of αj, should be
in the model. In other words, the components of αj are all “in” or all “out”. Another
difference is that, unlike selecting the fixed covariates, where it is reasonable to assume that
the Xjs are linearly independent, in a mixed linear model it is possible to have j ̸= jT but
L(Zj) ⊂ L(ZjT ).
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First, note that in section 2.1 we discussed a procedure to determine the fixed part of
the model, which leads to a selection k̂ that satisfies (6). Note that the only place that the
determination of k̂ might use knowledge about Z, and hence about l0, is through λN , which
depends on the order of λmax(ZGZT ). However, under (13), λmax(ZGZT ) ≤ ∑s

j=1 σ
2
j ∥Zj∥2,

where for any matrix M , ∥M∥ = [λmax(MTM)]1/2. Thus, an upper bound for the order
of λmax(ZGZT ) is max1≤j≤s ∥Zj∥2, which does not depend on l0. Therefore, k̂ could be
determined without knowing l0. In any case, we may write k̂ = k̂(l0), be it dependent on l0
or not. Now, suppose that a selection for the random part of the model, i.e., a determination
of l0, is l̂. We then define k̂ = k̂(l̂). The following theorem shows that the combined procedure
is consistent.

Theorem 3. (Jiang and Rao 2003) Suppose that P (l̂ ̸= l0) → 0 and P (k̂(l0) ̸= k0) → 0.
Then, P (k̂ = k0 and l̂ = l0) → 1.

How does one actually obtain l̂? Jiang and Rao (2003) divided the vectors α1, . . . , αs,
or, equivalently, the matrices Z1, . . . , Zs into several groups. The first group is called the
“largest random factors”. Roughly speaking, those are Zj, j ∈ L1 ⊆ L such that rank(Zj)
is of the same order as N , the sample size. We can assume that L(X,Zu, u ∈ L \ {j}) ̸=
L(X,Zu, u ∈ L), j ∈ L1, where L(M1, . . . ,Mt) represents the linear space spanned by
the columns of the matrices M1, . . . ,Mt. Such an assumption is reasonable because Zj is
supposed to be “largest”, and hence should have contribution to the linear space. The second
group consists of Zj, j ∈ L2 ⊆ L such that L(X,Zu, u ∈ L\L1 \{j}) ̸= L(X,Zu, u ∈ L\L1),
j ∈ L2. The ranks of the matrices in this group are of lower order of N . Similarly, the third
group consists of Zj, j ∈ L3 ⊆ L such that L(X,Zu, u ∈ L \ L1 \ L2 \ {j}) ̸= L(X,Zu, u ∈
L \ L1 \ L2), and so on. Note that if the first group, i.e., the largest random factors, does
not exist, the second group becomes the first, and other groups also move on. Jiang and
Rao (2003) gave a procedure that determines the indexes j ∈ L1 for which σ2

j > 0; then a
procedure that determines the indexes j ∈ L2 for which σ2

j > 0; and so on.

3. Fence methods

Although criteria like (1) are broadly used, difficulties are often encountered, espe-
cially in some non-conventional situations. For example, consider the following linear mixed
model written at the unit level,

yij = xT
ijβ + ui + vj + eij, i = 1, . . . ,m1, j = 1, . . . ,m2, (15)

where xij is a vector of known covariates, β is a vector of unknown regression coefficients (the
fixed effects), ui, vj are random effects, and eij is an additional error term. It is assumed that
ui’s, vj’s and eij’s are independent, and that, for the moment, ui ∼ N(0, σ2

u), vj ∼ N(0, σ2
v),

eij ∼ N(0, σ2
e). It is well-known (e.g., Harville 1977, Miller 1977) that, in this case, the

effective sample size for estimating σ2
u and σ2

v is not the total sample size m1 · m2, but
m1 and m2, respectively, for σ2

u and σ2
v . Now suppose that one wishes to select the fixed

covariates, which are components of xij, under the assumed model structure, using BIC.
Then, it is not clear what should be in place of n in (1). In fact, in cases of correlated
observations, such as the example above, the definition of “sample size” is often unclear.
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Furthermore, suppose that normality is not assumed in the above linear mixed model.
In fact, the only distributional assumptions are that the random effects and errors are inde-
pendent, have zero mean and constant variances. Now, suppose that one, again, wishes to
select the fixed covariates using AIC, BIC, or HQ. It is not clear how to do this because the
likelihood is unknown.

Even in the conventional case, there are still practical issues regarding these criteria.
For example, BIC is known to have the tendency of overly penalizing. In such a case, one
may wish to replace the penalizer by c log(n), where c is a constant less than one. Question is:
What c? Asymptotically, the choice of c does not make a difference in terms of consistency
so long as c > 0. However, practically, it does. For example, comparing BIC with HQ, the
penalizer of the latter is lighter in its order (log{log(n)} vs log(n)), but there is a constant
c involved in HQ. If n = 100, we have log(n) = 4.6 and log{log(n)} = 1.5, hence, if the
constant c in HQ is chosen as 3, BIC and HQ are the same.

Finally, the definition of |M | in (1) can also cause difficulties. In some circumstances
like ordinary linear regression, this is simply the number of parameters in M , but in other
situations where nonlinear, adaptive models are fitted, this can be substantially more (e.g.,
Hastie and Tibshirani 1990, Friedman 1991, Ye 1998).

While there is extensive literature on parameter estimation in linear and generalized
linear mixed models, the other component, that is, mixed model selection, has received
much less attention. Only recently have some results emerge in the area of linear mixed
model selection. Datta and Lahiri (2001) discussed a model selection method based on
computation of the frequentist’s Bayes factor in choosing between a fixed effects model and
a random effects model. They focused on the following one-way balanced random effects
model for the sake of simplicity: yij = µ + ui + eij, i = 1, . . . ,m, j = 1, . . . , k, where the
ui’s and eij’s are normally distributed with mean zero and variances σ2

u and σ2
e , respectively.

As noted by the authors, the choice between a fixed effects model and a random effects
one in this case is equivalent to testing the following one-sided hypothesis H0: σ2

u = 0
vs H1: σ2

u > 0. In fact, hypothesis testing may be regarded as a special case of model
selection, but not all model selection problems can be formulated as hypothesis testing (see
further discussion in subsection 8.1). Jiang and Rao (2003) developed various generalized
information criteria (GICs) suitable for linear mixed model selection. Meza and Lahiri (2005)
demonstrated the limitations of Mallows’ Cp statistic in selecting the fixed covariates in a
nested error regression model which is a special case of the linear mixed models. The nested
error regression model is defined as yij = xT

ijβ + ui + eij, i = 1, . . . ,m, j = 1, . . . , ni, where
yij is the observation, xij is a vector of fixed covariates, β is a vector of unknown regression
coefficients, and ui’s and eij’s are the same as in the model above considered by Datta and
Lahiri (2001). Simulation studies carried out by Meza and Lahiri (2005) showed that the Cp

method without modification does not work well in the current mixed model setting when
the variance σ2

u is large; on the other hand, a modified Cp criterion developed by these latter
authors by adjusting the intra-cluster correlations performs similarly as the Cp in regression
settings. Another related paper is that of Vaida and Blanchard (2005) who proposed a
conditional AIC where the penalty term in this CAIC is related to the effective degrees of
freedom for a linear mixed model proposed by Hodges and Sargent (2001) which reflects an
intermediate level of model complexity between a full fixed effects model and a corresponding
mixed model conditional on the random effects variances.
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It should be pointed out that all these studies are limited to linear mixed models,
while model selection in generalized linear mixed models (GLMMs) has never been seriously
addressed in the literature in a general way (there are some fully Bayesian approaches for
special cases like logistic mixed effects models - see Kinney and Dunson (2007) for example).
In fact, our earlier simulation results suggested that in the case of GLMM selection, a
procedure like GIC is much more sensitive to the choice of λn than in linear mixed model
selection. It is these concerns, such as the above, that motivated the development of a new
principle for model selection that is potentially less subjective, and applicable to both linear
mixed models and GLMMs.

Jiang, Rao et al. (2008) proposed a new procedure for model selection, called the
fence methods. An essential part of this procedure is a measure of lack-of-fit, denoted
by QM = QM(y, θM), where M indicates the candidate model, y is an n × 1 vector of
observations, θM represents the vector of parameters under M , such that E(QM) is minimized
when M is a true model and θM the true parameter vector under M . Here by true model we
mean that M is a correct model but not necessarily the most efficient one. In the sequel we
use the terms “true model” and “correct model” interchangeably. One example of QM is the
negative log-likelihood function under a parametric model. Another example is the residual
sum of squares (RSS) under a parametric or semiparametric model. For more examples, see
Jiang, Rao et al. (2008).

The idea involves a procedure to isolate a subgroup of what are known as correct
models (of which the optimal model is a member). This is accomplished by constructing
a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is
constructed, the optimal model is selected from amongst those within the fence according
to a criterion which can be made flexible and incorporate scientific or economical concerns.
The fence is built by checking the following inequality for every candidate model M ,

Q̂M − Q̂M̃ ≤ cnσ̂M,M̃ , (16)

where Q̂M = infθM ∈ΘM
QM(θM , y), Q̂M̃ = minM∈M Q̂M , and M represents the set of can-

didate models. Here σ̂M,M̃ is an estimate of the standard deviation of the left side of (16).
Finally, cn is a tuning constant chosen below.

The motivation of (16) is to exam the closeness of Q̂M to its lower bound - when
the measure of lack-of-fit is close enough to the minimum the model is considered correct.
The reason for the appearance of σ̂M,M̃ on the right side is that, when M is correct, this is
an appropriate measure of the left side. Still, the constant cn plays an important role for
the finite sample performance of fence. Therefore, Jiang, Rao et al. (2008) proposed the
following method to choose cn adaptively.

1. Fence procedure with fixed cn.

1. ind M̃ such that Q̂M̃ = minM∈M Q̂M .

2. For each M ∈ M such that |M | < |M̃ |, compute σ̂M,M̃ , an estimator of σM,M̃ . Then,
M belongs to M̃−, the set of “true” models with |M | < |M̃ | if (2) holds.

3. Let M̃ = {M̃} ∪ M̃−, m0 = minM∈M̃ |M |, and M0 = {M ∈ M̃ : |M | = m0}. Let M0

be the model in M0 such that Q̂M0 = minM∈M0 Q̂M . M0 is the selected model.
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The following outlines an effective algorithm for fence. Let d1 < d2 < · · · < dL be all the
different dimensions of the models M ∈ M.

The fence algorithm: i) Find M̃ . ii) Compute σ̂M,M̃ for all M ∈ M such that
|M | = d1; let M1 = {M ∈ M : |M | = d1 and (16) holds}; if M1 ̸= ∅, stop. Let M0 be
the model in M1 such that Q̂M0 = minM∈M1 Q̂M ; M0 is the selected model. iii) If M1 = ∅,
compute σ̂M,M̃ for all M ∈ M such that |M | = d2; let M2 = {M ∈ M : |M | = d2 and (16)
holds}; if M2 ̸= ∅, stop. Let M0 be the model in M2 such that Q̂M0 = minM∈M2 Q̂M ; M0 is
the selected model. iv) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows: Check the candidate models,
from the simplest to the most complex; once one has discovered a model that falls within
the fence and checked all the other models of the same simplicity (for membership within
the fence), one stops. One apparent advantage of the fence algorithm is that one needs not
search the entire space of candidate models in order to find the optimal model. Here the
optimality is defined in terms of minimal dimension, i.e., |M |. However, as mentioned, the
criterion of optimality is flexible.

2. Forward-backward (F-B) fence procedure. The fence algorithm searches from the simplest
models and therefore may not need to search the entire model space in order to determine
the optimal model. On the other hand, such a procedure may still involve a lot of evaluations
when the model space is large. To make the fence procedure computationally more attractive
to large and complex models, the following variation of fence was proposed for situations of
complex models with many predictors.

To be more specific, we let M̃ be the full model. The idea is to use a forward-backward
procedure to generate a sequence of candidate models, among which the optimal model is
selected using the fence method. We begin with a forward procedure. Let M1 be the model
that minimizes Q̂M among all models with a single parameter; if M1 is within the fence, stop
the forward procedure; otherwise, let M2 be the model that minimizes Q̂M among all models
that add one more parameter to M1; if M2 is within the fence, stop the forward procedure;
and so on. The forward procedure stops when the first model is discovered within the fence.
The procedure is then followed by a backward elimination. Let Mk be the final model of the
forward procedure. If no submodel of Mk with one less parameter is within the fence, Mk will
be our selection; otherwise, Mk is replaced by Mk+1 which is a submodel of Mk with one less
parameter and is within the fence, and so on. This approach is called the forward-backward
(F-B) fence.

3. Adaptive fence procedure. Recall that M denotes the set of candidate models, which
includes a true model. To be more specific, we assume that there is a full model Mf ∈ M,
hence M̃ = Mf in (16); and that every model in M \ {Mf} is a submodel of a model in M
with one less parameter than Mf . Let M∗ denote a model with minimum dimension among
M ∈ M. First note that, ideally, one wishes to select cn that maximizes the probability
of choosing the optimal model. Here for simplicity the optimal model is defined as a true
model that has the minimum dimension among all true models. This means that one wishes
to choose cn that maximizes

P = P(M0 = Mopt), (17)
where Mopt represents the optimal model, and M0 = M0(cn) is the model selected by the
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fence procedure with the given cn. However, two things are unknown in (17): (i) under what
distribution should the probability P be computed; and (ii) what is Mopt?

To solve problem (i), note that the assumptions above on M imply that Mf is a true
model. Therefore, it is possible to bootstrap under Mf . For example, one may estimate the
parameters under Mf , then use a model-based bootstrap to draw samples under Mf . This
allows us to approximate the probability P on the right side of (17).

To solve problem (ii), we use the idea of maximum likelihood. Namely, let p∗(M) =
P∗(M0 = M), where M ∈ M and P∗ denotes the empirical probability obtained by boot-
strapping. Let p∗ = maxM∈M p∗(M). Note that p∗ depends on cn. The idea is to choose cn

that maximizes p∗. It should be kept in mind that the maximization is not without restric-
tion. To see this, note that if cn = 0 then p∗ = 1 (because when cn = 0 the procedure always
chooses Mf). Similarly, p∗ = 1 for very large cn, if M∗ is unique (because when cn is large
enough the procedure always chooses M∗). Therefore, what one looks for is “the peak in the
middle” of the plot of p∗ against cn. This procedure is also studied in detail in Jiang et al.
(2008).

Jiang, Rao et al. (2008) established consistency of fence, F-B fence and adaptive
fence methods under mild regularity conditions. Here consistency is in the sense that with
probability tending to one as the sample size increases the procedure will select the optimal
model.

3.1. Fence method for high dimensions and subtractive measures of fit

Computation in high dimensions (p large typically), can be a challenge. If m is large,
as is typically the case, this could result in a large number of Q̂(M)’s that have to be
evaluated. Jiang et al. (2011) introduced the idea of a subtractive measure in their work
on fence methods for gene set analysis (what they called the invisible fence). Let 1, . . . ,m
denote the candidate elements. A measure Q̂ is said to be subtractive if it can be expressed
as

Q̂(M) = s−
∑
i∈M

si, (18)

where si, i = 1, . . . ,m are some nonnegative quantities computed from the data, M is a
subset of 1, . . . ,m, and s is some quantity computed from the data that does not depend
on M . Typically we have s = ∑m

i=1 si, but the definition does not impose such a restriction.
Also the nonnegativity constraint on the si’s is only to ensure that Q̂(M) behaves like a
measure of lack-of-fit, that is, larger model has smaller Q̂(M).

For a subtractive measure, the models that minimize Q̂(M) at different dimensions
are found almost immediately. Let r1, r2, . . . , rm be the ranking of the candidate elements in
terms of decreasing si. Then, the model that minimizes Q̂(M) at dimension one is r1; the
model that minimizes Q̂(M) at dimension two is {r1, r2}; the model that minimizes Q̂(M)
at dimension three is {r1, r2, r3}, and so on. This is what Jiang et al. (2011) called a fast
algorithm for implementing the fence approach.
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3.2. Other approaches to mixed model selection

Muller et al. (2013) wrote a survey paper on linear mixed model selection and dis-
cussed some other methods not discussed above. These include the marginal AIC (Vaida
and Blanchard 2005), the bootstrap biased-correct mAIC of Shang and Cavanaugh (2008),
Srivastava and Kubokawa (2010), conditional AIC (Vaida and Blanchard 2005), the mod-
ified Schwarz approach of Pauler (1998), minimum description length (MDL) approaches,
shrinkage methods and Bayesian methods. Interested readers are directed to that survey
paper for more details.

4. Mixed model selection and small area estimation

Small area estimation (SAE) has received increasing attention in recent literature.
Here the term small area typically refers to a subpopulation or domain for which reliable
statistics of interest cannot be produced due to certain limitations of the available data.
Examples of small areas include a geographical region (e.g., a state, county, municipality,
etc.), a demographic group (e.g., a specific age × sex × race group), a demographic group
within a geographic region, etc. In absence of adequate direct samples from the small areas,
methods have been developed in order to “borrow strength”. See Rao and Molina (2015)
for a comprehensive account of various methods used in SAE. Statistical models, especially
mixed effects models, have played important roles in SAE. See Jiang and Lahiri (2006) for
an overview of mixed effects models in SAE.

While there is extensive literature on inference about small areas using mixed effects
models, including estimation of small area means which is a problem of mixed model pre-
diction, estimation of the mean squared error (MSE) of the empirical best linear unbiased
predictor (EBLUP; see Rao 2003), and prediction intervals (e.g., Chatterjee, Lahiri, and Li
2007), model selection in SAE has received much less attention. However, the importance of
model selection in SAE has been noted by prominent researchers in this field (e.g., Battese,
Harter, and Fuller 1988, Ghosh and Rao 1994). Datta and Lahiri (2001) discussed a model
selection method based on computation of the frequentist’s Bayes factor in choosing between
a fixed effects model and a random effects model. They focused on the following one-way
balanced random effects model for the sake of simplicity: yij = µ + ui + eij, i = 1, . . . ,m,
j = 1, . . . , k, where the ui’s and eij’s are normally distributed with mean zero and variances
σ2

u and σ2
e , respectively. As noted by the authors, the choice between a fixed effects model

and a random effects one in this case is equivalent to testing the following one-sided hypoth-
esis H0: σ2

u = 0 vs H1: σ2
u > 0. Note that, however, not all model selection problems can be

formulated as hypothesis testing. Fabrizi and Lahiri (2004) developed a robust model selec-
tion method in the context of complex surveys. Meza and Lahiri (2005) demonstrated the
limitations of Mallows’ Cp statistic in selecting the fixed covariates in a nested error regres-
sion model (Battese, Harter, and Fuller 1988), defined as yij = xT

ijβ + ui + eij, i = 1, . . . ,m,
j = 1, . . . , ni, where yij is the observation, xij is a vector of fixed covariates, β is a vector
of unknown regression coefficients, and ui’s and eij’s are the same as in the model above
considered by Datta and Lahiri (2001). Simulation studies carried out by Meza and Lahiri
(2005) showed that the Cp method without modification does not work well in the current
mixed model setting when the variance σ2

u is large; on the other hand, a modified Cp crite-
rion developed by these latter authors by adjusting the intra-cluster correlations performs
similarly as the Cp in regression settings. It should be pointed out that all these studies are
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limited to linear mixed models, while model selection in SAE in a generalized linear mixed
model (GLMM) setting has never been seriously addressed.

4.1. Fence methods for SAE model selection

One of the advantages of fence methods is that the criterion of optimality for selecting
the models within the fence is flexible. In SAE the problem of main interest is the estimation,
or prediction, of the small area means. For simplicity, consider the case of linear mixed mod-
els. Then, the small area mean is typically estimated by the best linear unbiased predictor,
or BLUP. Because an important measure of the accuracy of BLUP is its MSE, it makes sense
to take the latter into account. Therefore, we consider the following criterion for selecting
models within the fence when linear mixed models are under consideration. Suppose that
one is interested in a small-area specific mixed effect (e.g., the small area mean), θi, which is
a linear combination of fixed and random effects. Let θ̃i be the BLUP of θi. Let θ = (θi)1≤i≤m

and θ̃ = (θ̃i)1≤i≤m. Then, MSE(θ̃) = E(|θ̃ − θ|2) = ∑m
i=1 E(θ̃i − θi)2 = ∑m

i=1 MSE(θ̃i). Fur-
thermore, an explicit expression of MSE(θ̃i) can be obtained (e.g., Rao 2003, pp. 137). Note
that MSE(θ̃) typically depends on some unknown variance components. Let M̂SE(θ̃) be an
estimator of MSE(θ̃), say, by replacing the variance components by their REML estimators
(e.g., Jiang 2007). A model within fence is selected if (i) it has the minimum dimension;
and (ii) if there are more than one models chosen by (i), select the one that has the minimal
M̂SE(θ̃).

An interesting example is that from Jiang et al. (2010) who considered model selection
for non-parametric SAE models. Opsomer et al. (2008) proposed a spline-based nonpara-
metric model for SAE. The idea is to approximate an unknown nonparametric small-area
mean function by a penalized spline (P-spline). The authors then used a connection between
P-splines and linear mixed models (Ruppert, Wand, and Carroll 2003) to formulate the ap-
proximating model as a linear mixed model, where the coefficients of the splines are treated
as random effects. Consider, for simplicity, the case of univariate covariate. Then, a P-spline
can be expressed

f̃(x) = β0 + β1x+ · · · + βpx
p + γ1(x− κ1)p

+ + · · · + γq(x− κq)p
+, (19)

where p is the degree of the spline, q is the number of knots, κj, 1 ≤ j ≤ q are the knots,
and x+ = x1(x>0). Clearly, a P-spline is characterized by p, q, and also the location of the
knots.

Jiang et al. (2010) developed a simplified version of the adaptive fence in order to
choose p and q. First, since the optimal model is rarely either Mf or M∗, the minimal
model (dimensionwise; e.g., a model with only the intercept). Baseline adjustment and
threshold checking are used to deal with these two cases (see Jiang et al. 2008). The
baseline adjustment is done by generating an additional vector of covariates, say, Xa, so
that it is unrelated to the data. Then, define the model M∗

f as Mf plus Xa, and replace
Mf by M∗

f , but let M remain unchanged. This way one knows for sure that the new full
model, M∗

f , is not an optimal model (because it is not a candidate model). The threshold
checking inequality is given by Q̂M∗ − Q̂M∗

f
> d∗, where d∗ is the maximum of the left side

of the threshold inequality computed under the bootstrap samples generated under M∗. In
case the threshold inequality holds, we ignore the right tail of the plot of p∗ against cn that
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eventually goes up and stays at one.

Jiang et al. (2010) also constructed a a (large sample) confidence lower bound, for
example,

p∗ − 1.96
√
p∗(1 − p∗)/B (20)

where B is the bootstrap sample size. When selecting cn that maximize p∗ we take (20)
into account. More specifically, suppose that there are two peaks in the plot of p∗ against
cn located at cn,1 and cn,2 such that cn,1 < cn,2. Let p∗

1 and p∗
2 be the heights of the peaks

corresponding to cn,1 and cn,2. As long as p∗
1 is greater than the confidence lower bound at

p∗
2, that is, (4) with p∗ = p∗

2, we choose cn,1 over cn,2. Clearly, the selection is in favor of
smaller cn in order to be more conservative. (In other words, we are more concerned with
underfit than overfit.)

Consistency of selection under mild regularity conditions was then proven in the
following Theorem:

Theorem 4. (Jiang, Nguyen, and Rao 2010). Let M∗
0 denote the model selected

by the fence procedure with cn = c∗
n. Also, let Mopt denote an optimal model defined as

a true model with minimum dimension and minimum MSE(θ̃) among all the true models
within the (same) minimum dimension. Under the regularity conditions given therein, there
is c∗

n which is at least a local maximum and approximate global maximum of p∗, and the
corresponding M∗

0 is consistent in the sense that any δ, η > 0, there are N , N∗ such that

P{p∗(c∗
n) ≥ 1 − δ} ∧ P(M∗

0 = Mopt) ≥ 1 − η,

if m ≥ N and B ≥ N∗.

4.2. Variable selection for area and subarea level SAE models

In this section, we focus on variable selection under area level models and subarea
level SAE models which are extensively used in practice. A basic area level model, also
called the Fay-Herriot model (FH; Fay and Herriot 1979), uses direct estimators θ̂i of area
means θi(i = 1, . . . ,m) and associated area level covariates. Direct estimators are obtained
from area-specific unit level data, taking survey design into account. Area level covariates
are used to link the area means. This leads to a sampling model and a linking model given
by θ̂i = θi + ei and θi = xT

i β + vi respectively, where ei is the sampling error, β is the vector
of model parameter, xi is the p × 1 vector of area level covariates and vi is a random area
effect. Further, ei has mean 0 and known variance ψi, and the sampling errors are assumed
to be independent. In practice, the sampling variances ψi are obtained by smoothing their
direct estimators using generalized variance functions. The area effect vi has mean 0 and
variance σ2

v , and the area effects are assumed to be independent. Combining the sampling
model with the linking model leads to the FH model θ̂i = xT

i β+vi +ei which is then used for
variable selection. Note that the linking model alone cannot be used for variable selection
because the area means θi are not known.

Because of the sampling errors in the FH model, standard methods for linear regres-
sion models, such as the AIC, BIC and Mallows’ Cp used for variable selection, can lead to
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biased variable selection when applied to the FH model. Han (2013) used a conditional AIC
method for variable selection that accounts for the sampling errors in the FH model. This
method is fairly complex, and practitioners might prefer simple modifications to standard
methods that can account for sampling errors in the FH model. We give a brief description
of a simple method of estimating the ideal variable selection criteria under the linking model
that accounts for the sampling error (Lahiri and Suntornchost 2015). The resulting estima-
tion error is shown to converge to 0 in probability as the number of areas increases, unlike
the estimation error in the näıve criteria ignoring the sampling errors. The proposed method
performed well in simulations unlike the näıve method that ignores the sampling errors in
the FH model.

Let, MSEθ = 1
m−p

θT (Im − P )θ denote the ideal mean error sum of squares, where
θ = (θ1, . . . , θm)T , Im is the identity matrix of order m, and P = X(XTX)−1X is the
standard projection matrix based on the linking model. Then the estimator of MSEθ is given
by mseθ = MSEθ̂ − ψ̄w, where MSEθ̂ is obtained by replacing θ by its direct estimator θ̂,
and ψ̄w = 1

m−p

∑m
i=1(1 − hii)ψi with hii = xT

i (XTX)−1xi. We simply replace MSEθ by mseθ

in the ideal AIC, BIC and Cp which are functions of MSEθ. For example, the resulting
AIC = mlog{m−p

m
mseθ} + 2p. In the case of small m, the estimator mseθ could take a

negative value and Lahiri and Suntornchost (2015) suggested a simple modification that
leads to strictly positive estimator of MSEθ.

Two-fold subarea models are also often used in practice to estimate subarea and area
means. For example, Mohadjer et al. (2012) studied adult literacy for counties (subareas)
sampled from states (areas) in the United States, using data from the 2003 U. S. National
Assessment of Adult Literacy (NAAL). We have areas i and subareas j are sampled from
area i. Direct estimators of subarea means θij(j = 1, . . . , ni; i = 1, . . . ,m) and associated
subarea level covariate vector are denoted as θ̂ij and xij respectively. A two-fold subarea
model consists of a sampling model θ̂ij = θij + eij and a linking model θij = xT

ijβ + bij

respectively, where eij is the sampling error and bij = vi + uij is the sum of the random
area effect vi and subarea effect uij. The sampling errors eij are assumed to be independent
with zero means and known variances. Further, the area effect is independent of the subarea
effect, and the vi and uij are independent and identically distributed with zero means and
variances σ2

v and σ2
u respectively. Under the assumptions, the composite random effects bij

are correlated for each area i with covariance matrix Σi = σ2
v1i1T

i + σ2
uIi where 1i is the unit

vector of length ni and Ii is the identity matrix of order ni.

We cannot treat the linking model for the two-fold case as a FH-type model on the
subarea means because the composite random effects bij are correlated. It is necessary to
transform the covariance matrix Σi to a diagonal covariance matrix with equal diagonal
elements across areas i, and then apply the variable selection method to the transformed
linking model to get the ideal error mean sum of squares. Cai et al. (2020) obtained a
parameter-free transformation matrix Ai of order (ni − 1) × ni and full rank that makes the
covariance matrix of Aibi diagonal with equal diagonal elements across i = 1, . . . ,m, where
bi = (bi1, . . . , bim)T (Li and Lahiri (2019) used a similar transformation in the context of unit
level models). The transformed linking model is then used to get the ideal mean square error
sum of squares MSEθ∗ and its estimator mseθ∗ along the lines of the method used for the FH
linking model. Note that the transformed vector θ∗

i = Aiθi has length ni −1 unlike the vector
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θi with elements θij, j = 1, . . . , ni, and as a result each area loses one degree of freedom after
transformation. The variable selection criteria can then be computed using mse∗

θ, as in the
case of the FH model. Cai et al. (2020) report simulation results showing that the proposed
transformation method performs well in variable selection, unlike the naive method treating
the linking model as a FH-type model ignoring the correlations, especially as σ2

v increases.

Three-fold models linking sub-subarea means to related covariates and random effects
at the area, subarea and sub-subarea levels are also used in practice to estimate sub-subarea
means as well as subarea means. For example, the Program for the International Assessment
of Adult Competencies (PIAAC) in the United States used a three-fold model with census
divisions as areas, states within a census division as subareas and counties within a state as
sub-subareas. Cai and Rao (2022) extended the two-fold model variable selection method of
Cai et al. (2020) to variable selection to variable selection under three-fold models.
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